β-环糊精及其衍生物和纳米碳材料在电化学中的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电化学测定方法是将化学物质的变化归结为电化学反应,即以体系中的电位、电流或电量作为发生化学反应的量度进行测定的方法,具有简单易行、灵敏度高和实时性好等特点。β-环糊精/碳纳米材料体系具有很好的导电性、稳定性和生物相容性。在不需要添加交联剂的情况下就可以很好的固定各种物质。目前,这样复合体系主要用来设计各种各样的生物电化学装置,以改善这些装置的生物活性和光电等性能。本文主要是通过利用特定的方法对碳纳米管、石墨烯和β-环糊精进行改性和修饰,以改善碳纳米管、石墨烯和β-环糊精的溶解性和分散性,同时也进一步提高了这几种物质的的电化学性能。将这些改性碳纳米管、石墨烯、β-环糊精复合后,再用于电极的修饰,修饰后的电极用于一些生物大分子的电化学性能以及电化学行为的研究,并进一步应用于生物大分子含量的测定,探索效果良好的分离方法和测试手段。论文主要包括以下内容:
     1.研究了多巴胺(DA)和抗坏血酸(AA)在氨基-β-环糊精/石墨烯/二茂铁修饰电极的电催化行为。制备氨基-β-环糊精/石墨烯复合物,二茂铁作为客体进入氨基-β-环糊精内腔中,形成比较稳定的超分子化合物。然后采用滴涂法对玻碳电极进行修饰后,对多巴胺(DA)和抗坏血酸(AA)进行测定。结果表明,复合物氨基-β-环糊精/石墨烯/二茂铁修饰后的玻碳电极能够有效促进这两种生物大分子在电极表面的电子传递速率,对这两种共同存在于人体内的生物大分子的氧化还原行为具有很好的电催化作用,且能将两种物质共存条件下检测出来。
     2.对单壁碳纳米管进行羧化处理,然后将羧化的碳纳米管(CNTs)分散在氨基-β-环糊精/二茂铁形成混合溶液,并通过滴涂法将该混合溶液用于制备修饰电极,用循环伏安法研究多巴胺在不同条件下的电化学行为。结果表明,氨基-β-环糊精/羧化单壁碳纳米管/二茂铁修饰后的玻碳电极能够有效促进多巴胺在电极表面的电子传递速率,对多巴胺具有很好的催化氧化作用。
     3.利用羧基-β-环糊精/石墨烯/二茂铁修饰玻碳电极对尼古丁和儿茶酚进行了电化学测定,利用化学方法将羧基-β-环糊精和石墨烯复合在一起,增强了石墨烯在电极上的稳定性,将上述复合物与二茂铁结合后制备的修饰电极通过循环伏安法探讨尼古丁和儿茶酚在不同条件下的电化学行为。结果表明该修饰电极对尼古丁和儿茶酚的电催化性能好,而且稳定性好、灵敏度高。
     4.将石墨烯进行改性,得到带有磁性的石墨烯,从而进一步增强了石墨烯体系的电化学性能。羧基-β-环糊精/磁性石墨烯复合膜修饰电极测定多巴胺,电催化作用较为明显,稳定性好,电极寿命较长,可以在实际中应用。
     5.利用Au-SH键稳定性高、导电性能好等特点,对β-环糊精进行改性,得到溶解性良好的巯基-β-环糊精。将其与石墨烯复合后对金电极进行修饰,修饰后所得巯基-β-环糊精/石墨烯复合膜修饰金电极对多巴胺和抗坏血酸的电化学测定效果良好,相对于玻碳电极灵敏度更好。
Electrochemical analysis method is attributed chemical changes to electrochemicalreactions. Usually, the potential, current or electric quality of the reaction system is used asmeasurement of the reaction in this method. And the method has some advantages such assimple, high sensitivity and good real-time. The mixture of β-cyclodextrin (β-CD) and nanocarbon materials has good conductivity, stability and biocompatibility. It can be well fixedinto various substances without adding any crosslinking agent. At present, such complexsystem is mainly used to design various biological electrochemical sensors and improvebiological activity and optoelectronics properties of some devices. In this thesis, some specificmethods were used to modify CNTs、graphene and β-cyclodextrins in order to improve theirsolubility and dispersion, as well as improve the electrochemical properties of CNTs、graphene and β-cyclodextrins. The functionalized CNTs、graphene and β-cyclodextrins areapplied to the electrochemical performance determination of some biomacromolecules. Theelectrochemical behaviors of these biological macromolecules were investigated and thecontent of these biological macromolecules were determined. More effective methods forseparation and testing were explored. The mainly contents of the thesis are as follows:
     1. The electrocatalytic behaviors of dopamine (DA) and ascorbic acid (AA) inamino-β-cyclodextrin (β-CD-NH2)/graphene/ferrocene modified electrode were studied.Firstly, the amino-β-cyclodextrins/graphene composite was prepared and the inclusioncomplex of amino-β-cyclodextrins and ferrocene(Fc) was combined with graphene. Then theywere used drop-coated method to prepare modified electrode for determination of DA and AA.Results showed that the electrode modified with amino-β-cyclodextrin/graphene/ferrocenecan effectively promote electron transfer rate of these two biological macromolecules in theelectrode surface and perform excellent electrocatalysis in the redox behaviors of the twobiomacromolecules in bodies, the DA and AA in coexistence conditions were separated and detected.
     2. Carboxyl groups were grafted to the surface of single-walled carbon nanotubes(SWCNTs), then carboxylic SWCNTs were scattered in amino-β-cyclodextrin/ferrocenesolution by sonication. Subsequently, the modified electrode was prepared with drop-coatedmethod, the electrochemical behaviors of DA were studied in different conditions utilizing themodified electrode via cyclic voltammetry method. The results indicated that theβ-CD-NH2/SWCNTs-COOH/Fc modified electrode can effectively promote electronstransfer rate of DA in the electrode surface and perform excellent electrocatalysis in the redoxbehaviors of DA.
     3. The electrochemical behaiors of nicotine and catechol on the carboxylicβ-cyclodextrin/graphene/ferrocene modified glassy carbon electrode has been investigated.The stability of graphene in the electrodes was reinforced by carboxyl-β-cyclodextrins/graphene complexes via chemical method. Furthermore, the modified glassy carbon electrodewas applied to the electrochemical behaviors reserch of nicotine and catechol in differentconditions utilizing cyclic voltammetry method. The results showed that the modifiedelectrode indicated excellent catalytic properties and the method indicated good stability, highsensitivity in the electrochemical determination of nicotine and catechol.
     4. Aim to improve the electrochemical properties of electrode, the magnetic grapheneswere prepared and used to modify the naked glass carbon elecreode. Finally, theelectrocatalytic property of carboxyl-β-cyclodextrins/graphene-Fe3O4composite filmmodified electrode was investigated. It is showed that obvious catalytic properties, goodstability, the electrode has a long lifetime, it can be applied in real-detection.
     5. Firstly, the sulphur-β-cyclodextrins was synthesized for improving the solubilities ofβ-cyclodextrins. Then, the functionlized β-cyclodextrins was combined with graphene andused to modify gold electrode. Ultimately, the modified electrode was applied to determinethe electrochemical behaviors of DA and AA. The results showed that the modified goldelectrode illustrated higher sensitivity than modified glass carbon electrode. Moreover, themodified gold electrode illustrated good electrocatalystical properties.
引文
[1]梁斌,赵元弟,高作宁.羟胺在碳纳米管修饰玻碳电极上的电催化还原及电化学动力学性质研究[J].分析试验室,2006,25(9):14-17.
    [2]S. Yang, Y. Huang, C. Huang, et al. Enhanced Energy Conversion Efficiency of the Sr2+-ModifiedNanoporous TiO2Electrode Sensitized with a Ruthenium Complex [J]. Chemistry of Materials,2002,14(4):1500-1504.
    [3]J.-M. Zen, A. Senthil Kumar, D.-M. Tsai. Recent Updates of Chemically Modified Electrodes inAnalytical Chemistry [J]. Electroanalysis,2003,15(13):1073-1087.
    [4]S. Dong, Y. Wang. The application of chemically modified electrodes in analytical chemistry [J].Electroanalysis,1989,1(2):99-106.
    [5]W. Sun, Y. Li, H. Gao, et al. Direct electrochemistry of double stranded DNA on ionic liquidmodified carbon paste electrode [J]. Microchimica Acta,2009,165(3):313-317.
    [6]F. Zhao, X. Wu, M. Wang, et al. Electrochemical and Bioelectrochemistry Properties ofRoom-Temperature Ionic Liquids and Carbon Composite Materials [J]. Analytical Chemistry,2004,76(17):4960-4967.
    [7]M. S. Lin, B. I. Jan. Determination of hydrogen peroxide by utilizing acobalt(II)hexacyanoferrate-modified glassy carbon electrode as a chemical sensor [J].Electroanalysis,1997,9(4):340-344.
    [8]S. Priya, S. Berchmans. CuO Microspheres Modified Glassy Carbon Electrodes as Sensor Materialsand Fuel Cell Catalysts [J]. Journal of The Electrochemical Society,2012,159(4):F73-F80.
    [9]A. Umar, M. M. Rahman, Y.-B. Hahn. Ultra-sensitive hydrazine chemical sensor based onhigh-aspect-ratio ZnO nanowires [J]. Talanta,2009,77(4):1376-1380.
    [10]S.-F. Wang, F. Xie, R.-F. Hu. Carbon-coated nickel magnetic nanoparticles modified electrodes asa sensor for determination of acetaminophen [J]. Sensors and Actuators B: Chemical,2007,123(1):495-500.
    [11]C. Jia, H. Yin, H. Ma, et al. Enhanced Photoelectrocatalytic Activity of Methanol Oxidation onTiO2-Decorated Nanoporous Gold [J]. The Journal of Physical Chemistry C,2009,113(36):16138-16143.
    [12]N. Philippidis, S. Sotiropoulos, A. Efstathiou, et al. Photoelectrocatalytic degradation of theinsecticide imidacloprid using TiO2/Ti electrodes [J]. Journal of Photochemistry andPhotobiology A: Chemistry,2009,204(2–3):129-136.
    [13]C. Nicolini, V. Sivozhelezov, V. Bavastrello, et al. Matrices for Sensors from Inorganic, Organic,and Biological Nanocomposites [J]. Materials,2011,4(8):1483-1518.
    [14]I. Warad, Z. Al-Othman, S. Al-Resayes, et al. Synthesis and Characterization of NovelInorganic-Organic Hybrid Ru(II) Complexes and Their Application in Selective Hydrogenation[J]. Molecules,2010,15(2):1028-1040.
    [15]A. J. Bergren, R. L. McCreery. Analytical Chemistry in Molecular Electronics [J]. Annual Reviewof Analytical Chemistry,2011,4(1):173-195.
    [16]J. R. Heath. Molecular Electronics [J]. Annual Review of Materials Research,2009,39(1):1-23.
    [17]陈文.环糊精[J].农药,1986,(1):63-64.
    [18]G. Astray, C. Gonzalez-Barreiro, J. C. Mejuto, et al. A review on the use of cyclodextrins in foods[J]. Food Hydrocolloids,2009,23(7):1631-1640.
    [19]A. Ohira, M. Sakata, I. Taniguchi, et al. Comparison of nanotube structures constructed from α-,β-, and γ-cyclodextrins by potential-controlled adsorption [J]. Journal of the American ChemicalSociety,2003,125(17):5057-5065.
    [20]S. Li, W. C. Purdy. Cyclodextrins and their applications in analytical chemistry [J]. ChemicalReviews,1992,92(6):1457-1470.
    [21]M. V. Rekharsky, Y. Inoue. Complexation Thermodynamics of Cyclodextrins [J]. ChemicalReviews,1998,98(5):1875-1918.
    [22]R. Breslow, S. D. Dong. Biomimetic Reactions Catalyzed by Cyclodextrins and Their Derivatives[J]. Chemical Reviews,1998,98(5):1997-2012.
    [23]X. Shi, P. Liang, D. Song, et al. Chromatographic Properties of2,3-Di-O-allyl-6-O-acyl-β-cyclodextrins as Chiral Stationary Phases of Capillary GC [J].Chromatographia,2010,71(5):539-544.
    [24]F. Otero-Espinar, A. Luzardo-Alvarez, J. Blanco-Mendez. Cyclodextrins: more thanpharmaceutical excipients [J]. Mini reviews in medicinal chemistry,2010,10(8):715-725.
    [25]袁超,金征宇,王晨光.改性环糊精及其应用[J].粮食与油脂,2006,(5):38-40.
    [26]李文德,周俊侠,张力田.环糊精的改性研究及进展[J].中国粮油学报,1997,12(1):29-31.
    [27]李红霞,辛淮生. β-环糊精的化学改性及其在药剂学领域中的应用进展[J].江苏大学学报(医学版),2005,15(3):264-267.
    [28]C. J. Easton, S. F. Lincoln. Modified cyclodextrins [M]. World Scientific Publishing Company1999.
    [29]A. Puglisi, E. Rizzarelli, G. Vecchio, et al. Crystal and molecular structure of β-cyclodextrinsfunctionalized with the anti-inflammatory drug Etodolac [J]. Biopolymers,2009,91(12):1227-1235.
    [30]D. Duchêne. Cyclodextrins And Their Inclusion Complexes [J]. Cyclodextrins in Pharmaceutics,Cosmetics, and Biomedicine,2011:1-18.
    [31]C. A. Nijhuis, K. A. Dolatowska, B. J. Ravoo, et al. Redox-controlled interaction ofbiferrocenyl-terminated dendrimers with beta-cyclodextrin molecular printboards [J]. Chemistry,2007,13(1):69-80.
    [32]D. Rong, V. T. D'Souza. A convenient method for functionalization of the2-position ofcyclodextrins [J]. Tetrahedron Letters,1990,31(30):4275-4278.
    [33]W. S. Chung, N. J. Turro, J. Silver, et al. Modification of face selectivity by inclusion incyclodextrins [J]. Journal of the American Chemical Society,1990,112(3):1202-1205.
    [34]Y. Matsui, A. Okimoto. The binding and catalytic properties of a positively charged cyclodextrin[J]. Bulletin of the Chemical Society of Japan,1978,51(10):3030-3034.
    [35]J. H. Park, M. D. Jang, M. J. Shin. Solvatochromic hydrogen bond donor acidity of cyclodextrinsand reversed-phase liquid chromatographic retention of small molecules on a
    [beta]-cyclodextrin-bonded silica stationary phase [J]. Journal of Chromatography A,1992,595(1-2):45-52.
    [36]陈敏,蔡同一. β-环糊精的化学改性及其在食品工业中应用的前景[J].食品与发酵工业,1998,24(5):68-71.
    [37]张元超,黄立新,徐正康.环糊精的改性和应用研究进展[J].现代食品科技,2008,24(9):947-951.
    [38]C. dos Santos, M. P. Buera, M. F. Mazzobre. Influence of ligand structure and water interactionson the physical properties of β-cyclodextrins complexes [J]. Food Chemistry,2011,132(4):2030-2036.
    [39]C. Tablet, I. Matei, E. Pincu, et al. Spectroscopic and thermodynamic studies of7-diethylamino-coumarin-3-carboxylic acid in interaction with β-and2-hydroxypropyl-β-cyclodextrins [J]. Journal of Molecular Liquids,2012,168:47-53.
    [40]罗川南,周长利,贺龙强,等.电化学方法研究环糊精-硝基氯苯包络物[J].分析化学,2003,31(11):1291-1294.
    [41]童晓青,吕鉴泉,金芬.电化学方法研究β-环糊精-亚甲基蓝包合物与DNA的相互作用[J].2006:208-209.
    [42]王建华,伍淳操.环糊精材料的改性技术及其在不同领域的应用[J].材料导报,2008,22(Z2):364-367,371.
    [43]A. E. Kaifer, M. Gómez-Kaifer. Supramolecular electrochemistry [M]. Wiley Online Library1999.
    [44]F. D'Souza, Y. Y. Hsieh, H. Wickman, et al. β‐cyclodextrin and carboxymethylated β‐cyclodextrin polymer film modified electrodes, hosting cobalt porphyrins, as sensors forelectrocatalytic determination of oxygen dissolved in solution [J]. Electroanalysis,1997,9(14):1093-1101.
    [45]Z. Yuan, M. Zhu, S. Han. Supramolecular inclusion complex formation and application of
    [beta]-cyclodextrin with heteroanthracene ring cationic dyes [J]. Analytica chimica acta,1999,389(1-3):291-298.
    [46]E. U. Thoden van Velzen, J. F. J. Engbersen, P. J. de Lange, et al. Self-Assembled Monolayers ofResorcin[4]arene Tetrasulfides on Gold [J]. Journal of the American Chemical Society,1995,117(26):6853-6862.
    [47]S. Han, M. Zhu, Z. Yuan, et al. A methylene blue-mediated enzyme electrode for thedetermination of trace mercury(II), mercury(I), methylmercury, and mercury–glutathionecomplex [J]. Biosensors and Bioelectronics,2001,16(1–2):9-16.
    [48]T. Gubica, J. Stroka, A. Temeriusz. Synthesis and electrochemical study of nitrophenyl derivativesof β‐cyclodextrin [J]. Journal of Physical Organic Chemistry,2007,20(6):375-383.
    [49]M. Frasconi, A. D’Annibale, G. Favero, et al. Ferrocenyl Alkanethiols Thio β-CyclodextrinMixed Self-Assembled Monolayers: Evidence of Ferrocene Electron Shuttling Through theβ-Cyclodextrin Cavity [J]. Langmuir,2009,25(22):12937-12944.
    [50]J. Li, D. Liu, L. Tian, et al. Electrochemical Investigation of Myoglobin in Layer-by-Layer FilmsAssembled with Sulfonated-β-Cyclodextrin [J]. Electroanalysis,2009,21(24):2653-2659.
    [51]A. Perl, L. Kumprecht, T. Kraus, et al. Self-Assembled Monolayers of β-Cyclodextrin Derivativeson Gold and Their Host-uest Behavior [J]. Langmuir,2009,25(3):1534-1539.
    [52]M. W. J. Beulen, J. Bügler, M. R. de Jong, et al. Host‐Guest Interactions at Self‐AssembledMonolayers of Cyclodextrins on Gold [J]. Chemistry–A European Journal,2000,6(7):1176-1183.
    [53]A. Ferancova, E. Korgová, J. Labuda, et al. Cyclodextrin modified carbon paste based electrodesas sensors for the determination of carcinogenic polycyclic aromatic amines [J]. Electroanalysis,2002,14(23):1668-1673.
    [54]A. D'Annibale, R. Regoli, P. Sangiorgio, et al. Preparation and Electrochemical Characterizationof a β‐Cyclodextrin‐Based Chemically Modified Electrode [J]. Electroanalysis,1999,11(7):505-510.
    [55]J. Yan, S. Dong. Spontaneous assembly of the inclusion complexes of viologen‐attachedalkanethiols and α‐, β‐cyclodextrin on gold electrode [J]. Electroanalysis,1997,9(15):1219-1222.
    [56]C. A. Nijhuis, K. A. Dolatowska, B. J. Ravoo, et al. Redox-Controlled Interaction ofBiferrocenyl-Terminated Dendrimers with β-Cyclodextrin Molecular Printboards [J].Chemistry-A European Journal,2007,13(1):69-80.
    [57]K. Chmurski, A. Koralewska, A. Temeriusz, et al. Catalytic Au Electrodes Based on SAMs of per(6‐deoxy‐6‐thio‐2,3‐di‐O‐methyl)‐β‐cyclodextrin [J]. Electroanalysis,2004,16(17):1407-1412.
    [58]杨百勤,李靖,杜宝中.碳纳米管修饰电极在电化学中应用[J].现代仪器,2008,14(5):15-18.
    [59]张旭志,焦奎,赵常志,等.碳纳米管在电化学传感器中的应用进展[J].化学试剂,2006,28(12):717-723.
    [60]A. Merko i, M. Pumera, X. Llopis, et al. New materials for electrochemical sensing VI: carbonnanotubes [J]. TrAC Trends in Analytical Chemistry,2005,24(9):826-838.
    [61]G. Sun, J. Zhou, F. Yu, et al. Electrochemical capacitive properties of CNT fibers spun fromvertically aligned CNT arrays [J]. Journal of Solid State Electrochemistry,2012:1-6.
    [62]P. Britto, K. Santhanam, P. M. Ajayan. Carbon nanotube electrode for oxidation of dopamine [J].Bioelectrochemistry and Bioenergetics,1996,41(1):121-125.
    [63]M. Musameh, J. Wang, A. Merkoci, et al. Low-potential stable NADH detection atcarbon-nanotube-modified glassy carbon electrodes [J]. Electrochemistry Communications,2002,4(10):743-746.
    [64]M. Pumera. Carbon Nanotubes Contain Residual Metal Catalyst Nanoparticles even after Washingwith Nitric Acid at Elevated Temperature Because These Metal Nanoparticles Are Sheathed bySeveral Graphene Sheets [J]. Langmuir,2007,23(11):6453-6458.
    [65]郭志慧,唐隆健,章竹君.碳纳米管/Nafion-吡啶钌修饰电极电化学发光法测定激动素[J].分析化学,2009,37(1):13-18.
    [66]K. Yanagi, H. Udoguchi, S. Sagitani, et al. Transport Mechanisms in Metallic and SemiconductingSingle-Wall Carbon Nanotube Networks [J]. ACS Nano,2010,4(7):4027-4032.
    [67]A. K. Geim, K. S. Novoselov. The rise of graphene [J]. Nature materials,2007,6(3):183-191.
    [68]J. C. Meyer, A. Geim, M. Katsnelson, et al. The structure of suspended graphene sheets [J].Nature,2007,446(7131):60-63.
    [69]C. Rao, A. Sood, K. Subrahmanyam, et al. Graphene: The New Two-Dimensional Nanomaterial[J]. Angewandte Chemie International Edition,2009,48(42):7752-7777.
    [70]K. P. Loh, Q. Bao, P. K. Ang, et al. The chemistry of graphene [J]. Journal of Materials Chemistry,2010,20(12):2277-2289.
    [71]S. Park, R. S. Ruoff. Chemical methods for the production of graphenes [J]. Naturenanotechnology,2009,4(4):217-224.
    [72]W. Choi, I. Lahiri, R. Seelaboyina, et al. Synthesis of graphene and its applications: A review [J].Critical Reviews in Solid State and Materials Sciences,2010,35(1):52-71.
    [73]A. K. Geim. Graphene: status and prospects [J]. science,2009,324(5934):1530-1534.
    [74]K. Novoselov, D. Jiang, F. Schedin, et al. Two-dimensional atomic crystals [J]. Proceedings of theNational Academy of Sciences of the United States of America,2005,102(30):10451-10453.
    [75]C. Knieke, A. Berger, M. Voigt, et al. Scalable production of graphene sheets by mechanicaldelamination [J]. Carbon,2010,48(11):3196-3204.
    [76]S. Akc ltekin, M. El Kharrazi, B. K hler, et al. Graphene on insulating crystalline substrates [J].Nanotechnology,2009,20:155601.
    [77]X. Li, W. Cai, J. An, et al. Large-area synthesis of high-quality and uniform graphene films oncopper foils [J]. science,2009,324(5932):1312.
    [78]K. S. Kim, Y. Zhao, H. Jang, et al. Large-scale pattern growth of graphene films for stretchabletransparent electrodes [J]. Nature,2009,457(7230):706-710.
    [79]D. Wei, Y. Liu, Y. Wang, et al. Synthesis of N-doped graphene by chemical vapor deposition andits electrical properties [J]. Nano letters,2009,9(5):1752-1758.
    [80]A. N. Obraztsov. Chemical vapour deposition: Making graphene on a large scale [J]. Naturenanotechnology,2009,4(4):212-213.
    [81]J. Sánchez-Barriga, A. Varykhalov, M. R. Scholz, et al. Chemical vapour deposition of grapheneon Ni(111) and Co(0001) and intercalation with Au to study Dirac-cone formation and Rashbasplitting [J]. Diamond and Related Materials,2010,19(7–9):734-741.
    [82]C. Berger, Z. Song, X. Li, et al. Electronic confinement and coherence in patterned epitaxialgraphene [J]. science,2006,312(5777):1191-1196.
    [83]D. S. Lee, C. Riedl, B. Krauss, et al. Raman spectra of epitaxial graphene on SiC and of epitaxialgraphene transferred to SiO2[J]. Nano letters,2008,8(12):4320-4325.
    [84]M. Rubio-Roy, F. Zaman, Y. Hu, et al. Structured epitaxial graphene growth on SiC by selectivegraphitization using a patterned AlN cap [J]. Applied Physics Letters,2010,96:082112.
    [85]A. Ouerghi, A. Kahouli, D. Lucot, et al. Epitaxial graphene on cubic SiC (111)/Si (111) substrate[J]. Applied Physics Letters,2010,96:191910.
    [86]J. R. Lomeda, C. D. Doyle, D. V. Kosynkin, et al. Diazonium functionalization ofsurfactant-wrapped chemically converted graphene sheets [J]. Journal of the American ChemicalSociety,2008,130(48):16201-16206.
    [87]Y. Xu, H. Bai, G. Lu, et al. Flexible graphene films via the filtration of water-soluble noncovalentfunctionalized graphene sheets [J]. Journal of the American Chemical Society,2008,130(18):5856-5857.
    [88]S. Park, J. An, R. D. Piner, et al. Aqueous suspension and characterization of chemically modifiedgraphene sheets [J]. Chemistry of Materials,2008,20(21):6592-6594.
    [89]V. C. Tung, M. J. Allen, Y. Yang, et al. High-throughput solution processing of large-scalegraphene [J]. Nature nanotechnology,2008,4(1):25-29.
    [90]D. Li, M. B. Müller, S. Gilje, et al. Processable aqueous dispersions of graphene nanosheets [J].Nature nanotechnology,2008,3(2):101-105.
    [91]M. Pumera, A. Ambrosi, A. Bonanni, et al. Graphene for electrochemical sensing and biosensing[J]. TrAC Trends in Analytical Chemistry,2010,29(9):954-965.
    [92]Y. Shao, J. Wang, H. Wu, et al. Graphene based electrochemical sensors and biosensors: a review[J]. Electroanalysis,2010,22(10):1027-1036.
    [93]W. Yang, K. R. Ratinac, S. P. Ringer, et al. Carbon nanomaterials in biosensors: should you usenanotubes or graphene?[J]. Angewandte Chemie International Edition,2010,49(12):2114-2138.
    [94]D. Chen, L. Tang, J. Li. Graphene-based materials in electrochemistry [J]. Chem. Soc. Rev.,2010,39(8):3157-3180.
    [95]D. A. C. Brownson, C. E. Banks. Graphene electrochemistry: an overview of potentialapplications [J]. Analyst,2010,135(11):2768-2778.
    [96]X. Kang, J. Wang, H. Wu, et al. A graphene-based electrochemical sensor for sensitive detectionof paracetamol [J]. Talanta,2010,81(3):754-759.
    [97]C. Wang, L. Zhang, Z. Guo, et al. A novel hydrazine electrochemical sensor based on the highspecific surface area graphene [J]. Microchimica Acta,2010,169(1):1-6.
    [98]L. Wang, X. Zhang, H. Xiong, et al. A novel nitromethane biosensor based on biocompatibleconductive redox graphene-chitosan/hemoglobin/graphene/room temperature ionic liquid matrix[J]. Biosensors and Bioelectronics,2010,26(3):991-995.
    [99]P. Wu, Q. Shao, Y. Hu, et al. Direct electrochemistry of glucose oxidase assembled on grapheneand application to glucose detection [J]. Electrochimica Acta,2010,55(28):8606-8614.
    [100]Q. Lu, X. Dong, L.-J. Li, et al. Direct electrochemistry-based hydrogen peroxide biosensorformed from single-layer graphene nanoplatelet–enzyme composite film [J]. Talanta,2010,82(4):1344-1348.
    [101]C. Shan, H. Yang, D. Han, et al. Graphene/AuNPs/chitosan nanocomposites film for glucosebiosensing [J]. Biosensors and Bioelectronics,2010,25(5):1070-1074.
    [102]J. Zhang, J. Lei, R. Pan, et al. Highly sensitive electrocatalytic biosensing of hypoxanthine basedon functionalization of graphene sheets with water-soluble conducting graft copolymer [J].Biosensors and Bioelectronics,2010,26(2):371-376.
    [103]T. T. Baby, S. S. J. Aravind, T. Arockiadoss, et al. Metal decorated graphene nanosheets asimmobilization matrix for amperometric glucose biosensor [J]. Sensors and Actuators B:Chemical,2010,145(1):71-77.
    [104]K. J. Huang, D. J. Niu, J. Y. Sun, et al. Novel electrochemical sensor based on functionalizedgraphene for simultaneous determination of adenine and guanine in DNA [J]. Colloids andSurfaces B: Biointerfaces,2011,82(2):543-549.
    [105]B. G. Choi, H. S. Park, T. J. Park, et al. Solution chemistry of self-assembled graphenenanohybrids for high-performance flexible biosensors [J]. Acs Nano,2010,4(5):2910-2918.
    [106]C. Shan, H. Yang, D. Han, et al. Electrochemical determination of NADH and ethanol based onionic liquid-functionalized graphene [J]. Biosensors and Bioelectronics,2010,25(6):1504-1508.
    [107]T.-K. Hong, D. W. Lee, H. J. Choi, et al. Transparent, Flexible Conducting Hybrid MultilayerThin Films of Multiwalled Carbon Nanotubes with Graphene Nanosheets [J]. ACS Nano,2010,4(7):3861-3868.
    [108]R. S. Dey, C. R. Raj. Development of an Amperometric Cholesterol Biosensor Based onGraphene Pt Nanoparticle Hybrid Material [J]. The Journal of Physical Chemistry C,2010,114(49):21427-21433.
    [109]S. Hou, M. L. Kasner, S. Su, et al. Highly Sensitive and Selective Dopamine BiosensorFabricated with Silanized Graphene [J]. The Journal of Physical Chemistry C,2010,114(35):14915-14921.
    [110]W. Hong, H. Bai, Y. Xu, et al. Preparation of gold nanoparticle/graphene composites withcontrolled weight contents and their application in biosensors [J]. The Journal of PhysicalChemistry C,2010,114(4):1822-1826.
    [111]D. Du, Z. Zou, Y. Shin, et al. Sensitive immunosensor for cancer biomarker based on dual signalamplification strategy of graphene sheets and multienzyme functionalized carbon nanospheres [J].Analytical Chemistry,2010,82(7):2989-2995.
    [112]T. Gan, C. Hu, Z. Chen, et al. Fabrication and application of a novel plant hormone sensor for thedetermination of methyl jasmonate based on self-assembling of phosphotungstic acid–grapheneoxide nanohybrid on graphite electrode [J]. Sensors and Actuators B: Chemical,2010,151(1):8-14.
    [113]F. Schedin, A. Geim, S. Morozov, et al. Detection of individual gas molecules adsorbed ongraphene [J]. Nature materials,2007,6(9):652-655.
    [114]H. Y. Jeong, D. S. Lee, H. K. Choi, et al. Flexible room-temperature NO gas sensors based oncarbon nanotubes/reduced graphene hybrid films [J]. Applied Physics Letters,2010,96:213105.
    [115]G. Lu, L. E. Ocola, J. Chen. Gas detection using low-temperature reduced graphene oxide sheets[J]. Applied Physics Letters,2009,94(8):083111-083111-3.
    [116]G. Ko, H. Y. Kim, J. Ahn, et al. Graphene-based nitrogen dioxide gas sensors [J]. CurrentApplied Physics,2010,10(4):1002-1004.
    [117]T. Wehling, K. Novoselov, S. Morozov, et al. Molecular doping of graphene [J]. Nano letters,2008,8(1):173-177.
    [118]A. Ghosh, D. J. Late, L. Panchakarla, et al. NO2and humidity sensing characteristics offew-layer graphenes [J]. Journal of Experimental Nanoscience,2009,4(4):313-322.
    [119]Y. H. Zhang, Y. B. Chen, K. G. Zhou, et al. Improving gas sensing properties of graphene byintroducing dopants and defects: a first-principles study [J]. Nanotechnology,2009,20:185504.
    [120]R. Arsat, M. Breedon, M. Shafiei, et al. Graphene-like nano-sheets for surface acoustic wave gassensor applications [J]. Chemical Physics Letters,2009,467(4-6):344-347.
    [121]W. Wu, Z. Liu, L. A. Jauregui, et al. Wafer-scale synthesis of graphene by chemical vapordeposition and its application in hydrogen sensing [J]. Sensors and Actuators B: Chemical,2010,150(1):296-300.
    [122]L. Al-Mashat, K. Shin, K. Kalantar-zadeh, et al. Graphene/Polyaniline Nanocomposite forHydrogen Sensing [J]. The Journal of Physical Chemistry C,2010,114(39):16168-16173.
    [123]Z. Ao, J. Yang, S. Li, et al. Enhancement of CO detection in Al doped graphene [J]. ChemicalPhysics Letters,2008,461(4-6):276-279.
    [124]T. V. Cuong, V. H. Pham, J. S. Chung, et al. Solution-processed ZnO-chemically convertedgraphene gas sensor [J]. Materials Letters,2010,64(22):2479-2482.
    [125]R. K. Joshi, H. Gomez, F. Alvi, et al. Graphene Films and Ribbons for Sensing of O2, and100ppm of CO and NO2in Practical Conditions [J]. The Journal of Physical Chemistry C,2010,114(14):6610-6613.
    [126]B. Huang, Z. Li, Z. Liu, et al. Adsorption of gas molecules on graphene nanoribbons and itsimplication for nanoscale molecule sensor [J]. The Journal of Physical Chemistry C,2008,112(35):13442-13446.
    [127]J. Li, S. Guo, Y. Zhai, et al. Nafion-graphene nanocomposite film as enhanced sensing platformfor ultrasensitive determination of cadmium [J]. Electrochemistry Communications,2009,11(5):1085-1088.
    [128]J. Li, S. Guo, Y. Zhai, et al. High-sensitivity determination of lead and cadmium based on theNafion-graphene composite film [J]. Analytica chimica acta,2009,649(2):196-201.
    [129]张祖训,汪尔康.电化学原理和方法[M].北京,科学出版社2000.
    [130]R. Pasricha, S. Gupta, A. K. Srivastava. A Facile and Novel Synthesis of Ag–Graphene‐BasedNanocomposites [J]. Small,2009,5(20):2253-2259.
    [131]K. A. Ritter, J. W. Lyding. The influence of edge structure on the electronic properties ofgraphene quantum dots and nanoribbons [J]. Nature materials,2009,8(3):235-242.
    [132]B. Seger, P. V. Kamat. Electrocatalytically active graphene-platinum nanocomposites. Role of2-D carbon support in PEM fuel cells [J]. The Journal of Physical Chemistry C,2009,113(19):7990-7995.
    [133]C. X. Lim, H. Y. Hoh, P. K. Ang, et al. Direct voltammetric detection of DNA and pH sensingon epitaxial graphene: an insight into the role of oxygenated defects [J]. Analytical Chemistry,2010,
    [134]M. A. Makos, K.-A. Han, M. L. Heien, et al. Using in Vivo Electrochemistry To Study thePhysiological Effects of Cocaine and Other Stimulants on the Drosophila melanogasterDopamine Transporter [J]. ACS Chemical Neuroscience,2009,1(1):74-83.
    [135]谢冬香,毛燕妮,马建国.壳聚糖-多壁碳纳米管/二茂铁修饰玻碳电极的电催化研究[J].功能材料,2010,(S1):57-59+63.
    [136]M. V. Rekharsky, Y. Inoue. Complexation and chiral recognition thermodynamics of6-amino-6-deoxy-β-cyclodextrin with anionic, cationic, and neutral chiral guests: counterbalancebetween van der waals and coulombic interactions [J]. Journal of the American Chemical Society,2002,124(5):813-826.
    [137]W. S. Hummers, R. E. Offeman. Preparation of Graphitic Oxide [J]. Journal of the AmericanChemical Society,1958,80(6):1339-1339.
    [138]Y. Guo, S. Guo, J. Ren, et al. Cyclodextrin Functionalized Graphene Nanosheets with HighSupramolecular Recognition Capability: Synthesis and Host-Guest Inclusion for EnhancedElectrochemical Performance [J]. ACS Nano,2010,4(7):4001-4010.
    [139]马建国,刘淑娟,曹小红.聚氨基β-环糊精膜修饰电极对抗坏血酸电催化作用的研究[J].传感技术学报,2005,18(1):10-13.
    [140]J. Liu, S. Mendoza, E. Román, et al. Cyclodextrin-Modified Gold Nanospheres. Host GuestInteractions at Work to Control Colloidal Properties [J]. Journal of the American ChemicalSociety,1999,121(17):4304-4305.
    [141]Y. Zhang, X. Sun, L. Zhu, et al. Electrochemical sensing based on graphene oxide/Prussian bluehybrid film modified electrode [J]. Electrochimica Acta,2011,56(3):1239-1245.
    [142]H. Luo, Z. Shi, N. Li, et al. Investigation of the electrochemical and electrocatalytic behavior ofsingle-wall carbon nanotube film on a glassy carbon electrode [J]. Analytical Chemistry,2001,73(5):915-920.
    [143]C. Bucher, C. H. Devillers, J. C. Moutet, et al. Ferrocene-appended porphyrins: Syntheses andproperties [J]. Coordination Chemistry Reviews,2009,253(1):21-36.
    [144]M. A. Vorotyntsev, V. A. Zinovyeva, D. V. Konev, et al. Electrochemical and SpectralProperties of Ferrocene (Fc) in Ionic Liquid:1-Butyl-3-methylimidazoliumTriflimide,[BMIM][NTf2]. Concentration Effects [J]. The Journal of Physical Chemistry B,2009,113(4):1085-1099.
    [145]R. Nagarale, J. M. Lee, W. Shin. Electrochemical properties of ferrocene modifiedpolysiloxane/chitosan nanocomposite and its application to glucose sensor [J]. ElectrochimicaActa,2009,54(26):6508-6514.
    [146]T. Daeneke, T. H. Kwon, A. B. Holmes, et al. High-efficiency dye-sensitized solar cells withferrocene-based electrolytes [J]. Nature Chemistry,2011,3(3):211-215.
    [147]Y. Wang, Z. Iqbal, S. V. Malhotra. Functionalization of carbon nanotubes with amines andenzymes [J]. Chemical Physics Letters,2005,402(1–3):96-101.
    [148]T. E. Thorgeirsson, F. Geller, P. Sulem, et al. A variant associated with nicotine dependence,lung cancer and peripheral arterial disease [J]. Nature,2008,452(7187):638-642.
    [149]Y. Abreu-Villaca, F. J. Seidler, C. A. Tate, et al. Prenatal Nicotine Exposure Alters the Responseto Nicotine Administration in Adolescence: Effects on Cholinergic Systems During Exposure andWithdrawal [J]. Neuropsychopharmacology,2004,29(5):879-890.
    [150]A. Massadeh, A. Gharibeh, K. Omari, et al. Simultaneous determination of Cd, Pb, Cu, Zn, andSe in human blood of Jordanian smokers by ICP-OES [J]. Biological trace element research,2010,133(1):1-11.
    [151]J. Lauterbach, M. Bao, P. Joza, et al. Free-base nicotine in tobacco products. Part II.Determination of free-base nicotine in the aqueous extracts of smokeless tobacco products andthe relevance of these findings to product design parameters [J]. Regulatory Toxicology andPharmacology,2011,59(1):8-18.
    [152]P. Jacob, L. Yu, M. Duan, et al. Determination of the nicotine metabolites cotinine andtrans-3'-hydroxycotinine in biologic fluids of smokers and non-smokers using liquidchromatography–tandem mass spectrometry: Biomarkers for tobacco smoke exposure and forphenotyping cytochrome P4502A6activity [J]. Journal of Chromatography B,2011,879(3):267-276.
    [153]P. Newhouse, K. Kellar, P. Aisen, et al. Nicotine treatment of mild cognitive impairment [J].Neurology,2012,78(2):91-101.
    [154]E. Reyes, R. Fernandez, C. Larrain, et al. Effects of combined cholinergic–purinergic block uponcat carotid body chemoreceptors in vitro [J]. Respiratory physiology&neurobiology,2007,156(1):17-22.
    [155]张炜,殷长传.耐热邻苯二酚2,3-双加氧酶的高表达,纯化及性质[J].生物化学与生物物理学报:英文版,1998,30(6):579-584.
    [156]李忠,王岚,杨光宇,等.固相萃取和高效液相色谱法测定烟草中的苯酚和儿茶酚[J].分析化学,2001,29(12):1409-1411.
    [157]杨明,葛友群,曾宪仪,等. HPLC测定复方柳菊片中儿茶酚含量[J].中成药,2010,(1):171-172.
    [158]李淮芬,谢成根,宗佳佳,等.同步荧光法同时测定苯二酚中邻苯二酚和对苯二酚[J].冶金分析,2009,29(9):31-35.
    [159]周叶红,安文汀,张国梅,等.羧甲基-β-环糊精的制备及分析表征[J].山西大学学报:自然科学版,2005,28(3):276-279.
    [160]李军华,郑龙珍,杨绍明,等.羧基-β-环糊精衍生物及其二茂铁包络物的制备与性质研究[J].光谱实验室,2010,(3):1059-1063.
    [161]刘野.多巴胺临床应用的新认识[J].现代中西医结合杂志,2009,18(17):2083-2084.
    [162]程林丽,张素霞,沈建忠,等.饲料中盐酸多巴胺的HPLC检测[J].饲料工业,2007,28(6):49-52.
    [163]K. Zhou, Y. Zhu, X. Yang, et al. Preparation and Application of Mediator‐Free H2O2Biosensors of Graphene‐Fe3O4Composites [J]. Electroanalysis,2011,23(4):862-869.
    [164]J. Liu, J. Alvarez, W. Ong, et al. Phase transfer of hydrophilic, cyclodextrin-modified goldnanoparticles to chloroform solutions [J]. Journal of the American Chemical Society,2001,123(45):11148-11154.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700