抗血管生成治疗肿瘤的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肿瘤是严重威胁人类健康与生命的一类疾病。肿瘤治疗仍是医药学界面临的一大难题,探索和研究新的策略、方法、途径对解决这一难题至关重要。抗血管生成作为肿瘤治疗的新视野,已迅速发展为重要的抗癌策略,并成为肿瘤治疗领域的研究热点。抗血管生成治疗以血管内皮细胞为靶点,通过对抗肿瘤血管生成,切断肿瘤血液和营养供应,从而遏制肿瘤生长和转移。其方法主要包括抑制或中和血管生成因子、调节或改变肿瘤微循环和应用血管生成抑制剂攻击肿瘤血管内皮细胞等。本论文针对抗血管生成治疗肿瘤的特点和途径,数值模拟肿瘤血管生成、肿瘤微循环血液动力学以及抗血管生成因子和药物对肿瘤血管生成过程中选择性的抑制作用,为抗血管生成治疗肿瘤的临床研究提供相应的理论参考和信息依据。
     本文主要研究工作
     肿瘤血管生成的研究
     对肿瘤血管生成模型,从计算方法、影响条件和生理因素等不同角度进行改进,并且建立宏观尺度上肿瘤动态生长与微观尺度上血管生成耦合的模型,生成肿瘤内外微血管网。
     (1)建立肿瘤血管生成的二维九点差分格式数学模型。本模型的特点是,将现有文献报道的内皮细胞沿五个方向直线运动扩展为沿九个方向运动;耦合了内皮细胞在肿瘤内外不同力学环境影响下的随机、趋化和趋触性运动;数值生成肿瘤内外异构的血管网和肿瘤内部的分层网络结构。
     (2)在模型(1)的基础上,建立肿瘤血管可以沿任意方向生长的模型,模拟微血管系统的生成过程,并且与血管沿直角方向生长和模型(1)的生长进行对比。
     (3)考虑宏观尺度上肿瘤自身向外浸润式生长的动态变化对微观尺度上肿瘤微血管生成过程产生的影响,建立耦合的“肿瘤组织生长动力学—血管生成”二维离散数学模型,模拟血管生成过程。
     (4)将力学环境影响下的二维离散数学模型扩展到三维,生成肿瘤内外异构的微血管网。
     血液动力学的研究
     (1)采用图像处理方法重新构建微血管网,探索研究各向异性间质水力传导性对肿瘤微循环内血液动力学的影响。
     (2)采用数值生成的二维肿瘤内外微血管网,将宿主血管和微血管网内的流动相结合,建立肿瘤“微血管网—微血管网跨壁交换—间质流动”耦合模型,分析宿主血管入口雷诺数、微血管壁渗透性以及间质水力传导性等动力学因素对肿瘤微循环内流体流动的影响,获得与生理现象相符的结果。
     (3)采用九点差分格式数值生成的肿瘤内外微血管网,扩展耦合的“微血管网—微血管网跨壁交换—间质流动”模型,考虑间质流动阻力和跨壁流动阻力的影响,模拟微血管网和组织间质空间内流体流动。
     抗血管生成因子和药物对肿瘤血管生成影响的研究
     建立抗血管生成因子和药物与促血管生成因子(TAFs)共同作用下内皮细胞运动的二维、三维离散数学模型,研究抗血管生成因子Angiostatin和药物Endostatin对肿瘤内外血管生成的影响。
     (1)针对某些原发性肿瘤能抑制远处转移性肿瘤和继发性肿瘤的快速生长,建立抗血管生成因子Angiostatin与TAFs共同作用下内皮细胞迁移的二维、三维离散数学模型,模拟肿瘤内外血管生成。给出一种可能的解释:某些转移性肿瘤快速生长的抑制依赖于转移细胞局部的抑制因子和生长因子的水平。
     (2)建立抗血管生成药物Endostatin对肿瘤血管生成抑制效应的二维、三维离散数学模型,耦合内皮细胞的扩散、趋化和趋触性运动,特别是内皮细胞自身的增殖,模拟Endostatin作用下肿瘤内外微血管网的生长过程。
     (3)耦合抗血管生成因子Angiostatin和药物Endostatin对内皮细胞运动的抑制效应、细胞的增殖、凋亡和TAFs诱导下内皮细胞的随机、趋化和趋触性运动,建立二维模型生成肿瘤内外微血管网。比较全面的分析和研究了肿瘤血管生成不同时期和抑制因子间不同耦合情况下Angiostatin和Endostatin对血管生成的综合抑制效应。
     本文工作在相应的研究领域中有以下几方面的新进展
     (1)首次实现了以Chaplain为首的欧洲科学家们提出的肿瘤血管生成沿任意方向生长的思想,并且把采用Euler-Lagrange观点描述血管生成的数学模型与肿瘤组织生长动力学模型耦合,数值生成了肿瘤内外微血管网。
     (2)根据现有的国际文献报道,迄今为止,基于数值生成的血管网研究肿瘤微循环时,均考虑血管网内的流动,未涉及间质流动及跨壁交换。本文建立了“微血管网—跨微血管壁交换—间质流动”模型,分析了肿瘤微血管网、跨血管壁及间质内的耦合流动。
     (3)抗血管生成抑制剂Angiostatin和Endostatin对肿瘤血管生成影响的数值模拟已有研究,但利用血管形态学直接给出其抑制效果,目前尚未见报道。本文第一次基于数值生成的微血管网,利用血管形态学数值分析研究了Angiostatin和Endostatin对肿瘤血管生成的抑制影响。
Tumor poses a great threat to human health and life. The novel therapeutic strategy, method and approache play a crucial role in the therapy of tumor because cancer therapy is still a big challenge in medical and pharmacal field. However, as a promising new field of tumor treatment, anti-angiogenic therapy has been developed quickly as a powerful anti-cancer strategy and become a focus research to cancel therapy in the world. Therapeutic targeting of anti-angiogenesis is the endothelial cell. The rationale of developing anti-angiogenic therapy is that blocking the tumors' blood and the nutrition supply could starve tumors thus inhibiting tumor growth and transfer. According to tumor anti-angiogenesis, the approaches mainly include the inhibition or neutralization of angiogenesis factors, the adjustment and change of tumor microcirculation, and the application of angiogenesis inhibitors for attacking the endothelial cell. Based on the characteristics and approaches of tumor anti-angiogenic therapy, we studied the tumor angiogenesis, the hemodynamics in the microcirculation and simulated numerically the selective inhibition as a function of the anti-angiogenesis factor and drug during the tumor angiogenesis. These researches may provide some theoretical references and foundational understandings for further clinical experimental research.
     The main works
     Tumor angiogenesis study
     The mathematical models of tumor angiogenesis are extended from the computing method, the influence condition and the physiological factor to generate tumor vascular network. Furthermore, a coupled "macroscopical tumor growth—microscopic vessel formation" model is developed to describe tumor vessel growth.
     (1) A 2D discrete mathematical model of nine-point finite difference scheme is built to simulate tumor angiogenesis. The model includes random motility, chemotaxis and haptotaxis of endothelial cell under different mechanical environments and extends an individual endothelial cell moving along nine directions. The results show the heterogeneous distribution and the different architecture of tumor vascular network.
     (2) The process of angiogenesis moving along random direction is simulated and the results are compared with vascular network generated from the models with five and nine growth directions.
     (3) A coupled "macroscopical tumor growth—microscopic vessel formation" mathematical model is built to simulate physiological process of tumor angiogenesis.
     (4) A 3D discrete mathematical model of tumor angiogenesis under different mechanical environments is developed and relatively realistic tumor microvascular network is generated.
     Hemodynamics study
     (1) The effect of the anisotropic interstitial hydraulic conductivity on the hemodynamics in tumor microcirculation is studied based on the microvascular network which is generated from image manipulation.
     (2) Simulation of hemodynamics under the combined effects of both the host blood vessel and the microvascular network, which is generated from a discrete model of tumor angiogenesis, is performed systemically. A "microvascular network—transport across microvascular wall—flow in interstitium" model is developed to analyze the effects of the variations of the inlet Reynolds number in the host blood vessel, the hydraulic conductivity of the microvascular wall, and the interstitial hydraulic conductivity on the fluid flow in tumor microcirculation. The results are in agreement with physiological observed facts.
     (3) A coupled intravascular—transvascular—interstitial fluid flow model is developed to study the influences of interstitial and transvascular flow resistances on the blood flow and interstitial fluid flow in tumor microcirculation based on a microvascular network, which is generated from a 2D nine-point discrete mathematical model of tumor-induced angiogenesis.
     Inhibition of anti-angiogenic factor and drug to tumor angiogenesis
     By coupling the angiogenic inhibitor and the angiogenic factor, the 2D and 3D discrete mathematical models of endothelial cell motion are developed to investigate the influence of the anti-angiogenic factor angiostatin and the drug endostatin on vascular formation inside and outside tumor.
     (1) Some primary tumor can inhibit the quick growth of secondary or metastatic tumor, thus 2D and 3D discrete mathematical models of coupling anti-angiogenic factor angiostatin and TAFs are presented to describe the tumor angiogenesis. A possible explanation for this suppression of secondary or metastatic tumor by the primary tumor is given in terms of the migratory response of endothelial cells to anti-angiogenic inhibitor and angiogenesis factor.
     (2) The 2D and 3D discrete models of coupling endostatin suppression, endothelial cell random, chemotactic and haptotatic movement, especially the proliferation of endothelial cell, are developed to simulate the spatiotemporal evolution of microvascular network inside and outside tumor.
     (3) To investigate the synthetic effect of angiogenic inhibitors angiostatin and endostatin on tumor induced angiogenesis. A 2D mathematical model of coupling proliferation, degradation, random motility, chemtaxis, haptotaxis of endothelial cell and inhibitions of angiostatin and endostatin, is developed to describe microvascular network structure at different stage of tumor vessel growth.
     In this paper,
     (1) We firstly realize the idea of tumor vessel moving along random direction with the numerical method, which is proposed by Prof Chaplain et al in European. Furthermore, the model of vascular growth, which is described by using Euler-Lagrange viewpoint, and the model of tumor growth are combined to generate tumor microvascular network.
     (2) The current investigations for tumor microcirculation based on vascular network generated from numerical simulation include the description of the blood flow through the capillary network, but transvascular fluid exchange and interstitial fluid flow in tumor are not calculated according to the reports in the present international documents and literatures. In this paper, we have developed a "blood flow through the microvascular network—transport across microvascular wall—interstitial fluid flow" model for analyzing the coupled flow problem about capillary network, transvascular wall and interstitial fluid flow.
     (3) Numerical simulation about the influence of angiogenic inhibitors angiostatin and endostatin on tumor vascular growth has been carried out. However, at present, there are no any published reports on analyzing the inhibition effects to the vessel growth by using vessel morphological character. The present paper firstly studied inhibition effects of angiostatin and endostatin to tumor angiogenesis based on microvascular network which is generated from discrete mathematical model by using morphological structure.
引文
[1] Folkman J. Tumor angiogenesis: therapeutic implications [J]. New England Journal of Medicine, 1971, 285(10): 1182-1186.
    [2] Risau W. Mechanisms of angiogenesis [J]. Nature, 1997, 386: 671-674.
    [3] Arnold F., West D. C. Angiogenesis in wound healing [J]. Pharmacol. Ther., 1991, 52: 407-422.
    [4] Graham C. H., Lala P. K. Mechanisms of placental invasion of the uterus and their control [J]. Biochem. Cell Biol., 1992, 70: 867-874.
    [5] Folkman J., Watson K., Ingber D., et al. Induction of Angiogenesis during the transition from hyperplasia to neoplasia [J]. Nature, 1989, 339: 58-62.
    [6] Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease [J]. Nat. Med., 1995, 1(1): 21-31.
    [7] Walsh D. A. Angiogenesis and arthritis [J]. Rheumatology, 1999, 38: 103-112.
    [8] Carmeliet P. Angiogenesis in life, disease and medicine [J]. Nature, 2005, 438(7070): 932-936.
    [9] Folkman J., Haudenschild C. Angiogenesis in vitro [J]. Nature, 1980, 288: 551-556.
    [10] Folkman J., Shing Y. Angiogenesis [J]. J. Biol. Chem., 1992, 267(16): 10931-10934.
    [11] Folkman J., Klagsbrun M. Angiogenic factors [J]. Science, 1987, 235: 442-447.
    [12] Folkman J. The vascularization of tumors [J]. Cancer Biology: Readings from Scientific American, 1986, 115-124.
    [13] Folkman J. Angiogenesis: initiation and control [J]. Ann. N. Y. AcadSci., 1982, 401: 212-227.
    [14] Ruoslahti E. How cancer spreads [J]. Scientific American, 1996, 275: 150-154.
    [15] Mantzaris N. V., Webb S., Othmer H. G. Mathematical modeling of tumor-induced angiogenesis [J]. J. Math. Biol., 2004, 49: 111-187.
    [16] Jain R. K., Schlenger K., Hockel M., et al. Quantitative angiogenesis assays: progress and problems [J]. Nat. Med., 1997, 3: 1203-1208.
    [17] Rakusan K. Coronary angiogenesis. From morphology to molecular biology and back [J]. Ann. N. Y. Acad. Sci., 1995, 752: 257.
    [18] 陈意生,史景全.肿瘤分子细胞生物学[M].北京:人民军医出版社,2001,77-90.
    [19] 吴秉铨,方伟岗.肿瘤转移机制及其阻断——癌扩散的基础和临床[M].杭州:浙江科学技术出版社,2005,174-175.
    [20] 金艳,王秀琴.血管生成与抗血管生成策略[J].食品与药物,2005,7:6-9.
    [21] Passe T. J., Bluemke D. A., Siegelman S. S. Tumor Angiogenesis: tutorial on implications for imaging [J]. Radiplogy, 1997, 203: 593-600.
    [22] Griffioen A. W., Molema G. Angiogenesis: potentials for pharmacologic intervention in the treatment of cancer, cardiovascular diseases, and chronic inflammation [J]. Pharmacol. Rev., 2000, 52: 237-268.
    [23] Hanahan D., Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis [J]. Cell, 1996, 86: 353 - 364.
    [24] Folkman J. Role of angiogenesis in tumor growth and metastasis [J]. Semin. Oncol., 2002, 29: 15-18.
    [25] Shoefl G. I. Studies if inflammation Ⅲ. Growing capillaries: Their structure and permeability [J]. Virchows Arch. Path. Anat., 1963, 337: 97-141.
    [26] Ausprunk D. H., Folkman J. Migration and proliferation of endothelial cells in performed and newly formed blood vessels during tumour Angiogenesis [J]. Microvasc., 1977, 14: 53-65.
    [27] Sholley M. M., Ferguson G. P., Seibel H. R., Montour J. L., Wilson J. D. Mechanisms of neovascularization, vascular sprouting can occur without proliferation of endothelial cells [J]. Lab. Invest., 1984, 51: 624-634.
    [28] Indraccolo S., Stievano L., Minuzzo S., et al. Interruption of tumor dormancy by a transient angiogenic burst within the tumor microenvironment [J]. Proc. Natl. Acad. Sci. USA., 2006, 103(11): 4216-4221.
    [29] Tonini T., Rossi F., Claudio P. P., Molecular basis of angiogenesis and cancer [J]. Oncogene, 2003, 22 (42): 6549-6556.
    [30] Yancopoulos G. D., Davis S., Gale N. W., Rudge J. S., Weigand S. J., Holash J. Vascular-specific growth factors and blood-vessel formation [J]. Nature, 2000, 407(6801): 242- 248.
    [31] Houck K. A., Ferrara N., Wirier J., Li B., leung D. W. The vascular endothelial growth factor family: identification of a fourth molecular species and characerization of alternative splicing of RNA [J]. Mol. Endocrinol., 1991, 5: 1806-1814.
    [32] R. Roskoski Jr. Vascular endothelial growth factor (VEGF) signaling during tumor progression [J]. Crit. Rev. Oncol. Hematol., (2007), doi:10.1016/j.critrevonc.2007.01.006.
    [33] Veikkola T., Alitalo K. VEGFs, receptors and angiogenesis [J]. Semin. Cancer Biol, 1999, 9: 211-220
    [34] Houck K.A., Leung D.W., Rowland A.M., Winer J., Ferrara N. Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms [J]. J. Biol. Chem., 1992, 267: 26031-26037.
    [35] R. Roskoski Jr. Sunitinib: A VEGF and PDGF receptor protein kinase and angiogenesis inhibitor [J]. Biochem. Biophys. Res. Commun., 2007, doi:10.1016/j.bbrc.2007.02.156.
    [36] Hicklin D.J., Ellis L.M. Role of the vascular endothelial growth factor pathway in tumor growth and Angiogenesis [J]. J. Clin. Oncol., 2005, 23(5): 1011-1027.
    [37] Ferrara N. Vascular endothelial growth factor as a target for anticancer therapy [J]. Oncologist, 2004, 9: 2-10.
    [38] Hiraki Y., Inoue H., Kato Y., Fukuya M., Suzuki F. Combined effects of somatomedin-like growth factors with fibroblast growth factor or epidermal growth factor in DNA synthesis in rabbit chondrocytes [J]. Molecular and Cellular Biochemistry, 1987, 76:185-193.
    [39] Smith K., Fox S.B., Whitehouse R., et al. Upregulation of basic fibroblast growth factors in breast carcinoma and its relationship to vascular density oestrogen receptor and survival [J]. Ann. Oncol., 1999,10: 707-713.
    [40] Lyons R., M.m keski-Oja J., Moses H.L. Proteolytic activation of latent transforming growth factor-Gr-beta from fibroblast-conditioned medium [J]. J.Cell Physiol., 1988,106:1659-1665.
    [41] Nurse C.A., Vollmer C. Role of basic FGF and oxygen in control of proliferation, survival, and neuronal differentiation in carotid body chromaffin cells [J]. Dev. Biol., 1997,184:197-206.
    [42] Derynck R., Akhurst R.J., Balmain A. TGF-beta signaling in tumor suppression and cancer progression [J]. Nat. Genet., 2001, 29: 117-129.
    [43] Platten M., Wick W, Weller M. Malignant glioma biology: role for TGF-beta in growth, motility, angiogenesis, and immune escape [J]. Microsc. Res. Tech., 2001,52: 401-410.
    
    [44] Isoe S., Naganuma H., Nakano S., Sasaki A., Satoh E., Nagasaka M., Maeda S., Nukui H. Resistance to growth inhibition by transforming growth factor-beta in malignant glioma cells with functional receptors [J]. J. Neurosurg., 1998, 88: 529-534.
    [45] Sato Y., Tsubio R., Lyons R., Moses H., Rifkin D. B. Characteterization of the activation of latent TGF-beta by co-culture of endothelial cells and pericytes or smooth muscle cells: a self-regulating system [J]. J. Cell Biol., 1990, 111: 757-763.
    [46] Pietras K., Sjoblom T., Rubin K., Heldin C. H., stman A. O. PDGF receptors as cancer drug targets [J]. Cancer Cell, 2003, 3: 439-443.
    [47] Stman A. O. PDGF receptors-mediators of autocrine tumor growth and regulators of tumor vasculature and stroma [J]. Cytokine Growth Factor Rev., 2004, 15: 275 -286.
    [48] Coussens L. M., Werb Z. Matrix metalloproteinases and the development of cancer [J]. Chem. Biol., 1996, 3(11): 895-904.
    [49] Nakahara H., Howard L., Thompson E. W., Seiki H., Sato M., Yeh Y., Chen W. Transmembrane/cytoplasmic domain-mediated membrane type-metrix metalloproteinase docking to invadopodia is required for cell invasion [J]. Proc. Natl. Acad. Sci. USA., 1997, 94(15): 7959-7964.
    [50] Koolwijk P., hanemaaijer R., Van hinsbergh V. W. M. Proteases and angiogenesis: Regulation of plasminogen activators and matrix metalloproteases by endothelial cells [J]. NATO ASI series. Series A, Life sciences, 1998, 298: 241.
    [51] Laking G. R., West C., Buckley D. L., Matthews J., Price P. M. Imaging vascular physiology to monitor cancer treatment [J]. Critical Reviews in Oncology/Hematology, 2006, 58(2): 95-113.
    [52] 马文丽,郑文岭.分子肿瘤学[M].北京:科学出版社,2003,158
    [53] 姜文奇,张晓实,朱孝峰,李志铭.肿瘤生物治疗学[M].广州:广东科学技术出版社,2006,328-329.
    [54] Richardson M., Singh G. Observations on the use of the avian chorioallantoic membrane (CAM) model in investigations into Angiogenesis [J]. Curr. Drug Targets—Cardiovasc. Haematol. Disord., 2003, 3: 155-185.
    [55] Donnelly E. F., Geng L., Wojcicki W. E., Fleischer A. C., Hallahan D. E. Quantified color Doppler US of tumor blood flow correlates with microscopic quantification of tumor blood vessels [J]. Radiology, 2001, 219: 166-170
    [56] Dadiani M., Furman-haran E., Degani H. The application of NMR in tumor angiogenesis research [J]. Progress in Nuclear Magnetic Resonance Spectroscopy, 2006, 49(1): 27-44.
    [57] Turner D. A. Nuclear magnetic resonance in oncology [J]. Seminars in Nuclear Medicine, 1985, 15(2): 210-223.
    [58] Weidner N., Semple J. P., Welch W. R., Folkman J. Tumor angiogenesis and metastasis-correlation in invasive breast carcinoma [J]. N. Engl. J. Med., 1991, 324(1): 1-8.
    [59] Sarraf-Yazdi S., Mi J., Clary B. Hepatic tumor growth Target for angiogenesis inhibition? [J]. World. J. Surg., 2005, 29: 287-292.
    [60] Klagsbrun M., Amore P. A. Regulators of Angiogenesis [J]. Annu. Rev. Physiol., 1991, 53: 217-239.
    [61] Jain R. K. Delivery of molecular medicine to solid tumors [J]. Science, 1996, 271: 1079-1080.
    [62] Jain R. K. Whitaker lecture: delivery of molecular, particles, and cells to solid tumors [J]. Ann. Biomed. Eng., 1996, 24: 457-473.
    [63] Liotta L. A., Steeg P. S., Stetler-Stevenson W. G. Cancer metastasis and Angiogenesis: an imbalance of positive and negative regulation [J]. Cell, 1991, 64: 327-336.
    [64] Gross J., Azizkhan R. G., Biswas C., et al. Inhibition of tumor growth, vascularization, and collagenolysis in the rabbit cornea by medroxyprogesterone [J]. Proc. Natl. Acad. Sci. USA, 1981, 78: 1176-1180.
    [65] Keshet E., Ben-Sasson S. A. Anticancer drug targets: approaching angiogenesis [J]. J. Clin. Invest., 1999, 104: 1497-1501.
    [66] 钱朝南,闵华庆.抗血管生成治疗实体瘤的应用前景[J].国外医学肿瘤学分册,1997,24(6):341-344.
    [67] 孙军辉,腾皋军.抗肿瘤血管生成机制及治疗研究进展[J].实用肿瘤学杂志,2005,19(6):459-461.
    [68] 惠锦林.抗肿瘤血管生成的靶向治疗[J].现代肿瘤医学,2006,14(12):1636-1639.
    [69] Folkman J., Langer R., Linhardt R. J., et al. Angiogenesis inhibition and tumor regression caused by heparin or a heparin fragment in the presence of cortisone [J]. Science, 1983, 221: 719-725.
    [70] Boehm T., Folkman J., Browder T., O'Reilly M. S. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance [J]. Nature, 1997, 390: 404-407.
    [71] Yuan F., Dellian M., Fukumura D., Leunig M., Berk D. A., Torchilin V. P., Jain R.K. Vascular permeability in a tumor xenograft: Molecular size dependence and cut off size [J]. Cancer Res., 1995,55: 3752-3756.
    [72] Patan S., Munn L.L., Jain R.K. Intussusceptive Microvascular Growth in a Human Colon Adenocarcinoma Xenograft: A Novel Mechanism of Tumor Angiogenesis [J]. Microvascular Research, 1996, 51: 260-272.
    [73] Kuszyk B.S., Corl F.M., Franano F.N., Bluemke D.A., Hofmann L.V., et al. Tumor transport physiology: Implications for imaging and imaging-guided therapy [J]. American Journal of Radiology, 2001,177: 747-753.
    [74] Jain R.K. Determinants of tumor blood flow: A review [J]. Cancer Res., 1988,48: 2641-2658.
    [75] Less J.R., Skalak T.C., Sevick E.M., Jain R.K. Microvascular architecture in a mammary carcinoma: branching patterns and vessel dimensions [J]. Cancer Res., 1991,51: 265-273.
    [76] Carmeliet R, Jain R.K. Angiogenesis in cancer and other diseases [J]. Nature, 2000,407: 249-257.
    [77] Dvorak H.F. Vascular permeability factor/vascular endothelial growth factor: A critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy [J]. J. Clin. Oncol., 2002, 20: 4368-4380.
    [78] Bouche R.Y., Baxter L.T., Jain R.K. Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: implications for therapy [J]. Cancer Res., 1990,50(15): 4478-4484.
    [79] Less J.R., Posner M.C., Skalak T., Walmark N., Jain R.K. Geometric resistance to blood flow and vascular network architecture in human colorectal carcinoma [J]. Microcirculation, 1987, 4: 25-33.
    [80] Jain R.K. Interstitial transport in tumors: barriers and strategies for improvement [C]. AACR 96th Annual meeting, 2005,108-113.
    [81] Fidler L.J, Singh R.K, Yoneda J., et al. Critical determinants of neoplastic Angiogenesis [J]. Cancal J. Sci. Am., 2000, 6: S225-S236.
    [82] Vinaykumar K.P., Raymond S. Antiangiogenesis-therapeutic strategies and clinical implications for brain tumors [J]. Journal of Neuro-Oncology, 2000, 50(1): 189-200.
    [83] Langer R., Brem H., Falterman K., et al. Isolations of a cartilage factor that inhibits tumor neovascularization [J]. Science, 1976,193: 70-72.
    [84] Berbari P., Thibodeau A., Germain L., et al. Antiangiogenic effects of the oral administration of liquid cartilage extract in humans [J]. J. Surg. Res., 1999, 87: 108-113.
    [85] O' Reilly M. S., Holmgren L., Shing Y., Chen C., Rosenthal R. A., Moses M. L. W., Cao Y., Sage E. H., Folkman J. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma [J]. Cell, 1994, 79: 315-328.
    [86] Ji W. R., Castellino F. J., Chang Y., Deford M. E., Gray H., Villarreal X., Kondri M. E., Marti D. N., Schaller M. J., Kramer R. A., Trail P. A. Characterization of kringle domains of angiostatin as antagonists of endothelial cell migration, an important process in Angiogenesis [J]. FASEB, 1998, 12: 1731-1738.
    [87] Soft G. A. Angiostatin and angiostatin-related proteins [J]. Cancer Metastasis Review, 2000, 19: 97-107.
    [88] Cavallaro U., Christofori G. Molecular mechanisms of tumor Angiogenesis and tumor progression [J]. Journal of Neurooncol, 2000, 50: 63-70.
    [89] Sim B. K. L., Macdonald N. J., Gubish E. R. Angiostatin and endoststin: Endogenous inhibitors of tumor growth [J]. Cancer Metastasis Review, 2000, 19: 181-190.
    [90] 何小平,朱人敏.肿瘤血管生成与抗肿瘤血管生成基因治疗的进展[J].医学研究生学报,2005,18:559-563.
    [91] Hams A. L. Anti-angiogenesis therapy and strategies for intergrating it with adjuvant therapy [J]. Recent Results Cancer Res., 1998, 152: 341-344.
    [92] O'Reilly M. S., Boehm T., Shing Y., Fukai N., Vasios G., Lane W. S., Flynn E., Birkhead J. R., Olsen B. R., Folkman J. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth [J]. Cell, 1997, 88: 277-285.
    [93] Dhanabal M., Ramchandran R., Waterman M. J., et al. Endostatin induces endothelial cell apoptosis [J]. J. Bio. chem., 1999, 274(17): 1721-1176.
    [94] Sasaki T., Larsson H., Kreuger J., et al. Structural basis and potential role of heparin sulfate binding to the Angiogenesis inhibitor endostatin [J]. EMBO J., 1999, 18(22): 6240-6248.
    [95] Dixlius J., Cross M., Matsumoto T., et al. Endostatin regulates endothelial cell adhesion and cytoskwlwtal organization [J]. Cancer Research, 2002, 62(7): 1944-1947.
    [96] Furumatsu T., Yamaguchi N., Nishda K., et al. Endostatin inhibits adhesion of endothelial cells to collagen I vai alpha(2) beta(1) integin, a possible cause of prevention of chondrosarcoma growth [J]. J. Bio. chem., 2002,131(4): 619-626.
    [97] Kim Y.M., Jang J.W., Lee O.H., et al. Endostatin inhibits endothelial and tumor cellular invasion by blocking the activation and catalytic activity of matrix metalloproteinase [J]. Cancer Res., 2000, 60: 5410-5413.
    [98] Ingber D., Fujita T., Kishimoto S. Synthetic analogues of fumagillin that inhibit Angiogenesis and suppress tumor growth [J]. Nature, 1990, 348: 555-557.
    [99] Yamaoka M., Yamamoto T., Ikeyama S., et al. Angiogenesis inhibitor TNP-470 (AGM-1470) potently inhibits the tumor growth of hormone independent human breast and prostate carcinoma cell lines [J]. Cancer Res., 1993, 53: 5233-5236.
    [100] Hotz H.G, Reber H.A., Hotz B., Sanghavi P.C., Yu T., Foitzik T., Buhr H.J., Hines O.J. Angiogenesis inhibitor TNP-470 reduces human pancreatic cancer growth [J]. Journal of Gastrointestinal Surgery, 2001,5(2): 131-138.
    [101] Murata R., Nishimura Y., Hiraoka M. An antiangiogenic agent (TNP-470) inhibited reoxygenation during fractionated radiotherapy of murine mammary carcinoma [J]. Int. J. Radiat. Oncol. Biol. Phys., 1997,37:1107-1113.
    [102] Ingber D., Fujita T., Kishimoto S., et al. Synthetic analogues of fumagillin that inhibit angiogenesis and suppress tumour growth [J]. Nature, 1990, 348 (6301): 555-557.
    [103] Mainne T.E., Gray G.S., Petro J. Inhibition of Angiogenesis by recombinant human platelet factor-4 and related peptides [J]. Science, 1990, 247: 77-79.
    [104] Schrode R.K., Hertzog P.J., Ravasi T., Hume D.A. Interferon-γ: an overview of signals, mechanisms and functions [J]. J. Leukoc. Biol., 2004, 75:163-189.
    [105] Ribatti D., Vacca A., lurlaro M., et al. Human recombinant interferon alpha-2a inhibits Angiogenesis of chick area vasculosa inshell-less culture [J]. Int. J. Microcirc. Clin. Exp., 1996,16:165-169.
    [106] Sidky Y.A., Borden E.C. Inhibition of Angiogenesis by interferons: effects on tumor and lymplhocyte-induced vascular responses [J]. Cancer Res., 1987, 47: 5155-5161.
    [107] Burrows F.J., Thorpe P.E. Vascular targeting — a new approach to the therapy of solid tumors [J]. Pharm./Therap., 1994, 64(1): 155-174.
    [108] Chandler S., Miller K.M., Clements J.M., Lury J., Corkill D., et aL Matrix metalloproteinases, tumor necrosis factor and multiple sclerosis: an overview [J]. J. Neuroimmunol., 1997, 72:155-161.
    [109] Brew K., Dinakarpandian D., Nagase H. Tissue inhibitors of metalloproteinases: evolution, structure and function [J]. Biochem. Biophys. Acta, 2000,1477:267-283.
    [110] Lukes A., Mun-Bryce S., Lukes M., Rosenberg GA. Extracellular matrix degradation by metalloproteinases and central nervous system diseases [J]. Mol. Neurobiol, 1999,19: 267-284.
    [111] Murphy G., Knauper V. Relating matrix metalloproteinase structure to function: why the "hemopexin" domain? [J]. Matrix Biol., 1997,15: 511-518.
    [112] Lacraz S., Nicod L.P., Chicheportiche R., Welgus H.G, Dayer J.M. IL-10 inhibits metalloproteinase and stimulates TIMP-1 production in human mononuclear phagocytes [J]. J. Clin. Invest., 1995, 96: 2304-2310.
    [113] Kyriakides T.R., Zhu Y.H., Yang Z., Bornstein P. The distribution of the matricellular protein thrombospondin 2 in tissues of embryonic and adult mice [J]. Journal of Histochemistry and Cytochemistry, 1998,46:1007-1015.
    [114] Adams J.C., Lawler J. The thrombospondins [J]. International Journal of Biochemistry and Cell Biology, 2004,36: 961-968.
    [115] Kirsch M., Schackert G, Black P.M. Angiogenesis, metastasis, and endogenous inhibition [J]. Journal of Neurooncol, 2000, 50:173-180.
    [116] La Rocca R.V., Stein Cy A., Danesi R., Myers C.E. Suramin, a novel antitumor compound [J]. The Journal of Steroid Biochemistry and Molecular Biology, 1990,37(6): 893-898.
    [117] Muck A.O., Seeger D.J., Wallwiener D., et al. Class-specific pro-apoptotic effect of statins on human vascular endothelial cells [J]. Z Kardiol, 2004, 93(5): 398-402.
    [118] Kong H.L., Crystal R.G. Gene therapy strategies for tumor antiangiogenesis [J]. J. Natl. Cancel Inst., 1998, 90(4): 273-286.
    [119] Anderson A.R.A., Chaplain M.A.J. Continuous and discrete mathematical models of tumor-induced angiogenesis [J]. Bull. Math. Biol., 1998, 60(5): 857-899.
    [120] Stokes C.L., Lauffenburger D.A. Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis [J]. J. Theor. Biol., 1991,152: 377-402.
    [121] Anderson A.R.A, Chaplain M.A.J. A mathematical model for capillary network formation in the absence of endothelial cell proliferation [J]. App. Math. Lett., 1998, 11: 109-114.
    [122] McDougall S.R., Anderson A.R.A., Chaplain M.A.J., et al. Mathematical Modeling of Flow through Vascular Network: Implications for Tumor-induced Angiogenesis and Chemotherapy Strategies [J]. Bulletin of Mathematical Biology, 2002, 64: 673-702.
    [123] Stephanou A., Mcdougall S.R., Anderson A.R.A., Chaplain M.A.J. Mathematical modeling of flow on 2D and 3D vascular networks: Applications to anti-angiogenic and chemotherapeutic drug strategies [J]. Mathematical and Computer Modeling, 2005,41:1137-1156.
    [124] Zheng X., Wise S.M., Cristini V. Nonlinear simulation of tumor necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level-set method [J]. Bulletin of Mathematical Biology, 2005, 67:211-259.
    [125] Tee D., DiStefano III J. Simulation of tumor-induced angiogenesis and its response to anti-angiogenic drug treatment: mode of drug delivery and clearance rate dependencies [J]. J. Cancer Res. Clin. Oncol., 2004,130:15-24.
    [126] Plank M.J., Sleeman B.D. Lattice and non-latice models of tumor angiogensis [J]. Bulletin of Mathematical Biology, 2004, 66:1785-1819.
    [127] Balding D., McElwain D.L.S. A mathematical model of tumour-induced capillary growth [J]. J. Theor. Biol., 1985,114:53-73.
    [128] Byren H.M., Chaplain M.A.J. Explicit solutions of a simplified model of capillary sprout growth during tumor angiogenesis [J]. Appl. math. Biol., 1995, 8(5): 71-76.
    [129] Orme M.E. Chaplain M.A.J. A mathematical model of the first steps of tumor-related angiogenesis: Capillary sprout formation and secondary branching [J]. IMA J. Math. Appld. Med. Biol., 1996,13: 73-98.
    [130] Levine H.A., Tucker A.L., Nilsen-hamilton M. Mathematical modeling of the onset of capillary formaiton initiating angiogenesis [J]. J. Math. BioL, 2001, 42: 195-238.
    [131] Levine H.A., Sleeman B.D., Nilsen-Hamilton M. A mathematical model for the roles of pericytes and macrophages in angiogenesis. I. the role of protease inhibitors in preventin angiogenesis [J]. Math. Iosci, 2000,168:77-115.
    [132] Chaplain M.A.J. Avascular growth, Angiogenesis and vascular growth in solid tumours: the mathematical modeling of the stages of tumour development [J]. Mathl. Comput. Modelling, 1996, 23(6): 47-87.
    [133] Davidson F.A., Anderson A.R.A., Chaplain M.A.J. Steady-state solutions of a generic model for the formation of capillary networks [J]. App. Math. Lett., 2000, 13:127-132.
    [134] Orme M.E., Chaplain M.A.J. Two dimensional models of tumor angiogenesisn and anti-angiogenesis strategies [J]. IMA J. of Math. Appld. Med. Biol., 1997,14:189-205.
    [135] Chaplain M.A.J., Orme M.E. Mathematical modeling of tumor-induced angiogenesis [M]. Boston: Birkhauser. Chap. Vascular Morphogenesis: In vivo, in vitro, in mente, 1998, 205-240.
    [136] Sleeman B.D., Anderson A.R.A., Chaplain M.A.J. A mathematical analysis of a model for capillary network formation in the absense of endothelial cell proliferation [J]. Appld. Math. Letts., 1999,12:121-124.
    [137] Anderson A.R.A., Chaplain M.A.J., et al. A gradient driven mathematical model of antiangiogenesis [J]. Math. Comput. Modeling, 2000,32:1141-1152.
    [138] Levine H.A., Pamuk S., Sleeman B.D., Nilsen-Hamilton M. Mathematical Modeling of Capillary Formation and Development in Tumor Angiogenesis: Penetration into the Stroma [J]. Bull. Math. Biol., 2001, 63: 801-863.
    [139] Chaplain M.A.J. Mathematical modelling of angiogenesis [J]. J. Neuro-Oncology, 2000,50:37-51.
    [140] Ste'phanou A., McDougall S.R., Anderson A.R.A., Chaplain M.A.J. Mathematical modelling of the influence of blood rheological properties upon adaptative tumour-induced angiogenesis [J]. Math. Comp. Model, 2006, 44: 96-123.
    [141] McDougall S.R., Anderson A.R.A, Chaplain M.A.J. Mathematical modeling of dynamic adaptive tumor-induced Angiogenesis: clinical implications and therapeutic targeting atrategies [J]. J. Theor. Biol., 2006, 241: 564-589.
    [142] 高昊. 肿瘤血管生成的数值模拟[D]. 硕士学位论文, 复旦大学, 2006.
    [143] Baum M., Chaplain M.A.J., Anderson A.R.A., et al. Dose breast cancer exist in a state of chaos? [J] Eur. J. Cancer, 1996, 35:886-891.
    [144] Chaplain M.A.J., Anderson A.R.A. Modeling the growth and form of capillary networks [M].Chichester: Wiley. Chap. On Growth and Form: Spatio-Temporal Pattern Formation in Biology, 1999, 225-249
    [145] Oster G.F., Murray J.D., Harris A.K. Mechanical aspects of mesenchymal morphogenesis [J]. J. Embryol. Exp. Morph., 1983, 78:83-125.
    [146] Murray J.D., Oster GF. Cell traction models for generation of pattern and form in morphogenesis [J]. J.Math. Biol., 1984,19: 265-279.
    [147] Sleeman B.D., Wallis I.P. Tumor induce angiogenesis as a reinforced random walk: modeling capillary network formation without endothelial cell proliferation [J]. J .Math .Comp. Modeling, 2002,36: 339-358.
    [148] Jain R.K. Delivery of molecular and cellular medicine to solid tumors [J]. Advanced Drug Delivery Reviews, 2001,46:149-168.
    [149] Baxter L.T., Jain R.K. Transport of fluid and macromolecules in tumors II. Role of heterogeneous perfusion and lymphatics [J]. Microvascular Research, 1990, 40:246-263.
    [150] Leunig M., Yuan E, Menger M.D., et al. Angiogenesis, microvascular architecture, micro hemodynamics, and interstitial fluid pressure during early growth of human adenocarcinoma LS174T in SCID mice [J]. Cancer Research, 1992,52: 6553-6530.
    [151] Eskey C.J., Koretsky A.P., Domach M.M., Jain R.K. H-nuclear Magnetic Resonance Imaging of Tumor Blood Flow: Spatial and temporal heterogeneity in a tissue—isolated mammary adenocaranoma [J]. Cancer Research, 1992, 52: 6010-6019.
    [152] Baish J.W., Netti P.A., Jain R.K. Transmural coupling of fluid flow in microcirculatory network and interstutium in tumors [J]. Microvascular Research, 1997,53:128-141.
    [153] Gerlowski L.E., Jain R.K. Microvascular permeability of normal and neoplasmtic tissue [J]. Microvascular Research, 1986, 31: 288-305.
    [154] Less J.R., Posner M.C., Skalak T., Walmark N., Jain R.K. Geometric resistance to blood flow and vascular network architecture in human colorectal carcinoma [J]. Microcirculation, 1987, 4: 25-33.
    [155] Endrich B., Reinhold H.S., Gross J.F., Intaglieta M. Tissue perfusion inhomogeneity during early tumor growth in rats [J]. Journal of the National Cancer Institute, 1979, 62: 387-95.
    [156] Boucher Y., Baxter L.T., Jain R.K. Interstitial pressure gradients in tissue-isolated subcutaneous tumor: implications for therapy [J]. Cancer Res., 1990, 50: 4478-4484.
    [157] Jain R.K. Delivery of molecular and cellular medicine to solid tumors. Advanced Drug Delivery Reviews, 2001, 46: 149-168.
    [158] Jain R.K. Transport of molecules, particles, and cells in tumors. Am. Res. Biomed. Eng., 1999, 1: 241-263.
    [159] Baxter L. T., Jain R. K. Transport of fluid and macromolecules in tumors Ⅲ. Role of binding and metabolism [J]. Mecrovasc. Res., 1991, 41: 5-23.
    [160] Mollica E, Jain R. K., Netti P. A. A model for temporal heterogeneities of tumor blood flow [J]. Microvascular Research, 2003, 65: 56-60.
    [161] Netti P. A., Roberge S., Boucher Y., Baxter L. T., Jain R. K. Effect of transvascular fluid exchange on pressure-flow relationship in tumors: a proposed mechanism for tumor blood flow heterogeneity [J]. Microvascular Research, 1996, 52: 27-46.
    [162] Pozrikidis C., Farrow D. A. A model of fluid flow in solid tumors [J]. Annals of Biomedical Engineering, 2003, 31: 181-194.
    [163] 吴望一,程和平.微血管自律运动对微循环物质疏运交换的影响[J].应用数学和力学,1989,9(9):763-769.
    [164] Baish J. W., Netti P. A., Jain R. K. Transmural coupling of fluid flow in Microcirculatory network and interstitium in tumors [J]. Microvascular Research, 1997, 53: 128-141.
    [165] Beard D. A., Bassingthwaighte J. B. Modeling Advection and Diffusion of Oxygen in Complex Vascular Networks [J]. Annals of Biomedical Engineering, 2001, 29: 298-310.
    [166] He X. S., Georgiadis J. G; Pressure propagation in pulsatile flow through random microvascular networks [J]. Journal of Biomechanical Engineering, 1993, 115: 180-186.
    [167] Krenzl G. S., Dawson C. A. Flow and pressure distributions in vascular networks consisting of distensible vessels [J]. American Journal of Physiology, 2003, 284: H2192-H2203.
    [168] Baish J. W., Gazit Y., Berk D. A., Nozue M., Baxter L. T., Jain R. K. Role of Tumor Vascular Architecture in Nutrient and Drug Delivery: An Invasion Percolation-Based Network Model [J]. Microvascular research, 1996, 51: 327-346.
    [169] 王庆伟.实体肿瘤中的复杂流动[D].硕士学位论文,复旦大学,2005.
    [170] Zhang Yun-qi. Research Progress on Tumor Angiogenesis Factors [J]. Foreign Medical Science Section of Pathophysiology and Clinical Medicine, 1999, 19(6): 447-448.
    [171] Fait E., Malkusch W., Gnoth S. H., et al. Microvascular patterns of the human large intestine: morphometric studies of vascular parameters in corrosion casts [J]. Scanning Microscopy, 1998, 12(4): 641-651.
    [172] Sun S., Wheelerb M. F., Obeyesekerec M., Patrick Jr C. W. A deterministic model of growth factor-induced Angiogenesis [J]. Bulletin of Mathematical Biology, 2005, 67: 313-337.
    [173] Araujo R. P., Mcelwain D. L. S. A history of the study of solid tumour growth: the contribution of mathematical modeling [J]. Bulletin of Mathematical Biology, 2004, 66: 1039-1091.
    [174] Steel G. G. Growth Kinetics of tumors [M]. Oxford: Clarendon Press. 1977.
    [175] 高昊,许世雄,蔡颖,M.W.Collins,蒋雨平,王坚.力学环境影响下肿瘤内外血管生成的数值模拟[J].医用生物力学,2006,21(1):1-7.
    [176] Netti P. A., Baxter L. T., Boucher Y., Skalak R., Jain R. K. Macro- and microscopic fluid transport in living tissues: Application to solid tumors [J]. AICHE Journal, 1997, 43(3): 817-834.
    [177] Baxter L. T., Jain R. K. Transport of fluid and macromolecules in tumors I. Role of interstitial pressure and convection [J]. Microvascular Research, 1989, 37: 77-104.
    [178] Mollica E, Jain R. K., Netti P. A. A model for temporal heterogeneities of tumor blood flow [J]. Microvascular Research, 2003, 65: 56-60.
    [179] Folkman J. Tumor angiogenesis [J]. Adv. Cancer Res., 1974, 19: 331-358.
    [180] 许世雄,王庆伟.实体肿瘤不均匀血液灌注对流体流动的影响[J].水动力学研究与进展,A辑,2004,19(1):46-52.
    [181] Chaplain M. A. J., Stuart A. M. A model mechanism for the chemotactic response of endothelial cells to tumour angiogenesis factor [J]. IMA. J. Math. Appl. Med. Biol., 1993, 10: 149-168.
    [182] Mundhenke C., Thomas J. P., Wilding G., Lee F. T., Kelzc F., Chappell R., Neides R., Sebree L., Friedl A. Tissue examination to monitor antiangiogenic therapy [J]. Clin. Cancer Res., 2001, 7: 3366-3374.
    [183] Hao G., Ying C., Shi-xiong X., et al. 2D mathematical models of tumor-induced angiogenesis [C]. 27~(th) Annual international conference of the IEEE engineering in medicine and biology society, 2005, 6112-6115.
    [184] Teicher B. A., Holden S. A., Ara G., et al. Comparison of several antiangiogenic regimens alone and with cytotoxic therapies in the Lewis lung carcinoma [J]. Cancer Chemother Pharmacol, 1996, 38(2): 169-177.
    [185] Anderson A.R.A. A hybird mathematical modeling of solid tumor invasion: the importance of cell adhesion [J]. Mathematical Medicine and Biology, 2005, 22:163-186.
    [186] Arakelyan L., Vainstein V., Agur Z. A computer algorithm describing the process of vessel formation and maturation, and its use for predicting the effects of anti-angiogenic and anti-maturation therapy on vascular tumor growth [J]. Angiogenesis, 2002,5: 203-214.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700