碳纳米管的固相合成、表征及催化性能初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文致力于用大孔阴离子交换树脂作为前躯体,在固相中用简单方法合成碳纳米管的研究并对其进行表征、磁性及催化性能的研究。这对碳纳米管的大量制备及工业化应用具有重要意义。
     第一章为绪论,介绍了碳纳米管的发展历程、形貌、结构、性能、应用、制备方法及生长机理等。
     第二章中,介绍了以阴离子交换树脂为前躯体,经高温碳化制备出了具有磁性和球形形貌的多壁碳纳米管。并对其进行了一系列的表征,结果显示合成的碳纳米管不仅具有很好的石墨化程度,而且合成的样品很好的保持了树脂球的球形形貌。
     第三章中,讨论了球形形貌的多壁碳纳米管的磁性,并考察了样品对乙苯氧化脱氢制备苯乙烯的催化性能,结果显示样品有高的产率和选择性。
Since carbon nanotubes(CNTs)have been discovered in 1991,they have become to be a focus of attention in nano-technology for their unique physics and chemistry characters and special tube structure made of graphite flakes. There are some preparation methods, such as arc discharge method, laser ablation, chemical vapor deposition technique etc. With the progress of production and application technics of CNTs, people find there are some challenges. One hand, the complexes synthetic technique of traditional methods limited their large scale production. On the other hand, the areas of application are limited for their nanosize. Thus, it is valuable to synthesize CNTs with regular morphology by a simple, cheap and effective method.
     From the model calculate and experiment, people can conclude that CNTs can selective adsorb and activise some molecule due to its nanosize inner diameter, the net of six carbon ring similar with graphite and a great deal of unpaired electrons. Researcher reported that the catalytic activity and stabilization of CNTs was much higher than rhodium on decomposing NO at 873K.That is to say the catalytic activity of CNTs similar with the noble metal. At present, the application of CNTs is limited in catalytic reaction, which is mostly applied in oxidative dehydrogenation of ethylbenzene to styrene. If you can use CNTs replace of the noble metal as catalyst, you will bring a reform for petrifaction industry.
     In the thesis, the history, morphologies, structures, physical properties, application, preparation methods and growth mechanism of CNTs were reviewed. Herein, we synthesize CNTs with magnetism and sphere by carbonization an industrial ion exchange resin with ferricyanide, which are characterized by X-Ray powder diffraction (XRD),scan electron microscope(SEM), transmission electron microscope (TEM),Raman spectroscopy and N2 adsorption. The characterization show that, the sample keeps the similar sphere morphology to the ion changed resin, the surface of the sample consist of graphite multi-walled CNTs, and the sample can be magnetically motive for its magnetism. The specialty of the method is to synthesize multi-walled CNTs with regular morphology by a simple, cheap method.
     The prepared sample shows the high yield and selectivity on oxidative dehydrogenation of ethylbenzene to styrene. The sample is easily separated from reaction system for its magnetic property. More importantly, the prepared material show long catalytic life for its high graphite.
     In this thesis, we provide a novel route for synthesis of CNTs. it greatly reduces the production cost of CNTs and predigest prepared technics. These will increase their prospect of industry.
引文
[1]张立德,牟季美,纳米材料和纳米结构,科学出版社,北京,2002
    [2] H.W.Kroto, J.R.Heath, S.C.O’Brien, et al. C60: Buckminsterfullerene, 1985, Nature, 318: 162-163
    [3] S.Iijima. Helical microtubules of graphitic carbon. Nature, 1991, 354: 356-58.
    [4] S.Iijima, T.Ichihashi. Single-shell carbon nanotubes of 1-nm diameter. Nature, 1993, 363: 603.
    [5] D.S.Bethune, C.H.Kiang, M.S.de Vries, et al. Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer walls. Nature, 1993, 363: 605.
    [6] W. Kratschmer, L. D.K. Fostiropoulos, D. R. Huffman. Solid C60: a new form of carbon. Nature, 1990, 347: 364
    [7] Baton R. Growth, Structure, and Properties of Graphite Whiskers [J]. J Appl phys, 1960, 31: 283-290.
    [8] Liu M, Cowley J M. Structure of carbon nanotubes studied by HRTEM and Nanodiffracton. Ultramicroscopy, 1994, 53:333-342.
    [9]张立德.纳米材料与纳米结构[M].化学工业出版社2000.
    [10]成会明.纳米碳管制备、结构、物性及应用[M].化学工业出版社.2002
    [11] Terrones M, Hayashi T, Nishimura K et al.炭素. 2000, 195:424.
    [12] P. M. Ajayan. Nanotubes from Carbon. Chem. Rev. 1999, 99, 1787-1799.
    [13] Juan Luis Delgado, Ma A′ngeles Herranz and Nazario Mart?′n. The nano-forms of carbon. J. Mater. Chem., 2008, 18, 1417–1426.
    [14] Iijima S. Growth of carbon nanotube. Materials Science and Engineering B,1993(19):172.
    [15]Iijima S, Ichihashi T, Ando Y. Pentagons, heptagons and negative curvature in graphite microtubule growth. Nature, 1992(356): 776.
    [16] Osawa E,Yoshida M, Fujita M. Shape and fantasy of fullerenes. MRS Bulletin, 1994, 19(11):33.
    [17] Jeroen W. G. Wildo¨er, Liesbeth C. Venema, Andrew G. Rinzler, et al. Electronic structure of atomically resolved carbon nanotubes. Nature, 1998, 391:59.
    [18] Wong E.W, Sheehan P.E., Lieber C.M. Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science, 1997, 277: 1971-1975.
    [19] Hou S M, Zhang Z X, Liu WM, et al. Field emission patterns with atomic resolution of single - wall carbon nanotubes by field emission microscopy [J]. Science in China Series G, 2003, 46(1): 33-40.
    [20] Wind S, Appenzeller J, Martel R, et al. Vertical scaling of carbon nanotube field-effect transistors using top gate electrodes [J]. Applied Physics Letters, 2002, 80:3817-3819.
    [21] Fan S S, Chapline M G, Franklin N R, et al. Self - oriented regular arrays of carbon nanotubes and their field emission properties [J]. Science, 1999, 283:512-514.
    [22] Shen Z Y, Liu S J, Hou Shimin, et al. In situ splitting of carbon nanotube bundles with atomic force microscopy [J]. Journal of Physics D: Applied Physics, 2003, 36: 2050-2053.
    [23] Fennimore A M, Yuzvinsky T D, Han WQ, et al. Rotational actuators based on carbon nanotubes [J]. Nature, 2003, 424:408-410.
    [24] Modi Ashish, Koratkar Nikhil, Lass Eric, et al. Miniaturized gas ionization sensorsusing carbon nanotubes [J]. Nature, 2003, 424:171-174.
    [25] Li Ju, Yip Sidney, Theoretical evaluation of hydrogen storage capacityin pure carbon nanostructures [J]. Journal of Chemical Physics, 2003, 119 (4): 2376-2379.
    [26] Hebard A F, Rosseinsky M J, Haddon R C, et al. Superconductivity at 18K in Potassium-Doped C60 [J]. Nature, 1991, 350: 600-601.
    [27] Haddon R C, Heberd A F, Rosseinsky M J. et al. Conducting films of C60 and C70 by alkali metal doping [J]. Nature, 1991, 350: 320-322.
    [28] Diederich F, Thilgen C. Covalent Fullerene Chemistry [J]. Science, 1996, 271: 317-324.
    [29] Hamada N, Sawada S, Oshiyama A. New one-dimensional conductors: Graphitic microtubules [J]. Phys Rev Lett, 1992, 68: 1579-1581.
    [30] Saito Y, Fujita M, Dresselhaus G. et al. Dresselhaus M S. Electronic Structureof Chiral Graphene Tububles [J]. Appl Phys Lett, 1992, 60: 2204-2206.
    [31] Krishnan A, Dujardin E, Ebbesen T W. et al. Young's modulus of single-wallednanotubes [J]. Phys Rev B, 1998, 58: 14013-14019
    [32] Wang X K, Lin X W, Mesleh M. et al. The effect of hydrogen on the formation of carbon nanotubes and fullerenes. [J]. J Mater Res, 1995, 10: 1977-1983.
    [33] Treacy M M J, Ebbesen T W, Gibson J M. Nature, 1996, 381:678.
    [34] De Jone K P, Geus J W. Carbon nanofibers: Catalytic synthesis and application [J]. Catalysis Review 2000, 42 (4): 481-510
    [35] Smith B W, Monthioux M, Luzzi D E. Encapsulated C60 in carbon nanotubes, Nature 1998,396, 323-324.
    [36] Liu C, Fan Y Y, Liu M. Dresselhaus Hydrogen Storage in Single-Walled Carbon Nanotubes at Room Temperature, Science, 1999, 286, 1127-1129.
    [37]. Han W Q, Fan S S, Li Q Q, et al. Synthesis of gallium nitride nanrods through a carbon nanotube - confined reaction [J]. Science, 1997, 277: 1287-1289
    [38] Mintmire J.W., Dunlap B.L, White C.T Are fullerene tubules metallic?Phys. Rev Lett., 1992 68: 631.
    [39] Hamada N., Sawada S., Oshiyama. A new one dimensional conductors: Graphitic microtubules. Phys. Rev. Lett., 1992, 68: 1579-1581.
    [40] Saito R., Fujita M., Dresselhaus G., Dresselhaus M.S. Electronic structure of grapheme tubules based on C60. Phys. Rev. B, 1992, 46: 1804-1811.
    [41] Wildoer J.W.G., Venema L.C., Rinzler A.G., et al. Electronic structure of atomically resolved carbon nanotubes. Nature, 1998, 391: 59-62.
    [42].Hassanien A., Tokumoto M., Kumazawa Y, et al. Atomic structure and electronic properties of single-wall carbon nanotubes probed by scanning tunneling microscope at room temperature. Appl. Phys. Lett., 1998, 73: 3839-3841.
    [43] Wildoer J.W G., Venema L.C., Rinzler A.G, et al. Electronic structure of atomically resolved carbon nanotubes. Nature, 1998, 391: 59-62.
    [44] Hassanien A., Tokumoto M., Kumazawa Y, et al. Atomic structure and electronic properties of single-wall carbon nanotubes probed by scanning tunneling microscope at room temperature. Appl. Phys. Lett., 1998, 73: 3839-3841.
    [45] Frank S., Poncharal P., Wang Z.L., et al. Carbon nanotube quantum resistors. Science, 1998, 280: 1744-1746.。
    [46] Kociak M., Kasumov A.Y , Gueron S., et al. Superconductivity in ropes of single-walled carbon nanotubes. Phys. Rev. Lett., 2001, 86: 2416-2419.
    [47] Tang Z.K., Zhang L.Y., Wang N., et al. Superconductivity in 4 Angstrom single-walled carbon nanotubes. Science, 2001, 292: 2462-1765.
    [48] Berber S., Kwon Y.K., Tomanek D. Unusually high thermal conductivity of carbon nanotubes. Phys. Rev Lett., 2000, 84: 4613-4616.
    [49] Kim P, Shi L., Majumdar A., McEuen P.L. Mesoscopic thermal transport and energy dissipation in carbon nanotubes. Physics B, 2002, 323: 67-70.
    [50] Yi W., Lu L., Zhang D.L., et al. Linear specific heat of carbon nanotubes. Phys. Rev. B, 1999, 59: 89015-9018.
    [51] Murakami Y, Shibata T, Okuyama K, et al J. Phys. Chem. Solids, 1993 54:1861-1970.
    [52] Hafner JH, Cheung CL, Lieber CM. Growth of nanotubes for probe microscopy tips [J].Nature, 1999, 398:761
    [53] Ajayan PM, Iijima S. Capillarity-induced filling of carbon nanotubes [J].Nature, 1993, 361:333.
    [54]J.M.Planeix, N.Coustel,B. Coq,etal. J.Am.Chem.Soc.1994, 116:7935.
    [55]J.Z.Luo, L.Z.Gao, Y.L.Leung, C.T.Au, Catal.Lett. 2000, 66:91.
    [56] C. F. Cornwell, L. T. Wille. Critical strain and catalytic growth of single-walled carbon nanotubes. J Chem. Phys., 1998, 109: 763。
    [57]Kratschmer W, Lamb L D, Fostiropoulos K. et al. Solid C60: a new form of carbon [J] Nature, 1990, 347: 354-358.
    [58] Ebbesen T.W., Ajayan P.M, Large-scale synthesis of carbon nanotube, Nature, 1992, 358:220-222.
    [59] M.Ishigami, J.Cumings, A.Zettle, S.Chen. A simple method for the continuous production of carbon nanotubes. Chem.Phys.Lett.,2000,319:457.
    [60] http://students.chem.tue.nl/ifp03
    [61] M. Ishigami , John Cumings , A. Zettl , S. Chen. A simple method for the continuous production of carbon nanotubes. Chemical Physics Letters. 2000, 319:457–459
    [62] Ting Guo, Pave1 Nikolaev, Andrew G. Rinzler, et al. Self-Assembly of Tubular Fullerenes. J. Phys. Chem. 1995,99, 10694-10697
    [63] Morinobu Endo, Kenji Takeuchi, Susumu Igarashi, et al. J. Phys. Chem. Solids .1993, 54: 1841-1848.
    [64]康振辉。基于“C-H-O”体系软化学的碳纳米管的合成、剪裁与催化特性【博士学位论文】。东北师范大学,2005
    [65] Jing Kong, Alan M. Cassell, Hongjie Dai. Chemical vapor deposition of methane for single-walled carbon nanotubes. Chem.Phys.Lett., 1998, 292:567-574.
    [66] J. W. Mintmire, B. I. Dunlap and C. T. White, Are fullerene tubules metallic?, Phys. Rev. Lett. 1992, 68, 631-634.
    [67] N. Hamada, S. Sawada and A. Oshiyama, New one-dimensional conductors– graphitic microtubules, Phys. Rev. Lett. 1992, 68, 1579-1599.
    [68] R. Saito, M. Fujita, G. Dresselhaus and M. S. Dresselhaus, Electronic structure of graphene tubules based on C60, Phys. Rev. B 1992, 46, 1804-1806.
    [69] G. Overney, W. Zhong, and D. Tománek, Z., Structural Rigidity and Low Frequency Vibrational Modes of Long Carbon Tubules, Phys. D, 1993, 27, 93-96.
    [70] Wang N, Tang ZK, Li GD, et al. Materials science - Single-walled 4 angstrom carbon nanotube arrays. Nature, 2000, 408:50-51.
    [71] D S Bethune, C H Kiang, M S DeVries, et al. Cobalt-catalysedgrowth of carbon nanotubes with single-atomic-layer walls, Nature, 1993, 363, 605-605.
    [72] A.G. Rinzler, J.H. Hafner, P. Nikolaev, et al, Unraveling Nanotubes: Field Emission from an Atomic Wire, Science 1995, 269, 1550-1555.
    [73] Andreas Thess, Roland Lee, Pavel Nikolaev, et al, Crystalline ropes of metallic carbon nanotubes, Science 1996, 273, 483485.
    [74] S. J. Tans, M H Devoret, H Dai, et al. Individual single-wall carbon nanotubes as quantum wires, Nature, 1997, 386, 474-475..
    [75] Z. F. Ren, Z. P. Huang, J. W. Xu, et al., Synthesis of large arrays of well-aligned carbon nanotubes on glass, Science, 1998. 282, 1105-1107.
    [76] Savas Berber, Young-Kyun Kwon, and David Tománek, Unusually High Thermal Conductivity of Carbon Nanotubes, Phys. Rev. Lett. 2000, 84, 4613-4614.
    [77] Brigitte Vigolo, Alain Pénicaud, Claude Coulon, et al. Macroscopic Fibers and Ribbons of Oriented Carbon Nanotubes, Science 2000, 290, 1331-1335.
    [78] P.C. Collins, M.S. Arnold, and P. Avouris, Engineering Carbon Nanotubes and Nanotube Circuits Using Electrical Breakdown, Science, 2001, 292, 706-709.
    [79] Zhu H W, Xu C L, Wu D H, et al. Direct Synthesis of Long Nanotube Strands, Science, 2002, 296: 884-886.
    [80] Hata K J, Futaba D N, Mizuno K H. et al. Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes [J] Science, 2004, 306: 1362-1364.
    [81] LiY L, Kinloch I A, Windle A H.et al. Direct Spinning of Carbon Nanotube Fibers from Chemical Vapor Deposition Synthesis [J] Science, 2004, 304: 276-278.
    [82] de HeerW A, Poncharal P, BergerC. et al. Carbon-Glass Beads, and the Crystallization of Carbon Nanotubes [J], Science, 2005, 307: 907-910.
    [83] R. T. K. Baker, M. A. Barber, P. S. Barber, et al. Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene. J.Cata.l, 1972, 26: 51.
    [84] R. T K. Baker, P S. Harris, R. B. Thomas, R. J. Waite. Formation of filamentous carbon from iron, cobalt and chromium catalyzed decomposition of acetylene, J. Catal., (1973), 30, 86
    [85] R. T K. Baker. Catalytic growth of carbon filaments.Carbon, 1989,27:315
    [86] G. G. Tibbetts, M. G. Devour, E. J. Rodda. An adsorption-diffusion isotherm and its application to the growth of carbon filaments on iron catalyst particles. Carbon, 1987, 253:67
    [87] Dresselhaus M.S., Dresselhaus G. and Eklund P.C. Science of fullerences and carbon nanotubes, Academic Press, London, 1996: 757-760.
    [88] R. R. Meyer, J. Sloan, R. E. Dunin-Borkowski, et al. Discrete atom imaging of one-dimensional crystals formed within single-walled nanotubes. Science, 2000, 289: 1324
    [89] P G. Cotlins, P Avouris.纳米管一电子器件的新秀(中文译本).中国科学,2001(3)
    [90] T. Guo, P. Nikolaev, A.G Andrew, et al. Self-Assembly of Tubular Fullerenes. J. Phys. Chem., 1995, 99: 10694
    [91] D. S. Bethune, C. H. Kiang, M. S. de Vires, et al. Cobalt Catalyzed Growth of Carbon Nanotubes with Single-Atomic-Layer Walls. Nature,1993, 363: 605
    [92] Andreas Thess, Roland Lee, Pavel Nikolaev, et al. Crystalline ropes of metallic carbon nanotubes. Science, 1996, 273: 483-487.
    [93] V Ivanov, J. B. Nagy, Ph. Lambin, et al. The study of carbon nanotubules produced by catalytic method, Chem. Phys. Lett., (1994), 223, 329.
    [94] A.Sacco, Jr P. Thacker, T. N. Chang, A. T. S. Chiang. The initiation and growth of filamentous carbon from a-iron in H2, CH4, H2O, CO2, and CO gas mixtures. J. Catal., 1984, 85: 224
    [95] Jing Kong, Hyongsok T. Soh, Alan M. Cassell, et al. Synthesis of individual singlewalled carbon nanotubes on patterned siliconwafers. Nature, 1998, 395:878-881.
    [96] S. B. Sinnott, R. Andrews, D. Qian, et al. Model of carbon nanotube growth through chemical vapor deposition. Chem.Phys.Lett., 1999, 315:25
    [97] C. J. Lee, J. H. Park. Growth model for bamboolike structured carbon nanotubes synthesized using thermal chemical vapor deposition. J. Phys. Chem. B, 2001, 105: 2365
    [98] L. Yuan, T. Li,K Saito. Growth mechanism of carbon nanotubes in methane diffusion flames. Carbon, 2003, 41: 1889
    [99]徐军明.定向纳米碳管及其复合膜的制备与表征【博士论文】.浙江大学,2004
    [100] Dresselhaus MS, Dresselhaus G, Eklund PC. Science of Fullerenes & Carbon Nanotube. San Diego: Academic Press, 1996
    [101] Tans SJ, Verschueren AR, Dekker C. Room-temperature transistor based on a single carbon nanotube[J]. Nature, 1998, 393:49
    [102] Anton Nikitin, Xiaolin Li, Zhiyong Zhang, et al. Hydrogen Storage in Carbon Nanotubes through the Formation of Stable C-H Bonds. Nano Lett., 2008, 8:162-167.
    [1]Iijima S. Helical microtubules of graphitic carbon Nature, 1991, 354:56-58.
    [2] P. M. Ajayan. Nanotubes from Carbon. Chem. Rev., 1999, 99:1787-1800.
    [3]Xu D S, Guo G L, Gui L L. et al. Controlling growth and field emission property of aligned carbon nanotubes on porous silicon substrates. Appl. Phys. Lett., 1999, 75:481-483.
    [4]成会明.纳米碳管制备、结构、物性及应用[M].化学工业出版社.2002
    [5] Baughman R H, Cui C X, Zakhidov A. A. et al. Carbon Nanotube Actuators [J]. Science 1999, 284: 1340-1344
    [6] Liu C, Fan Y Y, Liu M. et al. Hydrogen storage in single-walled carbon nanotubes atroomtemperature. [J]. Science 1999, 286: 1127-1129.
    [7] Shim M, Javey A, Kam N W S. et al. Polymer Functionalization for Air-Stable n-Type Carbon Nanotube Field-Effect Transistors [J]. J. Am. Chem. Soc. 2001, 123: 11512-11513
    [8] Kim, P., Lieber, C. M. Nanotube Nanotweezers [J]. Science 1999, 286:2148-2150.
    [9] Fan S, Chapline M G, Frank N R. et al. Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties [J]. Science 1999, 283: 512-514.
    [10] Zhu H W, Xu C L, Wu D H, et al. Direct Synthesis of Long Single-Walled Carbon Nanotube Strands [J], Science, 2002, 296: 884-886.
    [11] Maser W K, Benito A M, Martinez M T. Production of carbon nanotubes: the light approach. [J]. Carbon 2002, 40: 1685-1695.
    [12] Peigney A, Coquay P, Flahaut E. et al. A Study of the Formation of Single- and Double-Walled Carbon Nanotubes by a CVD Method [J]. J. Phys. Chem. B 2001, 105: 9699-9710.
    [13] Bethune D S, Kiang C H, deVries M S. et al. [J]. Nature 1993, 363: 605-607.
    [14] Scott CD, Arepalli S, Nikolaev P, et al. [J]. Appl. Phys. A 2001, 72: 573-580.
    [15] Calderon-Moreno J M, Yoshimura M. Hydrothermal Processing of High-Quality Multiwall Nanotubes from Amorphous Carbon. [J], J. Am. Chem. Soc., 2001, 123: 741-742.
    [16] O’Loughlin J L, Kiang C H, Wallace C H. et al. Rapid Synthesis of Carbon Nanotubes by Solid-State Metathesis Reactions. [J]. J. Phys. Chem. B 2001, 105: 1921-1924
    [17] Jiang Y, Wu Y, Zhang S Y. et al. A Catalytic-Assembly Solvothermal Route to Multiwall Carbon Nanotubes at a Moderate Temperature. [J]. J. Am. Chem. Soc. 2000, 122: 12383-12384
    [18] Liu J F, Li Q H, Wang T H. et al. Metastable Vanadium Dioxide Nanobelts: Hydrothermal Synthesis, Electrical Transport, and Magnetic Properties. [J]. Angew. Chem. Int. Ed. Engl.2004, 43, 5048-5052.
    [19] Sano N, Wang H, Chhowalla M, et al. [J], Nature, 2001, 414: 506-507.
    [20] Calderon-Moreno J M, Swamy S, Fujino T, et al. Carbon nanocells and nanotubes grown in hydrothermal fluids. [J]. Chem. Phys. Lett., 2000, 329:317-322.
    [21] Kang Z H, Wang E B, Jiang M. et al. Convenient controllable synthesis of inorganic 1D nanocrystals and 3D high-ordered microtubes.[J]. Eur. J. Inorg. Chem. 2003, 370-376.
    [22] Katsoulis D E. A Survey of Applications of Polyoxometalates . [J]. Chem. Rev., 1998, 98: 359-388.
    [23] Pope M T, Müller A. Polyoxometalate Chemistry: An Old Field with New Dimensions in Several Disciplines. [J].Angew. Chem. Int. Ed. Engl. 1991, 30: 34-48.
    [24] Kim W B, Voitl T, Rodriguez-Rivera G J. et al. Powering Fuel Cells with CO via Aqueous Polyoxometalates and Gold Catalysts [J]. Science 2004, 305:1280-1283
    [25] Duesberg, G. S.; Roth, S.; Downes, P.; Minett, A.; Graupner, R.; Ley, L.; Nicoloso, N. Modification of Single-Walled Carbon Nanotubes by Hydrothermal Treatment. [J]. Chem. Mater. 2003, 15: 3314-3319
    [26]杨子芹,沈曾民,陈晓红等,新型碳材料,2000,15(2):34
    [27]林松,徐才录,吴建军等,炭素技术,2002, (2): 6
    [28] Kang Z H, Wang E B, Mao B D. et al. [J]. Nanotechnology, 2005, 16: 1192.
    [29] C. Journet, W. Maser, P. Bernler, et al. Nature 1997, 388:756.
    [30] A. Thess, R. Lee, P. Nikolaev , et al. Crystalline Ropes of Metallic CarbonNanotubes Science 1996, 273, 483-487.
    [31] W. Z. Li, S. S. Xie, L. X. Qian, et al. Large-scale synthesis of aligned carbon nanotubes. Science 1996, 274, 1071-1073.
    [32] L. F. Sun, J. M. Mao, Z. W. Pan, et al. Growth of straight nanotubes with a cobalt-nickel catalyst by chemical vapor deposition. Appl Phys Lett 1999, 74, 644-646.
    [33] H. M. Cheng, F. Li, G. Su, et al. Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons. Appl Phys Lett, 1998, 72, 3282-3284.
    [34] L. J. Ci, J.Q. Wei, B. Q. Wei, et al. Carbon nanofibers and single-walled carbon nanotubes prepared by the floating catalyst method. Carbon 2001, 39, 329-335.
    [35] L. J. Ci, H. W. Zhu, B. Q. Wei, et al. Annealing amorphous carbon nanotubes for their application in hydrogen storage. Applied Surface Science, 2003, 205, 39-43.
    [36]施益峰,全慧娟,郑国斌,材料研究学报, 2003,17:321.
    [37]A. Bourlinos, N. Boukos, D. Petridis, Exchange Resins in shape Fabrication of Hollow Inorganic and Carbonaceous-Inorganic Composite Spheres. Adv. Mater. 2002, 14, 21-24.
    [38] V. Naydenov, L. Tosheva, O. N. Antzutkin, J. Sterte, Meso/macroporous AlPO-5 spherical macrostructures tailored by resin templating. Micropor. Mesopor. Mater. 2005, 78:181-188.
    [39] L. Tosheva, V. Valtchev, J. Sterte, Silicalite-1 containing microspheres prepared using shape-directing macro-templates. Micropor. Mesopor. Mater. 2000, 35–36, 621-629.
    [40] V. Barbarossa, F. Galluzzi, R. Tomaciello and A. Zanobi. Raman spectra of microcrystalline graphite and a-C: H films excited at 1064 nm. Chem.Phys.Lett,1991, 185:53-55.
    [41] R. R. Basca, Ch. Laurent, A. Peigney, et al. High specific surface area carbon nanotubes from catalytic chemical vapor deposition process. Chem.Phys.Lett, 2000, 323: 566-571.
    [42] J. Kastner , T. Pichler , H. Kuzmany ,et al. Resonance Raman and infrared spectroscopy of carbon nanotubes. Chemical Physics Letters, 1994, 221: 53-58.
    [43] H. Hiura, T.W. Ebbesen, K. Tanigaki. Raman studies of carbon nanotubes. Chem.Phys.Lett, 1993, 202:509-512.
    [44] Dresselhaus M S, Dresselhaus G, Pimenta M A, et al. [M], M. J., Ed.; Blackwell Science: Oxford, 1999, Chapter
    [45]Kasuya A, Sasaki Y, Saito Y, et al. Evidence for size-dependent discrete dispersions in single-wall nanotubes. [J], Phys. Rev. Lett., 1997, 78: 4434-4437.
    [46] Tuinstra F, Koening J L. Raman Spectrum of Graphite. [J], J. Chem. Phys., 1970, 53:1126-1130.
    [1] Serp P, Corrias M, Kalck P. Carbon nanotubes and nanofibers in catalysis. Appl Catal A. 2003, 253:337-358.
    [2] Menon M, Andriotis AN, Froudakis GE. Curvature dependence of the metal catalyst atom interaction with carbon nanotubes walls. Chem Phys Lett. 2000, 320:425-434.
    [3] Park S, Srivastava D, Cho K. Generalized chemical reactivity of curved surfaces: Carbon nanotubes. Nanolett. 2003, 3:1273.
    [4] Maksimova N, Mestl G, Schlo¨gl R. Catalytic activity of carbon nanotubes and other carbon materials for oxidative dehydrogenation of ethylbenzene to styrene. Stud Surf Sci Catal. 2001, 133:383.
    [5] Manuel Fernando R. Pereira, Jose′L. Figueiredo, Jose′J.M. O′rfa?o, et al. Catalytic activity of carbon nanotubes in the oxidative dehydrogenation of ethylbenzene. Carbon, 2004, 42:2807-2813.
    [6] Mestl G, Maksimova NI, Keller N, et al. Carbon nanofilaments in heterogeneous catalysis: An industrial application for new carbon materials? Angew. Chem. Int. Ed. 2001, 40:2066-2068.
    [7] Keller N, Maksimova NI, Roddatis VV, et al. The catalytic use of onion-like carbon materials for styrene synthesis by oxidative dehydrogenation of ethylbenzene. Angew Chem Int Ed 2002, 41:1885-1888.
    [8] Maksimova N, Roddatis V, Mestl G, et al. Oxidative dehydrogenation of ethylbenzene to styrene over carbonaceous materials. Eurasian ChemTech J 2000, 2:231.
    [9] Zhang J, Su DS, Zhang Aihua, et al. Nanocarbon as Robust Catalyst: Mechanistic Insight into Carbon-Mediated Catalysis. Angew. Chem. Int. Ed. 2007, 46:7319-7323.
    [10] Yang, SX; Li, X; Zhu, WP, et al. Catalytic activity, stability and structure of multi-walled carbon nanotubes in the wet air oxidation of phenol. Carbon, 2008, 46:445-452.
    [11] Muradov N. Catalysis of methane decomposition over elemental carbon. Catal Commun 2001, 2:89–94.
    [12] Croston M, Langston J, Takacs G, et al. Conversion of aniline to azobenzene at functionalized carbon nanotubes: a possible case of a nanodimensional reaction. Int J Nanosci. 2002;1:285–93.
    [13] Croston M, Langston J, Sangoi R, et al. Catalytic oxidation of p-toluidine at multiwalled functionalized carbon nanotubes. Int J Nanosci. 2002; 1:277–83.
    [14] Jian Zhang, Xi Liu, Raoul Blume, et al. Surface-Modified Carbon Nanotubes Catalyze Oxidative Dehydrogenation of n-Butane. Science, 2008, 322:73-77.
    [15] M. Fr(o|¨)ba, R. K(o|¨)hn, G. Bouffaud. Fe_2O_3 Nanoparticles within Mesoporous MCM-48 Silica: In Situ Formation and Characterization. Chem. Mater. 1999, 11, 2858-2865.
    [16] A. B. Bourlinos, A. Simopoulos, N. Boukos, et al. Magnetic Modification of the External Surfaces in the MCM-41 Porous Silica: Synthesis, Characterization, and Functionalization. J. Phys. Chem. B. 2001, 105, 7432-7437.
    [17] A. F. Gross, M. R. Diehl, K. C. Beverly, et al. Controlling Magnetic Coupling between Cobalt Nanoparticles through Nanoscale Confinement in Hexagonal Mesoporous Silica. J. Phys. Chem. B. 2003, 107, 5475-5482.
    [18] A. H. Lu, W. C. Li, A. Kiefer, et al. Fabrication of Magnetically Separable Mesostructured Silica with an Open Pore System. J. Am. Chem. Soc. 2004, 126, 8616-8617.
    [19] O. C. Carneiro, P. E. Anderson, N. M. Rodriguez et al. Decomposition of CO?H2 over Graphite Nanofiber-Supported Iron and Iron?Copper Catalysts. J. Phys. Chem. B, 2004, 108, 13307-13314.
    [20] A. D. Lueking, R. T. Yang, N. M. Rodriguez et al. Hydrogen Storage in Graphite Nanofibers: Effect of Synthesis Catalyst and Pretreatment Conditions. Langmuir, 2004, 20, 714-721.
    [21] W. R. Zhao, J. L. Gu, L. X. Zhang, et al. Fabrication of Uniform Magnetic Nanocomposite Spheres with a Magnetic Core/Mesoporous Silica Shell Structure J. Am. Chem. Soc. 2005, 127, 8916-8917.
    [22] Zhenhua Sun, Lifeng Wang, Pingping Liu, et al. A magnetically motive porous sphere composite and its excellent property for removal of pollutants in water by adsorption and desorption recycles. Adv. Mater. 2006, 18:1968.
    [23] N. H. Phan, S. Rio, C. Faur, et al. Production of fibrous activated carbons from natural cellulose (jute, coconut) fibers for water treatment applications. Carbon, 2006, 44, 2569-2577.
    [24] Burri, D. R., Choi, K. M., Han, et al. CO2 utilization as an oxidant in the dehydrogenation of ethylbenzene to styrene over MnO2-ZrO2 catalysts. Catalysis Today, 2006, 115: 242-247.
    [25] K.K. Kearby, in: O. Emmet (Ed.), Catalysis, vol. III, Reinhold, New York, 1955, p. 469.
    [26] M.F.R. Pereira, J.J.M. O (?) rfa(?)o, J.L. Figueiredo. Oxidative dehydrogenation of ethylbenzene on activated carbon catalysts. I. Inˉuence of surface chemical groups. Applied Catalysis A: General 1999, 184: 153-160.
    [27] M.F.R. Pereira, J.J.M. O (?) rfa(?)o, J.L. Figueiredo. Oxidative dehydrogenation of ethylbenzene on activated carbon catalysts 2. Kinetic modeling. 2000, 196:43-54.
    [28] M.F.R. Pereira, J.J.M. O (?) rfa(?)o, J.L. Figueiredo. Oxidative dehydrogenation of ethylbenzene on activated carbon catalysts 3. Catalyst deactivation. 2001, 218:307-318.
    [29] Dilgam B. Tagiyev , Gurban O. Gasimov, Musa I. Rustamov. Carbon deposits on the surface of CaO/SiO2 as active catalysts for the oxidative dehydrogenation of ethylbenzene. Catalysis Today, 2005, 102–103: 197–202
    [30] Gerhard Mestl, Nadezhda I. Maksimova, Nicolas Keller, et al. Carbon Nanofilaments in Heterogeneous Catalysis: An Industrial Application for New Carbon Materials? Angew. Chem. Int. Ed. 2001, 40:2066-2068.
    [31] Dangsheng Su, Nadezhda I. Maksimova, Gerhard Mestl, et al. Oxidative dehydrogenation of ethylbenzene to styrene over ultra-dispersed diamond and onion-like carbon. Carbon, 2007, 45:2145-2151.
    [32] Guerrero-Ruiz, I. Rodriguez-Ramos. Oxydehydrogenation of ethylbenzene to styrene catalyzed by graphites and activated carbons. Carbon, 1994, 32: 23-29.
    [33] Philippe Serp, Massimiliano Corrias, Philippe Kalck. Carbon nanotubes and nanofibers in catalysis. Applied Catalysis A: General, 2003, 253: 337-358.
    [34] D.S. Su, N. Maksimova, J.J. Delgado, et al. Nanocarbons in selective oxidative dehydrogenation reaction. Catalysis Today, 2005, 102–103: 110–114

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700