铜催化炔丙胺和喹唑啉酮衍生物的合成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
炔丙胺和喹唑啉酮衍生物是两类非常重要的有机及药物中间体。本论文以绿色合成为指导思想,在PEG-400中开展铜催化炔丙胺衍生物和喹唑啉酮衍生物的合成方法研究:(1)在PEG-400中CuI催化醛、仲胺和炔烃的三组分偶联反应实现炔丙胺衍生物的合成;(2)在PEG-400中纳米CuO催化2-卤苯甲酸和脒类化合物的环合反应,建立喹唑啉酮衍生物的绿色合成新方法。
     以上所研究的方法具有原料易得、操作简便、反应条件温和以及产率高等优点。更为重要的是所用的溶剂和催化剂均可回收再利用,从源头上减少了对环境的污染,符合绿色化学发展方向。本论文的研究工作为炔丙胺和喹唑啉酮衍生物的合成提供了新方法。
Propargylamine and quinazolinone derivatives are very important intermediates in organic synthesis and pharmaceutical synthesis. With the guideline of green synthesis, this thesis investigated copper-catalyzed synthesis of propargylamine and quinazolinone derivatives in PEG-400. The thesis inculding two reactions were as followed: (1) CuI-catalyzed one-pot synthesis of propargylamines from three-component A3 coupling reaction of aldehyde, amine and alkyne in PEG-400; (2) A green, rapid, and efficient method was developed for synthesizing quinazolinone derivatives from substituted 2-halobenzoic acids and amidines via nano CuO-catalyzed cyclization in PEG-400.
     The important features of the methodology for quinoxalines and pyrazines are simple operation, mild reaction conditions and high yields. Moreover, reusable catalyst and solvent make the methods more economical and environmental friendly.
引文
[1] Haimov, A.; Neumann, R. Polyethylene glycol as a non-ionic liquid solvent for polyoxometalatecatalyzed aerobic oxidation [J]. Chem. Commun. 2002, 876-877.
    [2] Santaniello, e.; Ferraboschi, P. Efficient and selective oxidation of alcohols by ptassium dichromate solutions [J]. Synthesis 1980, 646-647.
    [3] Sataniello, E.; Ferraboschi, P.; Sozzani, P. Reduction of esters to alcohols by means of sodium borohydride in polyethylene glycols [J]. J. Org. Chem. 1981, 46, 4584-4585.
    [4] Chandrasekhar, S.; Narsihmulu, C.; Chandrashekar, G.; Shyamsunder, T. Pd/CaCO3 in liquid poly(ethylene glycol) (PEG): an easy and efficient recycle system for partial reduction of alkynes to cis-olefinsunder a hydrogen atmosphere [J]. Tetrahedron Lett. 2004, 45, 2421-2423.
    [5] Cao, Y. Q.; Dal, Z.; Chen, B. H.; Liu, R. Sodium borohydride reduction of ketones, aldehydes and imines using PEG400 as catalyst without solvent [J]. J. Chem. Tech. Biotech. 2005.
    [6] Chandrasekhar, S., Shyamsunder, T., Chandrashekar, G., Narsihmulu, Ch. Hydrogenation and hydrogenolysis with Pd/C in poly(Ethylene Glycol) (PEG): a practical and pecyclable medium [J]. Synlett 2004, 3, 522-524.
    [7] Mao, J. C.; Guo, J.; Fang, F. B.; Ji, S. J. Highly efficient copper(0)-catalyzed suzukie miyaura cross-coupling reactions in reusable PEG-400 [J]. Tetrahedron 2008, 64, 3905-3911.
    [8] Vasudevan, V. N.; Rajender, S. V. Microwave-accelerated suzuki cross-coupling reaction in polyethylene glycol (PEG) [J]. Green Chem. 2001, 3, 146-148.
    [9] Zhou, W. J.; Wang, K. H.; Wang, J. X. Atom-efficient, palladium-catalyzed stille coupling reactions of tetraphenylstannane with aryl iodides or aryl bromides in PEG-400 [J]. Adv. Synth. Catal. 2009, 351, 1378-1382.
    [10] Coma, A.; García, H.; Leyva, A. Comparison between polyethylenglycol and imidazolium ionic liquids as solvents for developing a homogeneous and reusable palladium catalytic system for the Suzuki and Sonogashira coupling [J]. Tetrahedron 2005, 61, 9848-9854.
    [11] She, J.; Jiang, Z.; Wang, Y. G. Simple, efficient and recyclable catalytic system for performing copper-catalyzed C–S coupling of thiols with aryl iodides in PEG and PEG–H2O [J]. Tetrahedron Lett. 2009, 50, 593-596.
    [12] Han, W.; Liu, C.; Jin, Z. L. In situ generation of palladium nanoparticles: A simple and highly active protocol for oxygen-promoted ligand-free suzuki coupling reaction of aryl chlorides [J]. Org. Lett. 2007, 9, 4005-4007.
    [13] Li, J. H.; Hu, X. C.; Liang, Y.; Xie, Y. X. PEG-400 promoted Pd(OAc)2/DABCO-catalyzed cross-coupling reactions in aqueous media [J].Tetrahedron 2006, 62, 31-38.
    [14] Andrews, P. C.; Peatt, A. C.; Raston, C. L. Indium metal mediated synthesis of homoallylic amines in poly(propylene)glycol (PPG) [J]. Green Chem. 2004, 6, 119.
    [15] Kumar, D.; Patel, G.; Mishra, B. G.; Varma, R. S. Eco-friendly polyethylene glycol promoted michael addition reactions of a,b-unsaturated carbonyls compound [J]. Tetrahedron Lett. 2008, 49, 6974-6976.
    [16] Kumar, R.; Chaudhary, P.; Nimesh, S.; Chandra, C. Polyethylene glycol as a non-ionic liquid solvent for michael addition reaction of amines to conjugated alkenes [J]. Green Chem. 2006, 8, 356-358.
    [17] Wang, X.; Quan, Z. J.; Zhang, Z. Michael additions of dihydropyrimidines and 2-amino-1,3,4-thiadiazoles to a,b-ethylenic compounds: using polyethylene glycols as a green reaction media [J]. Tetrahedron 2007, 63, 8227-8233.
    [18] Kamal, A.; Reddy, D. R.; Rajendar. A simple and green procedure for the conjugate addition of thiols to conjugated alkenes employing polyethylene glycol (PEG) as an efficient recyclable medium [J]. Tetrahedron Lett. 2005, 46, 7951-7953.
    [19] Li, J. H.; Zhu, Q. M.; Liang, Y.; Yang, D. Efficient and reusable PdCl2(MeCN)2/CuCl2/PEG-400 system for cyclization of alkenyl a-ketoesters and amides [J]. J. Org. Chem. 2005, 71, 5897-5905.
    [20] Chandrasekhar, S.; Narsihmulu, C.; Saritha, B.; Sultana, S. S. Poly(ethyleneglycol) (PEG): a rapid and recyclable reaction medium for the DABCO-catalyzed baylis–hillman reaction [J]. Tetrahedron Lett. 2004, 45, 5865-5867.
    [21] Cho, C.S.; Ren, W. X.; Shim, S. C. Ketones as a new synthon for quinoxaline synthesis [J]. Tetrahedron Lett. 2007, 48, 4665-4668.
    [22] Mukhopadhyay, C.; Tapaswi, K. PEG-mediated catalyst-free expeditious synthesis of 2-substituted benzimidazoles and bis-benzimidazoles under solvent-less conditions [J]. Tetrahedron Lett. 2008, 49, 6237-6240
    [23] Jorapur, Y. R.; Rajagopal, G.; Saikia, P. J.; Pal, R. R. PEG as an ecient and recyclable reaction medium for the synthesis of dibenz[b,f]-1,4-oxazepine [J]. Tetrahedron Lett. 2008, 49, 1495-1497.
    [24] Jain, S. L.; Singhal, S.; Sain, B. PEG-assisted solvent and catalyst free synthesis of 3,4-dihydropyrimidinones under mild reaction conditions [J]. Green Chem. 2007, 9, 740-741.
    [25] Wang, X. C.; Gong, H.; Quan, Z. J.; Ye, H. PEG-400 as an efficient reaction medium for the synthesis of 2,4,5-triaryl-1H-imidazoles and 1,2,4,5-tetraaryl-1H-imidazoles [J]. Chin. Chem. Lett. 2009, 20, 44-47.
    [26] (a)Chandrasekhar S.; Narsihmulu C.; Reddy N. R.; Sultana S. S. Asymmetric aldol reactions in poly(ethylene glycol) catalyzed by l-proline [J]. Tetrahedron Lett. 2004, 45, 4581-4582. (b) Chandrasekhar S.; Reddy N. R.; Sultana S. S.; Narsihmulu C.; Reddy K. V. l-Proline catalysed asymmetric aldol reactions inPEG-400 as recyclable medium and transfer aldol reactions [J]. Tetrahedron 2006, 62, 338-345.
    [27] Chandrasekhar, S.; Sultana, S. S.; Reddy, N. R. Poly(ethylene glycol) (PEG) as a reusable solvent medium for organic synthesis. application in the heck reaction [J]. Org. Lett. 2002, 4, 4399-4401.
    [28] Cao, Y. Q.; Dal, Z.; Zhang, R.; Chen, B. H. A practical knoevenagel condens ati on catalyzed by PEG-400 and anhydrous K2CO3 without solvent [J]. Synth. Commun. 2004, 34, 2965.
    [29] Das, B.; Thirupathi, M. P.; Laxminarayana, K. An efficient catalyst-free regio- and stereoselective ring-opening of epoxides with phenoxides using polyethylene glycol as the reaction medium [J]. Tetrahedron Lett. 2007, 48, 4263-4265.
    [30] Kamal, A.; Reddy, D. R.; Rajendar. Polyethylene glycol (PEG) as an efficient recyclable medium for the synthesis of b-amino sulfides [J]. Tetrahedron Lett. 2006, 47, 2261-2264.
    [31] Du, Y. F.; Cao, Y. Q.; Dai, Z.; Chen, B. H. A Study on the heterogeneous reaction of trialkylsilyl chlorides with in organic salts and monocarboxylates catalyzed by PEG-400 [J]. J. Chem. Res. (S) 2004, 223.
    [32]杨旭哲,李超,马晶军,王春,张灵芝. PEG-400介质中固载硫酸氢钠催化氧杂蒽二酮类衍生物的合成[J].化学研究与应用2010, 22, 229-231.
    [33] Chandrasekhar, S.; Sultana, S. S.; Reddy, N. R. Osmium tetroxide in poly(ethylene glycol) (PEG): a recyclable reaction medium for rapid asymmetric dihydroxylation under Sharpless conditions [J]. Chem. Commun. 2003, 1716-1717.
    [34] Zhang, Z. H.; Wang, Y. Y.; Liu, J.; Li, Y. Indium tribromide in poly(ethylene glycol) (PEG): a novel and efficient recycle system for chemoselective deprotection of 1,1-diacetates [J]. Green Chem. 2004, 6, 563-565.
    [35] Samai, S.; Nandi, G. C.; Singh, M. S. An efficient and facile one-pot synthesis of propargylamines by three-component coupling of aldehydes, amines, and alkynes via C–H activation catalyzed by NiCl2 [J]. Tetrahedron Lett. 2010, 51, 5555-5558.
    [36] Murai T.; Mutoh, Y.; Ohta, Y.; Murakami, M. Synthesis of tertiary propargylamines by sequential reactions of in situ generated thioiminium salts with organolithium and-magnesium reagents [J]. J. Am. Chem. Soc. 2004, 126, 5968-5969.
    [37] Zhang, X.; Corma, A. Supported gold(III) catalysts for highly efficient three-component coupling reactions [J]. Angew. Chem. Int. Ed. 2008, 47, 4358-4361.
    [38] Bansal, K. V.; Kumar, A.; Mozumdar, S. The first Au-nanoparticles catalyzed green synthesis of propargylamines via a three-component coupling reaction of aldehyde, alkyne and amineMazaahir [J]. Green Chem. 2007, 9, 742-745.
    [39] Kantam, M. L.; Prakash, B. V.; Chinta, R. V. Sreedhar, B. Layered doublehydroxide-supported gold catalyst for three-component aldehyde–amine–alkyne coupling [J]. Synlett. 2005, 2329-2332.
    [40] Mohan Reddy, K.; Seshu Babu, N. I.; Sai Prasad, P. S.; Lingaiah, N. The silver salt of 12-tungstophosphoric acid: an efficient catalyst for the three-component coupling of an aldehyde, an amine and an alkyneI [J]. Tetrahedron Lett. 2006, 47, 7563-7566.
    [41] Lakshmi Kantam, M.; Balasubrahmanyam, V.; Shiva Kumar, K. B.; Venkanna, G. T. Efficient one-pot synthesis of propargylamines using zinc dust [J]. Tetrahedron Lett. 2007, 48, 7332-7334.
    [42] Ramu, E.; Varala, R.; Sreelatha, N.; Adapaa, S. R. Zn(OAc)2.2H2O: a versatile catalyst for the one-pot synthesis of propargylamines [J]. Tetrahedron Lett. 2007, 48, 7184-7190.
    [43] Namitharan, K.; Pitchumani, K.; Nickel-catalyzed solvent free three component coupling of aldehyde, alkyne and amine [J]. Eur. J. Org. Chem. 2010, 411–415.
    [44] Samai, S.; Nandi, G. C.; Singh, M. S. An efficient and facile one-pot synthesis of propargylamines by three-component coupling of aldehydes, amines, and alkynes via C–H activation catalyzed by NiCl2 [J]. Tetrahedron Lett. 2010, 51, 5555-5558.
    [45] Chen, W. W.; Bi, H. P.; Li, C. J. The First cobalt-catalyzed transformation of alkynyl C–H bond: aldehyde–alkyne–amine (A3) coupling [J]. Synlett. 2010, 475-479.
    [46] Choudary, B. M.; Sridhar, C.; Kantam, M. L.; Sreedhar, B. Hydroxyapatite supported copper catalyst for effective three-component coupling [J]. Tetrahedron Lett. 2004, 45, 7319-7321.
    [47] (a)冯若,李化茂.声化学及其应用[M].合肥:安徽科学技术出版社,1992,1-3. (b) Cain P. W.; Mccausland I. L.; Bates D. M., et al. Sonochemical Hydrogenation over metal catalysts [J]. Ultrason Sonochem., 1994, 1, 45-46. (c) Mason T.J., Peters D. Practical Sonochemistry. [M]. 2nd edition, London:Ellis Horwood. 1991. (d)覃兆海;陈馥衡.超声波在有机合成中的应用[J].化学进展,1998,10,63. (e)赵逸云;鲍慈光;声化学研究的新进展[J].化学通报, 1994,8,26-29. (f)张喜梅;丘泰球;李月花.声场对溶液结晶过程动力学影响的研究[J].化学通报,1997,1,44-46. (h) Asanoj O.T.; K wasaki N. Enhancement of transdermal absorption of drugs by pulsed output ultrasound [J]. drug Delivery Syst., 1998, 13, 185-189. (i)王贺石.超声波在铝箔焊接中的应用[J].华南理工大学学报,1996,3, 59-63. (j) Hoffmann M. R. Electrohydraulic discharge treatment of water and waste water, In: Vogelpohl A P F. Oxid Technol Water wastewater Treat [M]. Int. Conf., Verlag: Clausthal-Zellerfeld Ger. 1996, 17-23. (k) Autin F.; Van Nostrand W.; Clifford R. Some applications of smart materials in industry [M] . In: Inoue, K, Shen I S Y, US-JPN Workshop Smart Mater Struct Proc. 1995, 143-152. (l) Luche J. L. Synthetic organic sonochemistry [M] . KluwerAcademic/Plenum Publishers, 1998, 3; (m)张守民;李鸿;郑修成等.超声波在有机反应中的应用[J] .有机化学,2002, 22, 603-609; (o)冯若,李化茂.声化学及其应用[M] .合肥:安徽科学技术出版社, 1992,1-3. (p)张守民,李鸿,郑修成等.超声在有机反应中的应用[J] .有机化学, 2002, 22(9), 603. (r)赵之平.超声催化过程[J].云南工业大学学报,1998,14(1),57. (s) 栗兆海;陈馥衡;谢求元.超声波在有机合成中的应用[J].化学进展,1998, 10, 63-73.
    [48] Sreedhar, B.; Surendra Reddy, B.; Ravindra, A. ultrasound-assisted rapid and efficient synthesis of propargylamines [J]. Tetrahedron Lett. 2005, 46, 7019-7022.
    [49] Ren, G.; Zhang, J. L.; Duan, Z.; Cui, M. G.; Wu, Y. J. A simple and economic synthesis of propargylamines by CuI-catalyzed three-component coupling reaction with succinic acid as additive [J]. Aust. J. Chem. 2009, 62, 75–81.
    [50] (a) Sundermeyer, W. F. Used salts and their use as reaction media [J]. Angew. Chem. Int. Ed. Engl. 1965, 4, 222-238. (b) Parshall, G. W. Catalysis in molten salt media [J]. J. Am. Chem. Soc. 1972, 94, 8716-8719. (c) Mathews, C. J.; Smith, P. J.; Welton, T. Palladium catalysed suzuki cross-coupling reactions in ambient temperature ionic liquids [J]. Chem.Commun. 2000, 1249-1250; (d) Xu, L.; Chen, W.; Xiao, J. Heck reaction in ionic liquids and the in situ identification of N-Heterocyclic carbene complexes of palladium [J]. Organometallics. 2000, 19, 1123-1127; (e) Peng, J.; Deng, Y. Catalytic beckmann rearrangement of cyclohexanone oxime in ionic liquids [J]. Tetrahedron Lett. 2001, 42, 403-406. (f) Knifton, J. F. Ethylene glycol from synthesis gas via ruthenium melt catalysis [J]. J. Am. Chem. Soc. 1981, 103, 3959-3961. (h) Chauvin, Y.; Gilbert, B.; Guibard, I. Catalytic dimerization of alkenes by nickel complexes in organochloroaluminate molten salts [J]. J. Chem. Soc. Chem.Commun. 1990, 1715-1716. (i) Wilkes, J. S.; Zaworotko M. J. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids [J]. J. Chem. Soc. Chem. Commun. 1992, 965-967. (j) Welton, T. Room-temperature ionic liquids. solvents for synthesis and catalysis [J]. Chem. Rev. 1999, 99, 2071-2084; (k) Wasserscheid, P.; Keim, W. Ionic liquids-new "solutions" for transition metal catalysis [J]. Angew. Chem. Int. Ed. 2000, 39, 3772-3789; (l) Zhao, D. B.; Wu, M.; Kou, Y. et al. Ionic liquids: applications in catalysis [J]. Catal. Today 2002, 74, 157-189; (m) Dupont, J.; de Souza, R. F.; Suarez, P. A. Z. Ionic liquid (Molten Salt) phase organometallic catalysis [J]. Chem. Rev. 2002, 102, 3667-3692; (n) Marsh, K. N.; Boxall, J. A.; Lichtenthaler, R. Room temperature ionic liquids and their mixtures—a review [J]. Fluid Phase Equilib. 2004, 219, 93-98; (o) Welton, T. Ionic liquids in catalysis [J]. Coord. Chem. Rev. 2004, 248,2459-2477.
    [51] Park, S. B.; Alper. An efficient synthesis of propargylamines via C–H activation catalyzed by copper(I) in ionic liquids [J]. Chem.Commun. 2005, 1315-1317.
    [52] (a)Gedye R. N.; Smith F. E.; Kennech W.; et al. The use of microwave ovens for rapid organic synthesis [J]. Tetrahedron Lett. 1986, 27, 279-282. (b)Giguere, R. J.; Bray T. L; Duncan, S. M. Application of commercial microwave ovens to organic synthesis [J]. Tetrahedron Lett. 1986, 27, 4945-4948. (c) Hirota, E. Microwave and Infrared Spectra of Free Radicals and Molecular Ions [J]. Chem. Rev. 1992, 92, 141. (d) Menendez, J. A.; Arenillas, A.; Bermudez, J. M.; et al. Microwave heating processes involving carbon materials [J]. Fuel Processing Technology. 2010, 91, 1–8. (e) Hirota, E. Microwave and infrared spectra of free radicals and molecular ions [J]. Chem. Rev. 1992, 92, 141-173.
    [53] Shi, L.; Tu, Y. Q.; Wang, M.; Zhang, F. M.; Fan, C. A. Microwave-promoted three-component coupling of aldehyde, alkyne, and amine via C-H activation catalyzed by copper in Water [J]. Org. Lett. 2004, 6, 1001-1004.
    [54] Kantam, M. L.; Laha, S.; Yadav, J.; Bhargava, S. An efficient synthesis of propargylamines via three-component coupling of aldehydes, amines and alkynes catalyzed by nanocrystalline copper(II) oxide [J]. Tetrahedron Lett. 2008, 49, 3083-3086.
    [55] Kidwai, M.; Bansal, V.; Mishra, N. K.; Kumar, A.; Mozumdarb, S. Copper-nnoparticle-ctalyzed A3 cupling via C–H ativation [J]. Synlett. 2007, 1581-1584.
    [56] Venu, M. J.; Someshwar, P.; Rajitha, B.; Thirupathi, R. V.; Crook, P. A. CuPy2Cl2: A novel and eficient catalyst for snthesis of popargylamines under the conventional method and microwave irradiation [J]. J. V. Madhav et al. 2008, 3215-3223.
    [57] Lindstrm U. M. Stereoselective oganic ractions in Water [J]. Chem. Rev. 2002, 102 , 2751-2772.
    [58] Rideout, D. C.; Breslow, R. Hydrophobic acceleration of delsader reactions [J]. J. Am. Chem. Soc. 1980, 102, 7816.
    [59] Zeng, T. Q.; Chen, W. W.; Cirtiu, C. M.; Moores, A.; Song, G. H.; Li, C. J. Fe3O4 nanoparticles: a robust and magnetically recoverable catalyst for three-component coupling of aldehyde, alkyne and amine [J]. Green Chem. 2010, 12, 570-573.
    [60] Sreedhar, B.; Suresh Kumar, A.; Surendra Reddy, P. Magnetically separable Fe3O4 nanoparticles: an efficient catalyst for the synthesis of propargylamines [J]. Tetrahedron Lett. 2010, 51, 1891-1895.
    [61] Chen, W. W.; Nguyen, R. V.; Li, C. J. Iron-catalyzed three-component coupling of aldehyde, alkyne, and amine under neat conditions in air [J]. Tetrahedron Lett. 2009, 50, 2895-2898.
    [62] Yadav, J. S.; Subba, R. B. V.; Hara, G. A. V.; Patil, K. S. InBr3-catalyzed three-component reaction: a facile synthesis of propargyl amines [J]. Tetrahedron Lett. 2009, 50, 3493-3496.
    [63] Wattanapiromsakul, C.; Forster, P. I.; Waterman, P. G. [J]. Phytochemistry. 2003, 64, 609.
    [64] Mhaske, S. B.; Argade, N. P. The chemistry of recently isolated naturally occurring quinazolinone alkaloids [J]. Tetrahedron 2006, 62, 9787-9826, and references therein.
    [65] Connolly, D. J.; Cusack, D.; O_Sullivan, T. P.; Guiry, P. J. Synthesis of quinazolinones and quinazolines [J]. Tetrahedron 2005, 61, 10153-10202;
    [66] For example, Raltitrexed (Tomudex, marketed for colorectal cancer), Ispinesib (phase II for solid tumors), and Tempostatin (phase II for bladder cancer).
    [67] Davoodnia, A.; Allameh, S.; Fakhari, A. R.; Tavakoli-Hoseini, N. Highly efficient solvent-free synthesis of quinazolin-4(3H)-ones and 2,3-dihydroquinazolin-4(1H)-ones using tetrabutylammonium bromide as novel ionic liquid catalyst [J]. Chin. Chem. Lett. 2010, 21, 550-553.
    [68] Wang, X. S.; Yang, K.; Zhang, M. M. et al. Synthesi of 2-arylquinazolin- 4(3H)-one derivatives catalyzed by iodine in [bmim+][BF-4] [J]. Synth. Commun. 2010, 40, 2633-2646.
    [69] Wang, G. W.; Miao, C. B.; Kang, H. Benign and efficient synthesis of 2-substituted 4(3H)-quinazolinones mediated by iron (III) chloride hexahydrate in refluxing water [J]. Bull. Chem. Soc. Jpn. 2006, 9, 1426-1430.
    [70] Salehi, P.; Dabiri, M.; Zolfigolc, M. A.; Baghbanzadeh, M. A new approach to the facile synthesis of mono-and disubstituted quinazolin-4(3H)-ones under solvent-free conditions [J]. Tetrahedron Lett., 2005, 46, 7051-7053.
    [71] Baghbanzadeh, M.; Dabiri, M.; Salehib, P. A new efficient method for the three-compent synthesis of 4(3H)-quinazolinones [J]. Hetercocycl. 2008, 75, 2809-2815.
    [72] Chen, J. X.; Wua, D. Z.; Wu, H. Y. Gallium(III) triflate-catalyzed one-pot selective synthesis of 2,3-dihydroquinazolin-4(1H)-ones and quinazolin-4(3H)- ones [J]. Tetrahedron Lett. 2008, 49, 3814-3818.
    [73] Connolly, D. J.; Guiry, P. J. A facile and versatile route to 2-substituted-4(3H)-quinazolinones and quinazolines [J]. Synlett. 2001, 11, 1707-1710.
    [74] Roopan, S. M.; Maiyalagan, T.; Khan, F. N. Solvent-free syntheses of some quinazolin-4(3H)-ones derivatives [J]. Can. J. Chem. 2008, 86, 1019-1025.
    [75] Shaabani, A.; Maleki, A.; Mofakham, H. Click Reaction: highly efficient synthesis of 2,3-dihydroquinazolin-4(1H)-ones [J]. Synth. Commun. 2008, 38, 3751-3759.
    [76] Kabri, Y.; Gellis, A.; Vanelle, P. Microwave-assisted synthesis in aqueous medium of new quinazoline derivatives as anticancer agent precursors [J]. Green Chem. 2009, 11, 201-208.
    [77] Gupta, S.; Agarwal, P. K.; Kundu, B. Catalyst/ligand-free synthesis of benzimidazoles and quinazolinones from amidines via intramolecular transamination reaction [J]. Tetrahedron Lett. 2010, 51, 1887-1890.
    [78] Ramana, D. V.; Kantharaj, E. Facile Synthesis of 2-alky-3-ary-4(3H)- quinazolinones [J]. Indian J. Hetercocycl. Chem. 1994, 3, 215-218.
    [79] Soliman, R.; Soliman, F. S. G. A facile synthesis of 2 ,3-disubstituted-4-oxo-3,4-dihydroquinazolines [J]. synthesis 1979, 803-804.
    [80] Ramana, D. V.; Kantharaj, E. Facile.Synthesis of 2-alky-3-ary-4(3H)- quinazolinones [J]. Indian J.Heterocycl. Chem. 1994, 3, 215-218.
    [81] Liu, X. W.; Fu, H.; Jiang, Y. Y.; Zhao, Y. F. A simple and efficient approach to quinazolinones under mild copper-catalyzed conditions [J]. Angew. Chem. Int. Ed. 2009, 48, 348-351.
    [82] Yang, D. S.; Fu, H.; Hu, L. M. et al. Environmentally friendly iron-catalyzed cascade synthesis of 1,2,4-benzothiadiazine 1,1-dioxide and quinazolinone derivatives [J]. J. Comb. Chem. 2009, 11, 653-657.
    [83] Zhang, X. D.; Ye, D. J.; Sun, H. F. et al. Microwave-assisted synthesis of quinazolinone derivatives by efficient and rapid iron-catalyzed cyclization in water [J]. Green Chem. 2009, 11, 1881-1888.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700