改性多金属氧酸盐的液相氧化体系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多金属氧酸盐(多酸)作为氧化催化剂已被广泛应用于各种均相和非均相催化体系中。多酸非常重要的一个优点就是它的催化性能可以方便地通过改变反荷阳离子、杂原子和多原子来调节;另一优点是具有良好的热稳定性,可适用于300~350℃的催化反应环境。但多酸在实际应用中也存在着不可回避的问题:作为均相催化剂,其不易从体系中回收;作为非均相催化剂,其表面积比较低。解决上述问题对多酸的推广应用具有重要的意义。
     本文首先采用有机季铵盐修饰多酸得到了反应控制相转移磷钼酸盐催化剂Q_3PMo_4O_(16)(Q=[C_7H_7N(CH_3)_3]~+)。在氧化剂H_2O_2的作用下,不可溶的Q_3PMo_4O_(16)可转变为可溶的催化活性中心Q_3PMo_4O_(24)而进入反应溶液参与催化反应;当反应结束H_2O_2消耗完毕后,催化剂又恢复为Q_3PMo_4O_(16)而从体系中沉淀出来。这样催化剂在反应过程中既表现出了均相催化的特点,而在反应结束后又可以像非均相催化剂那样方便地被回收。将此催化剂应用于醇类液相催化氧化反应中,发现其对芳香醇和脂肪族仲醇的催化活性高于脂肪族伯醇。当H_2O_2与苯甲醇的摩尔比为0.75时,苯甲醇基于H_2O_2的转化率可以达到92.8%,主产物苯甲醛的选择性大于99%,反应后催化剂的回收率为87.6%(wt%),同时催化剂循环使用三次其催化活性无明显降低。
     制备了另一种反应控制相转移磷钨酸盐催化剂Q_9PW_9O_(34)(Q=[C_7H_7N(CH_3)_3]~+)。FF-IR和~(31)P NMR的表征结果表明:这种催化剂在H_2O_2的作用下可降解为更小的可溶的活性物种[PW_4O_(24)]~(3-),当H_2O_2消耗掉时,活性物种又可转变为初始的不溶性的催化剂而从体系中沉淀出来。将催化剂应用于苯甲醇的液相氧化反应中,当H_2O_2与苯甲醇的摩尔比为0.9时,反应0.5h,苯甲醇基于H_2O_2的转化率不低于95.0%,苯甲醛的选择性都大于99%,同时催化剂循环使用三次其催化活性得到良好的保持。
     通过动力学实验,得到了Q_3PMo_4O_(16)和Q_9PW_9O_(34)催化氧化苯甲醇的反应速率方程分别为:dc/dt=k[BzOH][Q_3PMo_4][H_2O_2]和dc/dt=k[BzOH]~(0.5)[Q_9PW_9]~(0.5)[H_2O_2]~(0.5),两个催化体系的反应活化能分别为48.6kJ/mol和27.0kJ/mol。并建立了Q_3PMo_4O_(16)催化体系的动力学数学模型。
     以季铵化的杂萘联苯基聚芳醚砜酮(QAPPESK)为载体,负载一系列杂多阴离子得到了非均相化的杂多酸催化剂。当反应物与H_2O_2的摩尔比为1:1时,在液相催化氧化苯甲醇的反应中,催化剂QAPPESK-PW_9的活性最高,反应6h,苯甲醇的转化率为92.1%,苯甲醛的选择性为98.2%;而在环己烯的氧化反应中QAPPESK-PMo_4是较合适的催化剂,反应4h,环己烯的转化率为95.7%,环氧环己烷的选择性为96.0%。对QAPPESK-PW_9和QAPPESK-PMo_4进行FT-IR、XRD和TG表征,分析结果显示:杂多阴离子均以分子水平均匀地分布在载体上,其在聚合物表面并未形成结晶相;聚合物载体和杂多阴离子的结构在反应后都得到了很好的保持。将QAPPESK-PW_9和QAPPESK-PMo_4分别循环使用五次,其催化活性无明显降低,催化剂均未发生明显的杂多阴离子溶脱现象。
     将交联聚苯乙烯D201作为负载[PW_9O_(34)]~(9-)和[PMo_4O_(24)]~(3-)的载体,通过FT-IR、UV、XRD、TG和EPMA的详细表征:发现杂多阴离子同样是以分子水平负载到载体上,并无明显的堆积现象;在反应中,载体和杂多阴离子都表现出了良好的稳定性,其结构在反应后并未发生变化。其中D201-PMo_4在液相氧化环己烯的反应中表现出了较高的催化活性,反应6h,环己烯的转化率为89.5%,主产物的选择性为90.5%。将催化剂循环使用五次,其催化活性无明显降低。相对于D201,以QAPPESK为载体的催化剂在氧化苯甲醇的反应中表现出了更高的催化活性。
Polyoxometallates(heteropoly acids)have been widely employed as oxidation catalysts in various homogeneous and heterogeneous reactions.One of the great advantages of polyoxometallates catalysts is that their oxidation catalytic properties can be controlled in a systematic way by changing the identity of charge compensating counter-cations,heteroatoms, and framework polyatoms.Another advantage that makes polyoxometallates promising catalysts is their great thermal stability,so they can be used under the middle high temperature catalytic conditions(300~350℃).However,there are some problems for polyoxometallates in the application:as homogeneous catalyst,it is difficult to recover the catalyst from the system;and as heterogeneous catalyst,their surface area is very low.So it is very important to resolve above mentioned problems for the application of polyoxometallates.
     Firstly,a reaction-controlled phase-transfer catalyst Q_3PMo_4O_(16)(Q=[C_7H_7N(CH_3)_3]~+)is synthesized by using quaternary ammonium salt to modify the polyoxometallates.Under the action of H_2O_2,the insoluble Q_3PMo_4O_(16)formed soluble catalytic activity species Q_3PMo_4O_(24) to catalyze the oxidation reaction;after the H_2O_2 are consumed up,the catalyst can deposit from the system as Q_3PMo_4O_(16).Therefore,in the reaction,the catalyst not only shows the feature of homogeneous catalyst,but also can be recovered easily as heterogeneous catalyst. This catalyst is employed in the liquid phase oxidation of alcohols.It is found that the aromatic alcohols and aliphatic sec alcohol can be catalyzed oxidation more efficiently than aliphatic primary alcohol.When the molar ratio of H_2O_2 to benzyl alcohol is 0.75,the conversion based on H_2O_2 reaches 92.8%,the selectivity of main product benzaldehyde is not less than 99%,the recovery ratio is 87.6%(wt%),moreover,the catalyst can be recycled three times without decreasing the activity obviously.
     Then,another reaction-controlled phase-transfer polyoxotungstate catalyst Q_9PW_9O_(34) (Q=[C_7H_7N(CH_3)_3]~+)is prepared.The results of characterizing with FT-IR and ~(31)P NMR indicating that after it reacts with H_2O_2,the catalyst depolymerizes into one smaller active species[PW_4O_(24)]~(3-)which is soluble in the reaction medium,when the oxidant H_2O_2 is consumes up,the soluble species polymerizes into insoluble larger compounds with Keggin-structure framework.The catalyst is utilized in the liquid phase oxidation of benzyl alcohol,when the molar ratio of H_2O_2 to benzyl alcohol is 0.9,after 0.5h,the conversion based on H_2O_2 is not less than 95.0%,the selectivity of benzaldehyde is over 99%,the catalyst is recycled three times and the activity is maintained well.
     Through kinetic experiments,the reaction rate equations of liquid phase catalytic oxidation of benzyl alcohol with Q_3PMo_4O_(16)and Q_9PW_9O_(34)are obtained,respectively.The equations as follows:dc/dt=k[BzOH][Q_3PMo_4][H_2O_2]and dc/dt=k[BzOH]~(0.5)[Q_9PW_9]~(0.5) [H_2O_2]~(0.5).The reaction activation energy of these two catalytic systems are 48.6 kJ/mol and 27.0 kJ/mol,respectively.And the kinetic mathematical model of catalytic system with O_3PMo_4O_(16)is built.
     Some supported polyoxometallates catalysts are prepared by supporting a series of polyoxometallates on the quaternary ammonium poly(phthalazinone ether sulfone ketone.In the liquid phase oxidation of benzyl alcohol,when the molar ratio of substrates to H_2O_2 is 1, the catalytic activity of QAPPESK-PW_9 is the highest,the conversion of benzyl alcohol reaches 92.1%,and the selectivity of benzaldehyde is 98.2%within 6h.And in the catalytic oxidation of cyclohexene,QAPPESK-PMo_4 is confirmed to be the best catalyst,the conversion and selectivity of cyclohexene oxidation reaction are 95.7%and 96.0%, respectively within 4 h.The studies of characterization of QAPPESK-PW_9 and QAPPESK-PMo_4 with FT-IR,XRD and TG demonstrate that:the heteropoly anions are finely dispersed on the polymer support,they do not form crystal phase on the support surface; the structure of polymer support and heteropoly anions are maintained well during the reaction.The QAPPESK-PW_9 and QAPPESK-PMo_4 can be recycled five times without decreasing the catalytic activity,indicating that no leaching of the active species occurred during the reaction.
     The crosslinked polystyrene D201 is employed as the support of[PW_9O_(34)]~(9-)and [PMo_4O_(24)]~(3-).The catalysts are characterized with FT-IR,UV,XRD,TG and EPMA,and it is found that the heteropoly anions do not form crystal phase on the support surface,during the reaction,the polymer support and heteropoly anions show high stability,their structure are both maintained well.The D201-PMo_4 shows higher catalytic activity than D201-PW_9,within 6h,the conversion of cyclohexene reaches 89.5%,and the selectivity of main product is 90.5%.The catalyst can be recycled five times without decreasing the activity obviously.The catalyst with QAPPESK as support shows higher catalytic activity than that with D201 as support.
引文
[1]胡长文,黄如丹.多金属氧酸盐化学研究进展与展望.无机化学学报,2003,19(4):337-344.
    [2]Pope M T.Heteropoly and isopolyoxometalates.New York:Springer,1983.
    [3]Corma A.Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions.Chem.Rev.,1995,95:559-614.
    [4]王恩波,胡长文,许林.多酸化学导论.北京:化学工业出版社,1998.
    [5]Rhule J T,Hill C L,Judd D A.Polyoxometalates in medicine.Chem.Rev.,1998,98:327-357.
    [6]Mizuno N,Misono M.Heterogeneous catalysis.Chem.Rev.,1998,98:199-217.
    [7]Coronado E,Gomez-garcia C J.Polyoxometalate-based molecular materials.Chem.Rev.,1998,98:273-296.
    [8]Katsoulis D E.A survey of applications of polyoxometalates.Chem.Rev.,1998,98:359-388.
    [9]Miler A,Peters F,Pope M T et al.Polyoxometalates:very large clusters-nanoscale magnets.Chem.Rev.,1998,98:239-272.
    [10]Okuhara T.Water-tolerant solid acid catalysts.Chem.Rev.,2002,102(10):3641-3666.
    [11]刘丽萍,黄如丹,张中强等.多金属氧酸盐的合成化学研究新进展.分子科学学报,2006,22(6):361-366.
    [12]王恩波,段颖波,张云峰等.杂多酸催化剂连续法合成乙酸乙酯.催化学报.1993,14(2):147-149.
    [13]杜少斌,徐元植.杂多酸及其盐的催化研究新进展.石油化工.1993,22(10):694-696.
    [14]Wang E B,Lu X H,Zhao S L.Studies on redox properties of heteropoly acids(salts)and their derivatives of Keggin and Dawson structures.Sci.China.1990,33(9):1032-1039.
    [15]Hu C W,Masato H.Catalysis by heteropoly compounds ⅩⅫ.Reactions of esters and esterification catalyzed by heteropolyacids in a homogenous liquid phase-effect of the central atom of heteropoly anions having tungsten as the addenda atom.J.Catal.1993,143(2):437-448.
    [16]吴茂祥,罗军华,李定等.杂多酸(盐)催化合成丙烯酸正丁酯的研究.精细化工.1999,16(6):32-34.
    [17]毛萱,殷元骐.杂多酸催化研究新进展.分子催化.2000,14(6):483-489.
    [18]温朗友,闵恩泽.固体杂多酸催化剂研究新进展.石油化工.2000,29:49-55.
    [19]王新平,叶兴凯,吴越.杂多酸固化催化酯化反应.精细石油化工.1994,15(4):314-316.
    [20]王恩波,赵世良,郑汝骊.杂多酸型催化剂.石油化工.1985,14(10):615-625.
    [21]Misono M.Unique acid catalysis of heteropoly compounds(heteropolyoxometalates)in the solid state.Chem.Commun.,2001,13:1141-1152.
    [22]Misono M.Heterogeneous catalysis by heteropoly compounds of molybdenum and tungsten.Catal.Rev.Sci.Eng.,1987,29(2-3):269-321.
    [23]Okuhara T,Mizuno N,Misono M.Catalytic chemistry of heteropoly compounds.Adv.Catal.,1996,41:113-252.
    [24]伊万·科热夫尼科夫著.唐培堃,李祥高,王世荣译.精细化学品的催化合成:多酸化合物及其催化.北京:化学工业出版社,2005.
    [25]Mizuno N,Misono M.Heterpolyanions in catalysis.J.Mol.Catal.,1994,86(1-3):319-342.
    [26]Hill C L,Prosser-McCartha C M.Homogeneous catalysis by transition-metal oxygen anion clusters.Coord.Chem.Rev.,1995,143:407-455.
    [27]Kuznetsova N I,Detusheva L G,Kuznetsova L I et al.Oxidation of cyclohexene and decay of hydrogen peroxide catalyzed by heteropoly complexes.Kinet.Catal.1992,33(3):516-523.
    [28]Venturello C,D'Aloisio R,Bart J C Jet al.A new peroxotungsten heteropoly anion with special oxidizing properties:synthesis and structure of tetrahexylammonium tetra(diperoxotungsto)phosphate(3-).J.Mol.Catal.1985,32(1):107-110.
    [29]Schwegler M,Floor M,Bekkum H.Heteropolyanions as oxidation catalysts in a 2-phases system.Tetrahedron Lett.,1988,29(7):823-826.
    [30]Venturello C,Alneri E,Ricci M.A new effective catalytic system for epoxidation of olifins by hydrogen peroxide under phase transfer conditions.J.Org.Chem.,1983,48(21):3831-3833.
    [31]Beiles R G,Rozmanova Z E,Andreeva O B.Synthesis of heteropoly compounds of peroxide nature.Russ.J.Inorg.Chem.,1969,14(8):1122-1127.
    [32] Venturello C, Gambaro M. A convenient catalytic method for the dihydroxylation of alkenes by hydrogen peroxide.Synthesis,1989,4:295-297.
    
    [33] Ishii Y, Yamawaki Y, Ura T et al. Hydrogen peroxide oxidation catalyzed by heteropoly acids combined with cetylpyridinium chloride: Epoxidation of olefins and allylic alcohols, ketonization of alcohols and diols, and oxidative cleavage of 1,2-diols and olefins. J.Org.Chem.,1988,53(15):3587-3593.
    
    [34] Sakaue S, Sakata Y, Nishiyama Y et al. Oxidation of aliphatic and aromatic amines with hydrogen peroxide catalyzed by peroxoheteropoly oxometalates.Chem.Lett.,1992,2:289-292.
    
    [35]Ishii Y, Sakato Y. A novel oxidation of internal alkynes with hydrogen peroxide catalyzed by peroxotungsten compounds. J.Org.Chem.,1990,55(21):5545-5547.
    
    [36] Sakata Y, Ishii Y. A versatile transformation of vic-diols into.alpha.-hydroxy ketones with hydrogen peroxide catalyzed by peroxotungstophosphates. J.Org.Chem.,1991,56(21): 6233-6235.
    
    [37] Ishii Y, Ogawa M. In reviews on heteroatom chemistry: vol.3.Tokyo:Furukawa 1990.
    
    [38] Csanyi L J, Jaky K. Peroxo-oxometallate formation under phase transfer conditions. J.Mol.Catal., 1990,61(1):75-84.
    
    [39] Csanyi L J, Jaky K. Some features of epoxidation of cyclohexene catalyzed by oxoperoxometallates under phase-transfer conditions. J.Catal.,1991,127(1):42-50.
    
    [40] Aubry C, Chottard G, Platzer N et al. Reinvestigation of epoxidation using tungsten-based precursors and hydrogen peroxide in a biphase medium.Inorg. Chem.,1991,30(23):4409-4415.
    
    [41] Salles L, Aubry C, Thouvenot R et al. ~(31)P and ~(183)W NMR spectroscopic evidence for novel peroxo species in the "H_3[PW_(12)O_(40)].cntdot.yH_2O/H_2O_2" system, synthesis and X-ray structure of tetrabutylammonium(.mu.-Hydrogen phosphato)bis(.mu.-peroxo)bis(oxoperoxotungstateX2-): A catalyst of olefin epoxidation in a biphase medium.Inorg.Chem.,1994,33(5):871-878.
    
    [42] Ballistreri F P, Bazzo A, Tomaselli G A. Reactivity of peroxopolyoxo complexes: Oxidation of thioethers, alkenes, and sulfoxides by tetrahexylammonium tetrakis(diperoxomolybdo)phosphate. J.Org.Chem.,1992,57(26):7074-7077.
    
    [43] Duncan D C, Chambers R C, Hecht E. Mechanism and dynamics in the H_3[PW_(12)O_(40)]-catalyzed selective epoxidation of terminal olefins by H_2O_2: formation, reactivity, and stability of {PO_4[WO(O_2)_2]_4}~(3-). J.Am.Chem.Soc.,1995,117(2):681-691.
    
    [44] Mimoun H. The role of peroxymetallation in selective oxidative processes. J.Mol.Catal.,1980,7(1): 1-29.
    
    [45] Sharpless K B, Townsend J M, Williams D R. Mechanism of epoxidation of olefins by covalent peroxides of molybdenum(VI). J.Am.Chem.Soc.,1972,94(1):295-296.
    
    [46] Kamata K, Yonehara K, Sumida Y et al. Efficient epoxidation of olefins with ≥99% selectivity and use of hydrogen peroxide. Science,2003,300: 964-966.
    
    [47] Cavani F. Heteropolycompound-based catalysts: A blend of acid and oxidizing properties. Catal.Today, 1998,41(1-3):73-86.
    
    [48] Moffat J B. Metal-oxygen clusters: The surface and catalytic properties of heteropoly oxometalates. New York:Kluwer,2001.
    
    [49] Centi G, Cavani F, Trifiro F. Selective oxidation by heterogeneous catalysis. New York: Kluwer,2001.
    
    [50] Xi Z W, Zhou N, Sun Y et al. Reaction-controlled phase-transfer catalysis for propylene epoxidation to propylene oxide.Science,2001,292:1139-1141.
    [51]Sun Y,Xi Z W,Cao G Yet al.Epoxidation of olefins catalyzed by[p-C_5H_5NC_(16)H_(33)]_3[PW_4O_(16)]with molecular oxygen and a recyclable reductant 2-ethylanthrahydroquinone.J.Mol.Catal.2001,166(2):219-224.
    [52]Gao J B,Chen Y Y,Xi Z W et al.A spectroscopic study on the reaction-controlled phase transfer catalyst in the epoxidation of cyclohexene.J.Mol.Catal.2004,210(1-2):197-204.
    [53]李明强,蹇锡高,韩铁民等.磷钼杂多蓝作为反应控制相转移催化剂.化学学报,2004,62(6):540-541.
    [54]李明强,蹇锡高,韩铁民等.反应控制相转移催化剂K_3PV_4O_(24)催化苯合成苯酚.催化学报,2004,25(9):681-682.
    [55]罗茜,张进,胡常伟.负载型杂多酸催化剂的研究进展.西昌学院学报自然科学版,2005,19(1):101-104.
    [56]刘娜,杨澎,王海彦.固体杂多酸的制备及应用.抚顺石油学院学报,2000,20(3):7-12.
    [57]Pizzio L R,Caceres C V,Blanco M N.Acid catalysts prepared by impregnation of tungstophosphoric acid solutions on different supports.Appl.Catal.A,1998,167(2):283-294.
    [58]Vazquez P G,Blanco M N,Caceres C V.Catalysts based on supported 12&dash:molybdophosphoric acid.Catal.Lett.,1999,60(4):205-215.
    [59]Rao K M,Gobetto R,lannibello A et al.Solid state NMR and IR studies of phosphomolybdenum and phosphotungsten heteropoly acids supported on SiO_2,γ-Al_2O_3,and SiO_2-Al_2O_3.J.Catal.,1989,119(2):512-516.
    [60]Kasztelan S,Payen E,Moffat J B.The existence and stability of the silica-supported 12-molybdopho sphoric acid keggin unit as shown by Raman,XPS,and ~(31)P NMR spectroscopic studies.J.Catal.,1990,125(1):45-53.
    [61]Bruckman K,Che M,Haber J et al.On the physicochemical and catalytic properties of H_5PV_2Mo_(10)O_(40)supported on silica.Catal.Lett.,1994,25(3-4):225-240.
    [62]Mastikhin V M,Kulikov S M,Nosov A V et al.~1H and ~(31)P MAS NMR studies of solid heteropolyacids and H_3PW_(12)O_(40)supported on SiO_2.J.Mol.Catal.,1990,60(1):65-70.
    [63]温朗友,沈师孔,闵恩泽.二氧化硅负载磷钨杂多酸催化剂的表征及催化性质.催化学报,2000,21(6):524-528.
    [64]Bigi F,Corradini A,Quarantelli C et al.Silica-bound decatungstates as heterogeneous catalysts for H_2O_2 activation in selective sulfide oxidation.J.Catal.,2007,250(2):222-230.
    [65]Villabrille P,Romanelli G,Va'zquez P.Supported heteropolycompounds as ecofriendly catalysts for 2,6-dimethylphenol oxidation to 2,6-dimethyl-1,4-benzoquinone.Appl.Catal.A.,2008,334(1-2):374-380.
    [66]汪颖军,李长海,谷春旭等.杂多酸及其负载型催化剂的研究进展.工业催化,2007,15(10):1-4.
    [67]Kozhevnikov I V,Matveev K I.Homogeneous catalysts based on heteropolyacids.Appl.Catal.,1983,5(2):135-150.
    [68]Kozhevnikov I V,Sinnema A,Jansen R et al.New acid catalysts comprising heteropolyacids on a mesoporous molecular sieve MCM-41.Catal.Lett.,1995,30:241-252.
    [69]Tadani A,M Abedini,Nemati A et al.Immobilization of Keggin and Preyssler tungsten heteropolyacids on various functionalized silica.J.Colloid Interf.Sci.,2006,303(1):32-38.
    [70]Zhu P C,Wang Der-Haw,Mani N.An efficient synthesis of substituted benzene-1,2-dicarboxal dehydes.Sci.China,2007,2:249-252.
    [71]杨水金,童文龙.二氧化钛负载磷钨钼杂多酸合成丁酮.精细石油化工展,2006,8(8):21-23.
    [72]吕宝兰,丁志兵,杨水金.二氧化钛负载磷钨杂多酸合成苯甲醛.精细化工,2006,4(25):74-77.
    [73]Izumi Y,Urabe K.Catalysts of heteropolyacids entrapped in activated carbon.Chem.Lett.,1981,5:663-666.
    [74]楚文玲,杨向光,叶兴凯等.活性炭固载杂多酸气相催化合成甲基叔丁基醚和乙基叔丁基醚.石油化工,1996,25(1):462-465.
    [75]Liu-Cai F X,Sahut B,Faydi E et al.Study of the acidty of carbon supported and unsupported heteropolyacid catalysts by ammonia sorption microcal orimetry.Appl Catal A,1999,185(1):75-83.
    [76]王守国,王元鸿,谢忠魏等.氧化铝负载杂多酸催化甲醇脱水制备二甲醚.现代化工,2000,20(11):39-41.
    [77]Cavani F,Trifio F,Vaccari A.Hydrotalcite-type anionic clays:preparation,properties and applications.Catal.Today,1991,11(2):173-301.
    [78]Kwon T,Pinnavaia T J.Synthesis and properties of anionic clays pillared by[XM_(12)O_(40)]~(n-)Keggin ions.J.Mol.Catal.,1992,74(1-3):23-33.
    [79]McNamara C A,Dixon M J,Bradley M.Recoverable catalysts and reagents using recyclable polystyrene-based supports,Chem.Rev.,2002,102:3275-3300.
    [80]Leznoff C C.Use of insoluble polymer supports in organic chemical synthesis.Chem.Soc.Rev.,1974,3(1):65-85.
    [81]Fraile J M,Mayoral J A,Royo A Jet al.Supported chiral amino alcohols and diols functionalized with aluminium and titanium as catalysts of Diels-Alder reaction.Tetrahedron,1996,52(29):9853-9862.
    [82]Trost B M,Warner R W.Macrocyclization via an isomerization reaction at high concentrations promoted by palladium templates.J.Am.Chem.Soc.,1982,104(22):6112-6114.
    [83]Trost B M,Keinan E.Steric steering with supported palladium catalysts.J.Am.Chem.Soc.,1978,100(24):7779-7781.
    [84]Yu H B,Zheng X F,Lin Z Met al.Asymmetric epoxidation of α,β-unsaturated ketones catalyzed by chiral polybinaphthyl zinc complexes:greatly enhanced enantioselectivity by a cooperation of the catalytic sites in a polymer chain.J.Org.Chem.,1999,64(22):8149-8155.
    [85]Gravert D J,Janda K D.Organic synthesis on soluble polymer supports:liquid-phase methodologies.Chem.Rev.,1997,97(2):489-509.
    [86]Nguyen P,Goez-Elipe P,Manners I.Organometallic polymers with transition metals in the main chain.Chem.Rev.,1999,99(6):1515-1548.
    [87]Benaglia M,Puglisi A,Cozzi F.Polymer-supported organic catalysts.Chem.Rev.,2003,103(9):3401-3430.
    [88]Leadbeater N E,Marco M.Preparation of polymer-supported ligands and metal complexes for use in catalysis.Chem.Rev.,2002,102(10):3217-3274.
    [89]Bergbreiter D E.Using soluble polymers to recover catalysts and ligands.Chem.Rev.,2002,102(10):3345-3384.
    [90]Pozniczek J,Kulszewicz-Bajer I,Zagorska M.H_3PMo_(12)O_(40)-doped polyacetylene as a catalyst for ethyl alcohol conversion.J.Catal.,132(2):311-318.
    [91]Song I K,Lee J K,Lee W Y.Preparation and catalytic activity of H_3PMo_(12)O_(40)-blended polymer film for ethanol conversion reaction.Appl.Catal.A.,119(1):107-119.
    [92]Hasik M,Turek W,Stochmal E et al.Conjugated polymer-supported catalysts-polyaniline protonated with 12-tungstophosphoric acid.J.Catal.,1994,147(2):544-551.
    [93]Lee J K,Song I K,Lee W Y et al.Modification of 12-molybdophosphoric acid catalyst by blending with polysulfone and its catalytic activity for 2-propanol conversion reaction.J.Mol.Catal.A,1996,104(3):311-318.
    [94]Choi J S,Song I K,Lee W Y.Design of H_3PW_(12)O_(40)-PPO(polyphenylene oxide)composite catalytic membrane reactor and its performance in the vapor-phase MTBE(methyl tert-butyl ether)decomposition.J.Membr.Sci.,2002,198(2):163-172.
    [95]Lim S S,Park G I,Choi J S et al.Heterogeneous liquid-phase lactonization of 1,4-butanediol using H_(3+x)PMo_(12-x)V_xO_(40)(x=0-3)catalysts immobilized on polyaniline.Catal.Today,2002,74(3-4):299-307.
    [96]Fontananova E,Donato L,Drioli E et al.Heterogenization of polyoxometalates on the surface of plasma-modified polymeric membranes.Chem.Mater.,2006,18(6):1561-1568.
    [1]Moffat J B.Implicit and explicit microporosity in heteropoly oxometalates.J.Mol.Catal.,1989,52(1):169-191.
    [2]Okuhara T,Nishimura T,Watanabe H et al.Novel catalysis of cesium salt of heteropoly acid and its characterization by solid-state NMR.Stud.Surf.Sci.Catal.,1994,90:419-428.
    [3]Okuhara T,Nishimura T,Misono M et al.Microporous heteropoly compound as a shape selective catalyst:Cs_(2.2)H_(0.8)PW_(12)O_(40).Chem.Lett.,1995,24(2):155-156.
    [4]Venturello C,D'Aloisio R.Quarternaryammoniumtetrakis(diperoxotungsto)phosphates(3-)as a new class of catalysts for efficient alkene epoxidation with hydrogen peroxide.J.Org.Chem.,1988,53(7):1553-1557.
    [5]Ballistreri F P,Bazzo A,Tomaselli G Aet al.Reactivity of peroxopolyoxo complexes.Oxidation of thioethers,alkenes,and sulfoxides by tetrahexylammonium tetrakis(diperoxomolybdo)phosphate.J.Org.Chem.,1992,57(26):7074-7077.
    [6]李玉霞,郭伊荇,赵晓亮.ICP-AES测定杂多化合物中杂原子与配原子计量比.东北师大学报自然科学版,1999,(2):61-65.
    [7]Gao F,Yamase T,Suzuki H.H_2O_2-based epoxidation of bridged cyclic alkenes with[P{Ti(O_2)}_2W_(10)O_(38)]~(7-)in monophasic systems:active site and kinetics.J.Mol.Catal.A,2002,180(1):97-108.
    [8]Kurusu Y.Thermal behavior of a new type molybdenum oxide obtained by oxideation of molybdenum powder or molydenum trioxide with hydrogen peroxide.Bull.Chem.Soc.Jpn.,1981,54(1):293-294.
    [9]Stevenson D L Dahl L F.Organometallic sulfur complexes.Ⅷ.The molecular structure of a doubly sulfur-bridged dimeric complex of molybdenum(V),[C_5H_5MoO]_2S_2,containing a molybdenum-molybdenum interaction.J.Am.Chem.Soc.,1967.89(15):3721-3726.
    [10]Sharpless N E,Munday J S.Infrared spectra of some heteropoly acid salts.Anal.Chem.,1957,29(11):1619-1622.
    [11]Wing R M,Callahan R P.Characterization of metal-oxygen bridge systems.Inorg.Chem.,1969,8(4):871-874.
    [12]Massatt R,Contant R,Fruchart J Met al.Phosphorus-31 NMR studies on molybdic and tungstic heteropolyanions.Correlation between structure and chemical shift.lnorg.Chem.,1977,16(11):2916-2921.
    [13]Venturello C,Ricci M.Oxidative cleavage of 1,2-diols to carboxylic acids by hydrogen peroxide.J.Org.Chem.,1986,51(9):1599-1602.
    [14]Ballistreri F P,Bazzo A,Tomaselli G A et al.Reactivity of peroxopolyoxo complexes.Oxidation of thioethers,alkenes,and sulfoxides by tetrahexylammonium tetrakis(diperoxo molybdo)phosphate.J.Org.Chem.,1992,57(26):7074-7077.
    [15]Dengel A C,Griffith W P,Parkin B C.Studies on polyoxo- and polyperoxo-metalates.1.Tetrameric heteropolyperoxotungstates and heteropolyperoxomolybdates.J.Chem.Soc.Dalton Trans.,1993,18:2683-2688.
    [16]高金波.磷钨杂多化合物及其烯烃催化环氧化反应的光谱研究:(硕士学位论文).哈尔滨:哈尔滨工程大学,2003.
    [17]Ishii Y,Yamawaki Y,Ura T et al.Hydrogen peroxide oxidation catalyzed by heteropoly acids combined with cetylpyridinium chloride:Epoxidation of olefins and allylic alcohols,ketonization of alcohols and diols,and oxidative cleavage of 1,2-diols and olefins.J.Org.Chem.,1988,53(15):3587-3593.
    [18]李坤兰.反应控制相转移催化在选择性氧化中的研究与应用:博士学位论文.大连:中科院大学化学物理研究所,2001.
    [19]Yang X G,Gao S,Xi Z W.Reaction-controlled phase transfer catalysis for styrene epoxidation to styrene oxide with aqueous hydrogen peroxide.Org.Process Res.Dev.2005,9(3):294-296.
    [1]Liotta L F,Venezia A M,Deganello G et al.Liquid phase selective oxidation of benzyl alcohol over Pd-Ag catalysts supported on pumice.Catal.Today,2001,66(24):271-276.
    [2]Choudhary V R,Dumbre D K,Narkhede V Set al.Solvent-free selective oxidation of benzyl alcohol and benzaldehyde by tert-butyl hydroperoxide using MnO_4~-exchanged Mg-Al-hydrota lcite catalysts.Catal.Lett.,2003,86(4):229-233.
    [3]Xavier K O,Chacko J,Yusuff K K M.Zeolite-encapsulated Co(Ⅱ),Ni(Ⅱ)and Cu(Ⅱ)complexes as catalysts for partial oxidation of benzyl alcohol and ethylbenzene.Appl.Catal.A,2004,258(2):251-259.
    [4]Lingaiah N,Mohan Reddy K,Seshu Babu Net al.Aerobic selective oxidation of benzyl alcohol over vanadium substituted ammonium salt of 12-molybdophosphoric acid.Catal.Commun.,2006,7(4):245-250.
    [5]Venturello C,Gambaro M.Selective oxidation of alcohols and aldehydes with hydrogen peroxide catalyzed by methyltdoctylammonium tetrakis(oxodiperoxotungsto)phosphate(3-)under two-phase conditions.J.Org.Chem.,1991,56(20):5924-5931.
    [6]Dengel A C,Griffith W P,Parkin B C.Studies on polyoxo- and polyperoxo-metalates.1.Tetrameric heteropolyperoxotungstates and heteropolyperoxomolybdates.J.Chem.Soc.Dalton Trans.,1993,18:2683-2688.
    [7]Xi Z W,Zhou N,Sun Yet al.Reaction-controlled phase-transfer catalysis for propylene epoxidation to propylene oxide.Science,2001,292:1139-1141.
    [8]Yang X G,Gao S,Xi Z W.Reaction-controlled phase transfer catalysis for styrene epoxidation to styrene oxide with aqueous hydrogen peroxide.Org.Process Res.Dev.2005,9(3):294-296.
    [9]Li M Q,Jian X G,Wang G Met al.A new reaction-controlled phase-transfer catalyst system.Chin.Chem.Lett.,2004,15(3):350-352.
    [10]李明强,蹇锡高,韩铁民等.磷钼杂多蓝作为反应控制相转移催化剂.化学学报,2004,62(6):540-541.
    [11]Massart R,Contant R,Fruchart J M et al.Phosphorus-31 NMR studies on molybdic and tungstic heteropolyanions.Correlation between structure and chemical shift.Inorg.Chem.,1977,16(11):2916-2921.
    [12]Haraguchi N,Okaue Y,Isobe T et al.Stabilization of tetravalent cerium upon coordination of unsaturated heteropolytungstate anions,Inorg.Chem.,1994,33(6):1015-1020.
    [13]Richard G F,Michael W D,Peter J D.Trivacant heteropolytungstate derivatives.3.Rational syntheses,characterization,two-dimensional tungsten~(183)NMR,and properties of tungstometallophosphates P_2W_(18)M_4(H_2O)_2O_(68)~(10-)and P_4W_(30)M_4(H_2O)_2O_(112)~(16-)(M=cobalt,copper,zinc).Inorg.Chem.,1987,26(23):3886-3896.
    [14]Lyon D K,Miller W K,Novet T et al.Highly oxidation resistant inorganic-porphyrin analog polyoxometalate oxidation catalysts.1.The synthesis and characterization of aqueous-soluble potassium salts of.alpha.~(2-)P_2W_(17)O_(61)(Mn~+.cntdot.OH_2)(n-10)and organic solvent soluble tetra-n-butylammonium salts of.alpha.~(2-)P_2W_(17)O_(61)(Mn~+.cntdot.Br)(n-11)(M=Mn~(3+),Fe~(3+),Co~(2+),Ni~(2+),Cu~(2+)).J.Am.Chem.Soc.,1991,113(19):7209-7221.
    [15]丁勇,高强,李贵贤等.Keggin类杂多化合物催化环氧化环戊烯的谱学研究.化学学报,2005,63(13):1167-1174.
    [16]Canny J,Teze A,Thouvenot R et al.Disubstituted tungstosilicates.l.Synthesis,stability,and structure of the lacunary precursor polyanion of a tungstosilicate,gamma.~-SiW_(10)O~(36)~(8-).Inorg.Chem.,1986,25(13):2114-2119.
    [17]Kozik M,Baker L C W.NMR determination of rates of electron pair transfer through bridges to or between heteropoly complex centers.Enthalpy and entropy contributions to activation.Evaluation of equilibrium constant for the disproportionation reaction.J.Am.Chem.Soc.,1987,109(10):3159-3160.
    [18]Sales L,Aubry C,Thouvenot R et al.~(31)P and ~(183)W NMR spectroscopic evidence for novel peroxo species in the "H_3[PW_(12)O_(40)].cntdot.yH_2O/H_2O_2" system,synthesis and X-ray structure of tetrabutylammonium(.mu.-Hydrogen phosphato)bis(.mu.-peroxo)bis(oxoperoxotungstate)(2-):a catalyst of olefin epoxidation in a biphase medium.Inorg.Chem.,1994,33(5):871-878.
    [19]Duncan D C,Chambers R C,Hecht E.Mechanism and dynamics in the H_3[PW_(12)O_(40)]-catalyzed selective epoxidation of terminal olefins by H_2O_2:formation,reactivity,and stability of {PO_4[WO(O_2)_2]_4}~(3-).J.Am.Chem.Soc.,1995,117(2):681-691.
    [20]Salles L,Piquemal J Y,Thouvenot R et al.Catalytic epoxidation by heteropolyoxoperoxo complexes:from novel precursors or catalysts to a mechanistic approach.J.Mol.Catal.,1997,117(1-3):375-387.
    [21]王敬平,李明雪,牛景扬.三缺位杂多阴离子a-A-PW_9O_(34)~(9-)的苯基硅衍生物的合成和晶体结构.高等学校化学学报,2002,23(9):1656-1659.
    [22]Li J,Gao S,Li Met al.Influence of composition of heteropolyphosphatotungstate catalyst on epoxidation of propylene.J.Mol.Catal.A,2004,218(2):247-252.
    [1]Sato K,Aoki M,Takagi J et al.Organic solvent- and halide-free oxidation of alcohols with aqueous hydrogen peroxide.J.Am.Chem.Soc.,1997,119(50):12386-12387.
    [2]Bortolini O,Campestrini S,Furia F et al.Metal catalysis in oxidation by peroxides.27.Anionic molybdenum-picolinate N-oxido-peroxo complex:an effective oxidant of primary and secondary alcohols in nonpolar solvents.J.Org.Chem.,1987,52(24):5467-5469.
    [3]Barak G,Dakka J,Sasson Y.Selective oxidation of alcohols by a H_2O_2-RuCl_3 system under phase-transfer conditions.J.Org.Chem.,1988,53(15):3553-3555.
    [4]Venturello C,Gambaro M.Selective oxidation of alcohols and aldehydes with hydrogen peroxide catalyzed by methyltrioctylammonium tetrakis(oxodiperoxotungsto)phosphate(3-)under two-phase conditions.J.Org.Chem.,1991,56(20):5924-5931.
    [5]Dengel A C,Griffith W P,Parkin B C.Studies on polyoxo- and polyperoxo-metalates.1.Tetrameric heteropolyperoxotungstates and heteropolyperoxomolybdates.J.Chem.Soc.Dalton Trans.,1993,18:2683-2688.
    [6]Bailey A J,Griffith W P,Parkin B C.Studies on polyoxo- and polyperoxo-metalates.Part 2.heteropolyperoxo- and isopolyperoxo-tungstates and -molybdates as catalysts for the oxidation of tertiary amines,alkenes and alcohols.J.Chem.Soc.Dalton Trans.1995,11:1833-1837.
    [7]Griffith W P,Parkin B C,White A J et al.The crystal structures of[NMe_4]_2[(PhPO_3){MoO(O_2)_2}2 {MoO(O_2)_2(H_2O)}]and[NBun_4]_2[W_4O_6(O_2)_6(OH)_2(H_2O)_2]and their use as catalytic oxidants.J.Chem.Soc.Dalton Trans.,1995,19:3131-3138.
    [8]Gresley N M,Griffith W P,Parkin B C et al.Studies on polyoxo- and polyperoxo-metalates.Part 4.The crystal structures of[NMe_4][(Me_2AsO_2){MoO(O_2)_2}_2],[NMe_4][(Ph_2PO_2){MoO(O_2)_2}_2],[NBun_4][(Ph_2PO_2){WO(O_2)_2}_2]and[NH_4][(Ph_2PO_2){MoO(O_2)_2(H_2O)}]and their use as catalytic oxidants.J.Chem.Soc.Dalton Trans.,1996,10:2039-2045.
    [9]Yadav G D,Mistty C K.Oxidation of benzyl alcohol under a synergism of phase transfer catalysis and heteropolyacids.J.Mol.Catal.A,2001,172(1-2):135-149.
    [10]Chaudhari M P,Sawant S B.Kinetics of heterogeneous oxidation of benzyl alcohol with hydrogen peroxide.Chem.Eng.J.,2005,106(2):111-118.
    [11]Yadav G D,Pujari A A.Epoxidation of styrene to styrene oxide:synergism of heteropoly acid and phase-transfer catalyst under Ishii-Venturello mechanism.Org.Process Res.Dev.,2000,4(2):88-93.
    [1]张龙.炭化树脂负载杂多酸催化异丁烷与丁烯烷基化反应研究:(博士学位论文).天津:天津大学,2003.
    [2]McNamara C A,Dixon M J,Bradley M.Recoverable catalysts and reagents using recyclable polystyrene-based supports.Chem.Rev.2002,102(10):3275-3300.
    [3]Nomiya K,Murasaki H,Miwa M.Catalysis by heteropolyacids—Ⅷ.Immobilization of keggin-type heteropolyacids on poly(4-vinylpyridine).Polyhedron,1986,5(4):1031-1033.
    [4]Hasik M,Turek W,Stochmal E et al.Conjugated polymer-supported catalysts - polyaniline protonated with 12-tungstophosphoric acid.J.Catal.,1994,147(2):544-551.
    [5]Song I K,Shin S K,Lee W Y.Catalytic activity of H_3PMo_(12)O_(40)-blended polysulfone film in the oxidation of ethanol to acetaldehyde.J.Catal.,1993,144(1):348-351.
    [6]Lee J K,Song I K,Lee W Y.Design of novel catalyst imbedding heteropoly acids in polymer films:Catalytic activity for ethanol conversion.J.Mol.catal.A.,1997,120(1-3):207-216.
    [7]Lee J K,Song I K,Lee W Y et al.Modification of 12-molybdophosphoric acid catalyst by blending with polysulfone and its catalytic activity for 2-propanol conversion reaction.J.Mol.Catal.A.,1996,104(3):311-318.
    [8]Yah C,Zhang S H,Yang D Let al.Preparation and characterization of chloromethylated/quaternized poly(phthalazinone ether sulfone ketone)for positively charged nanoflltration membranes.J.Appl.Polym.Sci.,2008,107:1809-1816.
    [9]Richard G F,Michael W D,Peter J D.Tdvacant heteropolytungstate derivatives.3.Rational syntheses,characterization,two-dimensional tungsten-183 NMR,and properties of tungstometallo phosphates P_2W_(18)M_4(H_2O)_2O_(68)~(10-)and P_4W_(30)M_4(H_2O)_2O_(112)~(16-)(M=cobalt,copper,zinc).Inorg.Chem.,1987,26(23):3886-3896.
    [10]Maurya M R,Kumar M,Sikarwar S.Polymer-anchored oxoperoxo complexes of vanadium(Ⅴ),molybdenum(Ⅵ)and tungsten(Ⅵ)as catalyst for the oxidation of phenol and styrene using hydrogen peroxide as oxidant.React.Funct.Polym.2006,66(8):808-818.
    [11]Kim H,Jung J C,Yeom S H et al.Preparation of H_3PMo_(12)O_(40)catalyst immobilized on polystyrene support and its application to the methacrolein oxidation.J.Mol.Catal.A,2006,248:21-25.
    [12]Bigi F,Corradini A,Quarantelli C et al.Silica-bound decatungstates as heterogeneous catalysts for H_2O_2 activation in selective sulfide oxidation.J.Catal.,2007,250(2):222-230.
    [13]Lempers H E B,Sheldon R A.The stability of chromium in CrAPO-5,CrAPO-11,and CrS-1 during liquid phase oxidations.J.Catal.,1998,175(1):62-69.
    [1]Hart H,Janda K D.Mechanism-based inhibition of human steroid 5α-reductase by finasteride:enzyme-catalyzed formation of NADP-dihydrofinasteride,a potent bisubstrate analog inhibitor.J.Am.Chem.Soc.,1996,118(10):2359-2365.
    [2]Bolm C,Gerlach A.Asymmetric dihydroxylation with MeO-polyethyleneglycol-bound ligands.Angew.Chem.Int.Ed.Engl.1997,36(7):741-743.
    [3]Bergbreiter D E.Using soluble polymers to recover catalysts and ligands.Chem.Rev.,2002,102(10):3345-3384.
    [4]刘海涛.聚苯乙烯负载邻菲咯啉/CuCl_2配合物的合成及其对羰化反应催化性能研究:(硕士学位论文).武汉:华中科技大学,2005.
    [5]Sanchez C,Livage J,Launay J P et al.Electron delocalization in mixed-valence molybdenum polyanions.J.Am.Chem.Soc.,1982,104(11):3194-3202.
    [6]Xi Z W,Zhou N,Sun Yet al.Reaction-controlled phase-transfer catalysis for propylene epoxidation to propylene oxide.Science,2001,292:1139-1141.
    [7]任群翔,朱永春.镧系元素双1:11系列杂多蓝的红外光谱和紫外光谱研究.光谱实验室,1997,14(5):13-16.
    [8]Kim H,Jung J C,Yeom S H et al.Preparation of H_3PMo_(12)O_(40)catalyst immobil/zed on polystyrene support and its application to the methacrolein oxidation.J.Mol.Catal.A,2006,248(1-2):21-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700