铋基复合半导体的液相可控制备及光催化性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文围绕新型铋基复合材料的制备、表征及其光催化性能等方面展开研究,内容主要包括以下三个部分:
     (1)通过混合溶剂热路线,在AOT参与下,于160 oC反应18 h成功合成了中空橄榄状的BiVO_4。用所得橄榄状BiVO_4为前驱体,通过热液刻蚀路线,获得了核壳结构的BiVO_4@Bi_2O_3微米球。利用X-射线衍射(XRD)、场发射扫描电子显微镜(FE-SEM)、透射电镜(TEM)、BET比表面积、紫外-可见漫反射谱等分析技术对样品进行了详尽表征。系统地研究了表面活性剂、溶剂比例对产物形貌的影响。用不同时段的中间产物的X-射线衍射分析结合扫描电子显微镜像观察研究了中空橄榄状BiVO_4微米球的形成过程。光催化实验的结果显示,核壳结构的BiVO_4@Bi_2O_3复合光催化剂比单一的橄榄状BiVO_4具有更高的光催化活性。基于理论计算,分析了BiVO_4@Bi_2O_3的光催化活性增强机理。
     (2)以橄榄状BiVO_4为前驱体,硫代乙酰胺为硫源,在水热条件下,通过化学转化路线,合成了Bi_2S_3/BiVO_4复合光催化剂。利用X-射线衍射(XRD)、场发射扫描电子显微镜(FE-SEM)、紫外-可见漫反射谱、荧光谱、EDX谱等分析技术对样品进行了表征。光催化实验的结果显示,Bi_2S_3/BiVO_4复合光催化剂比单一BiVO_4具有更高的光催化活性。当参与反应的BiVO_4和硫代乙酰胺的摩尔比为1:0.4时,产物的光催化活性最强。结合理论计算,分析了Bi_2S_3/BiVO_4复合光催化剂的光催化活性增强机理。(3)利用羧基化的碳纳米管为载体,通过水热法制备了
     Bi_2WO_6/CNTs复合光催化剂,利用X-射线衍射和场发射扫描电镜对产物进行表征。通过扫描电镜观察,发现反应物的浓度对最终产物的形貌有明显的影响。光催化实验的结果表明Bi_2WO_6/CNTs复合材料在可见光(λ> 400 nm)照射下对罗丹明B有良好的光催化降解作用。
This paper was committed to study preparation, characterization and photocatalytic properties of bismuth-based composite materials. The main research work is listed as the following parts:
     (1) Hollow olive-shaped BiVO_4 microspheres was successfully synthesized in the presence of AOT under mixed solvothermal conditions at 160 oC for 18 h on a large scale. Furthermore, core-shell BiVO_4@Bi_2O_3 was obtained by thermal solution etching route, employing olive-shaped BiVO_4 as precursors. The as-obtained products were characterized by X-ray diffraction (XRD), Field-emission scanning electron microscope (FE-SEM), Transmission electron microscope (TEM), BET specific surface area, and UV-vis diffuse reflectance spectroscopy in detail. The influences of surfactant and the ratios of mixed solvents on the resultant products were systematically surveyed. The formation process of hollow olive-shaped BiVO_4 was investigated through the X-ray diffraction analyses and scanning electron microscope observations of the intermediate products at the different reaction stages. The photocatalytic properties of the as-obtained hollow olive-shaped BiVO_4 and core-shell BiVO_4@Bi_2O_3 were compared. The results indicated that core-shell BiVO_4@Bi_2O_3 exhibited much higher photocatalytic activities than pure olive-shaped BiVO_4. The mechanism of enhanced photocatalytic activity of core-shell BiVO_4@Bi_2O_3 was proposed on the basis of theoretical calculation.
     (2) Bi_2S_3/BiVO_4 composite photocatalysts were successfully synthesized through a chemical conversion route under hydrothermal conditions, employing olive-shaped BiVO_4 as precursors and Thioacetamide (TTA) as sulfur resource. The as-obtained products were characterized by X-ray diffraction (XRD), Field-emission scanning electron microscope (SEM), UV-vis diffuse reflectance spectroscopy, Photoluminescence spectra and EDX spectra in detail. The photocatalytic properties of the as-obtained BiVO_4 and Bi_2S_3/BiVO_4 composite photocatalysts were compared. The results indicated that Bi_2S_3/BiVO_4 composite photocatalysts exhibited much higher photocatalytic activities than pure BiVO_4. It was found that Bi_2S_3/BiVO_4 composite semiconductor prepared with molar ratio of BiVO_4: TAA=1:0.4 shows the best photocatalytic acticity. Combined with theoretical calculation of band-edge positions of the two semiconductors, the mechanism of enhanced photocatalytic activity of Bi_2S_3/BiVO_4 was proposed.
     (3) Bi_2WO_6/CNTs composite photocatalysts were synthesized under hydrothermal conditions, using carboxylated carbon nanotubes as supports. The as-obtained products were characterized by X-ray diffraction (XRD) and Field-emission scanning electron microscope (FE-SEM) in detail. The influence of the concentration of reactants on the morphology of resultant products was studied by field-emission scanning electron microscope. The photocatalytic results shows Bi_2WO_6/CNTs nanocomposite materials have good photocatalytic performance on the degradation of Rhodamine B under visible-light irradiation (λ>400nm).
引文
[1] Fujishima. A., Honda. K. Electrochemical photolysis of water at semiconductor electrode [J]. Nature, 1972, 37(1): 238-2215.
    [2] Carey. J. H., Lawrence. J., Tosine. H. M. Photodechlorination of PCB’s in the presence of titanium dioxide in aqueous suspensions [J]. Bull. Environ. Contam. Toxicol., 1976, 16(6): 697-701.
    [3] Frank. S. N., Bard. A. J. Heterogeneous photo-catalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders [J]. J. Phys. Chem., 1977, 81: 1484-1489.
    [4] Fujishima. A., Rao. T. N., Tryk. D. A. Titanium dioxide photocatalysis [J]. J. Photochem. Photobiol. C: Photochem. Rev., 2000, 1(1): 1-21.
    [5] Farrauto. R. J., Heck. R. M. Environmental catalysis into the 21st century [J]. Catal. Today., 2000, 55(1-2): 179-187.
    [6] Mills. A., Lehuntes. S. An overview of semiconductor photocatalysis [J]. J. Photochem. Photobiol A: Chem., 1997, 108: 1-35.
    [7] Ollis. D. F. Photocatalytic purification and remediation of contaminated air and water [J]. Comp. Rend. Acad. Sci., 2000, 3(6): 405-411.
    [8] Hoffmann. M. R., Martin. S. T., Choi. W., et al. Environmental applications of semiconductor photocatalysis [J]. Chem. Rev., 1995, 95(1): 69-96.
    [9] Linsebigler. A. L., Lu. G., Yates. J. T. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results [J]. Chem. Rev., 1995, 95(3): 735-758.
    [10] Gerisher. H., Heller. A. Palladium catalysis of O2 reduction by electrons accumulated on TiO2 particles during photoassisted oxidation of organic compounds [J]. J. Electrochem. Soc., 1992, 139: 113.
    [11] Noda. H., Oikawa. K., Kamada. H. Detection of Superoxide Ions from Photoexcited Semiconductors in Non-Aqueous Solvents Using the ESR Spin-Trapping Technique [J]. Bull. Chem. Soc. Jpn., 1993, 66(12): 3542-3547.
    [12] Gerischer. H., Willig. F. Reaction of excited dye molecules at electrodes [J]. Top. Curr. Chem., 1976, 61: 31-48.
    [13] Ross. H., et al. Sensitized Photocatalytical oxidation of terbutylazine [J]. Sol. Energy Mater. Sol. Cells., 1994, 33(4): 475-481.
    [14] Majumder. S. A., Khan. S. U. M. Photoelectrolysis of water at bare and electrocatalyst covered thin film iron oxide electrode [J]. Int. J. Hydrogen Energy., 1994, 19(11): 881-887.
    [15] Rophael. M. W., et al. The reduction of aqueous carbonate to methanol, photocatalysed by TiO2 phthalocyanine [J]. Vaccum, 1990, 41(1-3): 143-146.
    [16] Vlachopoulos. N., Liska. P., Augustynski. J., et al. Very efficient visible light Energy harvesting and conversion by spectral sensitization of high surface area Polycrystalline titanium dioxide films [J]. J. Am. Chem. Soc., 1988, 110(4): 1216-1220.
    [17] Desilvestro. J., Gratzel. M., Kavan. L., et al. Highly effecent sensitization of titaniumdioxide [J]. J. Am. Chem. Soc., 1985, 107(10): 2988-2990.
    [18] Patrick. B., Kamat. P. V. Photoelectroehemistry in semiconductor Particulate systems. Photosensitization of large-bandgap semiconductors: charge injection from triplet excited thionine into zinc oxide colloids [J]. J. Phys. Chem., 1992, 96(3): 1423-1428.
    [19] Kamat. P. V., Fox. M. A. Photosensitization of TiO2 colloids by Erythrosin B in acetonitrile [J]. Chem. Phys. Lett., 1983, 102(4): 379-384..
    [20] Gopidas. K. R., Kamat. P. V. Photochemistry on surfaces. 4. Influence of support material on the photochemistry of an adsorbed dye [J]. J. Phys. Chem., 1989, 93(17): 6428-6433.
    [21] Howe. R. F., Gratzel. M. EPR study of hydrated anatase under UV irradiation [J]. J. Phys. Chem., 1987, 91(14): 3906-3909.
    [22] Sclafani. A., Mozzanega. M. N., Pichat. P. Effect of silver deposits on the photocatalytic activity of titanium dioxide samples for the dehydrogenation or oxidation of 2-propanol [J]. J. Photochem. Photobiol. A: Chem., 1991, 59(2): 181-189.
    [23] Zhao. W., Chen. C., Li. X. Photodegradation of Sulforhodamine-B Dye in Platinized Titania Dispersions under Visible Light Irradiation: Influence of Platinum as a Functional Co-catalyst [J]. J. Phys. Chem. B., 2002, 106(19): 5022-5028.
    [24] Arana. J., Dona-Rodriguez. J. M., et al. Role of Pd and Cu in gas-phase alcohols photocatalytic degradation with doped TiO2 [J]. J. Photochem. Photobiol. A: Chem., 2005, 174(1): 7-14.
    [25] Belver. C., Lopez-Munoz. M. J., Coronado. J. M. Palladium enhanced resistance to deactivation of titanium dioxide during the photocatalytic oxidation of toluene vapors [J]. Appl. Catal. B: Environ., 2003, 46(3): 497-509.
    [26] Armelao. L., Barreca. D., Bottaro. G., et al. Photocatalytic and antibacterial activity of TiO2 and Au/TiO2 nanosystems [J]. Nanotechnology, 2007, 18(37): 375709.
    [27] Jung. J. M., Wang. M., Kim. E. J., et al. Enhanced photocatalytic activity of Au-buffered TiO2 thin films prepared by radio frequency magnetron sputtering [J]. Appl. Catal B: Environ., 2008, 84(3-4): 389-392.
    [28] Anpo. M, Takeuchi. M. The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation [J]. J. Catal., 2003, 216(1-2): 505-516.
    [29] Choi. W., Termin. A., Hoffmann. M. R. The role of metal ion dopants in quantum-sized TiO2: Correlation between photoreactivity and charge carried recombination dynamics [J]. J. Phys. Chem., 1994, 98(5):13669-13679.
    [30]李芳柏,古国榜,李新军,等. WO3/TiO2纳米材料的制备及光催化性能[J].物理化学学报, 2000, 16(11): 997-1002.
    [31]陈慧,金星龙,朱琨,等.掺杂金属离子的TiO2纳米粒子光催化降解吖啶橙[J].中国环境科学, 2000, 20(6): 561-564.
    [32] Jeon. M. S., Yoon.W. S., et al. Preparation and characterization of a nano-sized Mo/Ti mixed photocatalyst [J]. Appl. Surf. Sci., 2000, 165(2-3): 209-216.
    [33]张峰,李庆霖,杨建军,等. TiO2光催化剂的可见光敏化研究[J].催化学报, 1995, 20(3): 329-333.
    [34] Yamashita. H., Harada. M., Misaka. J., et al. Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts [J]. J. Photochem. Photobiol. A: Chem., 2002, 148(1-3): 257-261.
    [35] Lleperuma. O. A., Tennakone. K., Dissanayake. W. D. D. P. Photocatalytic behaviour of metal doped titanium dioxide: Studies on the Photochemical Synthesis of Ammonia on Mg/TiO2 Catalyst Systems [J]. Appl. Catal., 1990, 62 (1): L1-L5.
    [36] Asahi. R., Morikawa. T., Ohwaki. T., et al. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides [J]. Science, 2001, 293(13): 269-271.
    [37] Sato. S., Photocatalytic activity of NOx-doped TiO2 in the visible light region [J]. Chem. Phys. Lett., 1986, 123(1-2): 126-128.
    [38] Shahed. U. M. Khan., Al-Mofareh., William.mB., Ingler. Jr. Efficient photochemical water splitting by a chemically modified n-TiO2 [J]. Science, 2002, 297(5590): 2243-2245.
    [39] Rajeshwar. K., Tacconi. N. R., Chenthamarakshan. C. R. Semiconductor-Based Composite Materials: Preparation, Properties, and Performance [J]. Chem. Mater., 2001, 13(9): 2765-2782.
    [40] Vogel. R., Hoyer. P., Wellrr. H. Quantum-Sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 Particles as Sensitizers for Various Nanoporous Wide-Bandgap Semiconductors [J]. J. Phys. Chem., 1994, 98(12): 3183-3188.
    [41] Wu. L., Jimmy. C., Fu. X. Z. Characterization and photocatalytic mechanism of nanosized CdS coupled TiO2 nanocrystals under visible light irradiation [J]. Mol. Catal. A: Chem., 2006, 244(1-2): 25-32.
    [42] Bessekhouad.Y., Robert. D., Weber. J. V. Bi2S3/TiO2 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant [J]. J. Photochem. Photobiol. A: Chem., 2004, 163(3): 569-580.
    [43] Shang. M., Wang. W. Z., Sun. S .M., et tal. Bi2WO6 Nanocrystals with High Photocatalytic Activities under Visible Light [J]. J. Phys. Chem. C., 2008, 112(28): 10407-10411.
    [44] Zhou. Z. G., Ye. J. H., Sayama. K., et al. Direct Splitting of Water Under Visible Light Irradiation with an Oxide Semiconductor Photocatalyst [J]. Nature, 2001, 414(6864): 625-627.
    [45] Kato. H., Kudo. A. Energy structure and photocatalytic activity for water splitting of Sr2 (Ta1-XNbX) 2O7 solid solution [J]. J. Photochem. Photobio. A., 2001, 145(1-2): 129-133.
    [46]王桂赞,王延吉,秦娅,等.光催化分解水制氢用CoO/CaTiO3催化剂—制备方法及光催化作用机理探讨[J].化工学报, 2005, 56(9): 1660-1665.
    [47] Zhang. L. W., Fu. H. B., Zhu.Y. F. Efficient TiO2 Photocatalysts from Surface Hybridization of TiO2 Particles with Graphite-like Carbon [J]. Adv. Funct. Mater., 2008, 18(15): 2180-2189.
    [48] Zhang. L. W., Cheng. H. Y., Zong. R. L., et al. Physical Chemistry of Environmental Interfaces [J]. J. Phys. Chem. C., 2009, 113(6), 2035.
    [49] Eklund. P. C., Holden. J. M., Jishi. R. A. Vibrational modes of carbon nanotubes; spectroscopy and theory [J]. Carbon, 1995, 33(7): 959-972.
    [50] Su. F. B., Zhao. X. S., Wang. Y., et al. Synthesis of Graphitic Ordered MacroporousCarbon with a Three-Dimensional Interconnected Pore Structure for Electrochemical Applications [J]. J. Phys. Chem. B., 2005, 109(43): 20200-20206.
    [51] Tuinstra. F., Koenig. J. L. Raman Spectrmn of Graphite [J]. J. Chem. Phys., 1970, 53: 1126-1130.
    [52] Wong. M. S., Wang. S. H., Chen. T. K., et al. Co-sputtered carbon-incorporated titanium oxide films as visible light-induced photocatalysts [J]. Surf. Coat. Technol., 2007, 202(4-7): 890-894.
    [53] Peng. Q., Dong. Y. J., Li. Y. D. ZnSe semiconductor hollow microspheres [J]. Angew. Chem., 2003, 42(26): 3027-3030.
    [54] Sakaki. T., Shibata. M., Miki. T., et al. Reaction model of cellulose decomposition in near-critical water and fermentation of products [J]. Bioresour. Technol., 1996, 58(2): 197-202.
    [55] Hu. C., Tang. Y. C., Jimmy. C., et al. Photocatalytic degradation of cationic blue X-GRL adsorbed on TiO2/SiO2 photocatalyst [J]. J. Appl. Catal. B: Environ., 2003, 40(2): 131-140.
    [56] Pal. B., Hata. T., Goto. K., et al. Photocatalytic degradation of o-cresol sensitized by iron-titania binary photocatalysts [J]. J. Mol. Catal. A: Chem., 2001, 169(1-2): 147-155.
    [57] Pilkenton. Sarah., Raftery. Daniel. Solid-state NMR studies of the adsorption and photooxidation of ethanolon mixed TiO2/SnO2 photocatalysts [J]. J. Solid State Nucl Magn Reson., 2003, 24(4): 236-253.
    [58] Yukina Takahashi, Pailin Ngaotrakanwiwat, Tetsu Tatsuma. Energy storage TiO2–MoO3 photocatalysts [J]. J. Electrochimica Acta., 2004, 49: 2025-2029.
    [59] Tetsu Tatsuma, Shuichi Takeda, Shuichi Saitoh, et al. Bactericidal effect of an energy storage TiO2/WO3 photocatalyst in dark [J]. J. Electrochem. Commun., 2003, 5: 793-796.
    [60] Franciso. M. S. P., Mastelaro. V. R., Florentino. A. O. Activity and Characterization by XPS, HR-TEM, Raman Spectroscopy, and BET Surface Area of CuO/CeO2-TiO2 Catalysts [J]. J. Phys. Chem. B., 2001, 105(43): 10515-10522.
    [61] Bahnemann. D. W. Ultrasmall metal oxide particles: preparation, photophysical characterization, and photocatalytic properties [J]. Isreal J. Chem., 1993, 33(1): 115-136.
    [62] Anpo. M., Shima. T., Kodama. S. Photocatalytic hydrogenation of propyne with water on small-particle titania: size quantization effects and reaction intermediates [J]. J. Phys. Chem., 1987, 91(16): 4305-4310.
    [63] Hoffillann. A. J., Yee. H., Mills. G. Photoinitiated polymerization of methyl methacrylate using Q-sized zinc oxide colloids [J]. J. Phys. Chem., 1992, 96(13): 5540-5546.
    [64] Lepore. G. P., Langford. C. H., Vichova. J. Photochemistry and picosecond absorption spectra of aqueous suspensions of a polycrystalline titanium dioxide optically transparent in the visible spectrum [J]. J. Photochem. Photobiol. A: Chem., 1993, 75(1): 67-75.
    [65] Weller. H., Eychmuller. A. Photochemistry and Photoelectrochemistry of Quantized Matter: Properties of Semiconductor Nanoparticles in Solution and Thin-Film Electrodes Advances in photochemistry [M], Advances in Photochemistry, 1995, 20.
    [66] Hofflnann. A. J., Araways. E. R., Hoffinann. M. R. Photocatalytic Production of H2O2 and Organic Peroxides on Quantum-Sized Semiconductor Colloids [J]. Environ. Sci. Technol., 1994, 28(5): 776-785.
    [67] Bard. A. Photoelectrochemistry [J]. Science, 1980, 207(4427): 139-144.
    [68] Sinha. A. S. K, Sahu. N., Arora. M. K., et al. Preparation of egg-shell type Al2O3-supported CdS photocatalysts for reduction of H2O to H2 [J]. Catal. Today., 2001, 69 (l-3): 297-305.
    [69] Bandara. J., Mielczarski. J. A., Lopez. A., et al. 2.Sensitized degradation of chlorophenols on iron oxides induced by visible light: Comparison with titanium oxide [J]. Appl. Catal. B., 2001, 34(4): 321-333.
    [70] De-Jongh. P. E., Vanmaekelbergh. D., Kelly. J. J. Cu2O: a catalyst for the photochemical decomposition of water? [J]. Chem. Soc. Chem. Coun., 1999, (12): 1069-1070.
    [71] Mau. A. W. H., Huang. C. B., Bard. A. J., et al. Hydrogen photoproduction by Nafion/cadmium sulfide/platinum films in water/sulfide ion solutions [J]. J. Am. Chem. Soc., 1984, 106(22): 6537-6542.
    [72] Hirai. T., Bando. Y., Komasawa. I. Immobilization of CdS Nanoparticles Formed in Reverse Micelles onto Alumina Particles and Their Photocatalytic Properties [J]. J. Phys. Chem. B., 2002, 106(35), 8967-8970.
    [73] Vayssieres. L., Kies. K., Lindquist.S. E., et al. Purpose-Built Anisotropic Metal Oxide Material: 3D Highly Oriented Microrod Array of ZnO [J]. J. Phys. Chem. B., 2001, 105(17): 3350-3352.
    [74] Rodriguez. J. A., Gordillo. G. Study of electrical properties in ZnxCd1-xS thin films [J]. Sol. Energy Mater., 1989, 19(6): 421-431.
    [75] Jang. J. S., Ji. S. M., Bae. S. W., et al. Optimization of CdS/TiO2 nano-bulk composite photocatalysts for hydrogen production from Na2S/Na2SO3 aqueous electrolyte solution under visible light (λ≥420 nm) [J]. J. Photochem. Photobiol. A: Chem., 2007, 188(1): 112-119.
    [76] Bessekhouad. Y., Chaoui. N., Trzpit. M., et al. UV–vis versus visible degradation of Acid Orange II in a coupled CdS/TiO2 semiconductors suspension [J]. J. Photochem. Photobiol. A: Chem., 2006, 183(1-2): 218-224.
    [77] Bitar. R. A., Arafah. D. E. Processing effects on the structure of CdTe, CdS and SnO2 thin films [J]. Sol. Energy Mater. Sol. Cells., 1998, 51(l): 83-93.
    [78] Serpone. N., Borgarello. E., Gratzel. M. Visible light induced generation of hydrogen from H2S in mixed semiconductor dispersions; Improved efficiency through inter-particle electron transfer [J]. J. Chem. Soc. Chem. Commun., 1984, (6): 342-344.
    [79] Zong. X., Yan. H. J., Wu. G. P., et al. Enhancement of Photocatalytic H2 Evolution on CdS by Loading MoS2 as Cocatalyst under Visible Light Irradiation [J]. J. Am. Chem. Soc., 2008, 130(23): 7176-7177.
    [80]隆金桥,黎远成,覃思晗,等. Cu2O光催化降解水中对硝基苯酚的研究[J].环境污染治理技术与设备, 2003, 4(10): 36-39.
    [81]马丽丽.可见光响应的纳米Cu2O、CdS的制备及其光催化性质研究(博士毕业论文).武汉:华中师范大学
    [82]张绍岩,丁士文,刘淑娟,等.直接沉淀法制备纳米ZnO及其光催化性能[J].化学学报, 2002, 18(10): 1015-1019.
    [83]丁士文,刘淑娟,等.水热合成纳米ZnO及其光催化性能研究[J].河北大学学报(自然科学版), 2002, 22(3): 246-249.
    [84] Sakihivel. S., Kisch. H. Photocatalytic and Photoelectrochemical Properties of Nitrogen-Doped Titanium Dioxide [J], Chem. Phys. Chem., 2003, 4(5): 487-490.
    [85] Masahiro. M., Minoru. T., Hiroki. T. Photocatalytic Activity of SrTiO3 Codoped with Nitrogen and Lanthanum under Visible Light Illumination [J]. Langmuir, 2004, 20(1): 232-236.
    [86] Hideki. K., Hisayoshi. K., Akihiko. K. A Polar Oxide with a Large Magnetization Synthesized at Ambient Pressure [J]. J. Phys. Chem. B., 2002, 106(48): 12441-12447.
    [87] Pena. M. A., Fierro. J. L. G. Chemical Structures and Performance of Perovskite Oxides [J]. Chem. Rev., 2001, 101(7): 1981-2018.
    [88] Helen. H., Mathieu. M. B. A., Craig. A. B., et al. A Polar Oxide with a Large Magnetization Synthesized at Ambient Pressure [J]. J. Am. Chem. Soc., 2005, 127(40): 13790-13791.
    [89] Masaki. A., Kazuhide. T., Takashi. S., et al. Designed Ferromagnetic, Ferroelectric Bi2NiMnO6 [J]. J. Am. Chem. Soc., 2005, 127(40): 8889-8892.
    [90]阎建辉,唐课文,钟明,等.碱长金属钙钛矿型复合氧化物的制备及光催化性能[C].中国化学会2005年中西部十五省(区)、市无机化学化工学术交流会论文集.武汉:武汉人学出版社, 2005, 235.
    [91]傅希贤,桑丽霞,王俊珍,等.钙钛矿(ABO3)化合物的光催化活性及其影响因素[J].天津大学学报, 2001, 34(2): 229-231.
    [92]傅希贤,单志兴,肖坤林,等.掺杂对PbTiO3光催化活性的影响[J].应用化学, 1996, 13(6): 58-60.
    [93]蒋正静,戴洁,张志兰,等.锌、镉掺杂纳米级钛酸铅的制备及对活性翠兰的光催化降解[J].应用化学, 2001, 18(7): 552-555.
    [94] Yanagisawa. M., Uchida. S., Sato. T. Synthesis and Photochemical Properties of Cu2+ Doped Layered TitanateInt [J]. J. Inorg. Mater., 2000, 2: 339-346.
    [95] Ohno. T., Tsubota. T., Nakamura. Y., et al. Preparation of S, C cation-codoped SrTiO3 and its photocatalytic activity under visible light [J]. Appl. Catal. A: General., 2005, 288(l-2): 74-79.
    [96] Konta. R., Ishii. T., Kato. H., et al. Photocatalytic Activities of Noble Metal Ion Doped SrTiO3 under Visible Light Irradiation [J]. J. Phys. Chem. B., 2004, 108(26): 8992-8995.
    [97]康振晋,姚艳红,许桂花.钙钛矿结构B位掺杂化合物LaCo1-xFexO3的光催化活性研究[J].分子催化, 2004, 18(6): 468-471.
    [98]杨秋华,傅希贤,王俊珍,等.钙钛矿型复合氧化物LaFeO3和LaCoO3的光催化活性[J].催化学报, 1999, 20(5): 521-524.
    [99]傅希贤,杨秋华,桑丽霞.钙钛矿型LaFe1-xCuxO3的光催化活性研究[J].高等学校化学学报, 2002, 23(2): 283-286.
    [100] Fu. X. X., Yang. Q. H., Yang. J. Z., et al. Photocatalysed Reduction of Aqueous Sodium Carbonate Using LaCoO3 Nano Particles [J]. J. Rare. Earths., 2003, 21(4): 124-126.
    [101]桑丽霞,钟顺和,傅希贤. LaBO (B=Fe, Co)中氧的迁移与光催化反应活性[J].高等学校化学学报, 2003, 24(2): 320-323.
    [102]傅希贤,孙艺环,王俊珍,杨秋华,等. LaFe1-xCuxO3光催化降解水溶性染料的活性[J].催化学报, 1999, 20(6): 623-627.
    [103]傅希贤,桑丽霞,白树林,杨秋华,等. LaFe1-xCuxO3的光催化性及正电子湮没研[J].化学物理学报, 2000, 13(4): 503-507.
    [104] Yu. H., Zhu. Y. F., Wu. N. Z. Synthesis of nanosized NaTaO3 in low temperature and its photocatalytic performance [J]. J. Solid. State. Chem., 2004, 177(11): 3868-3872.
    [105] Yu. H., Zhu. Y. F., Wu. N. Z. Mixed solvents: a key in solvothermal synthesis of KTaO3 [J]. J. Solid. State. Chem., 2004, 177(9): 2985-2990.
    [106] Yu. H., Zhu. Y. F. Solvothermal Synthesis of Sodium and Potassium Tantalate Perovskite Nanocubes [J]. Chem. Lett., 2004, 33(7): 900.
    [107] Zou. Z. G., Ye. J. H., Arakawa. H. Photocatalytic hydrogen and oxygen formation under visible light irradiation with M-doped InTaO4 (M=Mn, Fe, Co, Ni and Cu) photocatalysts [J]. J. Photochem. Photobio. A: Chemistry., 2002, 148(1-3): 65-69.
    [108] Zou. Z. G., Ye. J. H., Sayama. K. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst [J]. Nature, 2001, 414: 625-627.
    [109] Zou. Z. G., Ye. J. H., Arakaw. H. Surface Characterization of Nanoparticles of NiOx/In0.9Ni0.1TaO4: Effects on Photocatalytic Activity [J]. J. Phys. Chem. B., 2002, 106(51): 13098-13101.
    [110]崔玉民.亚硝酸盐的光催化氧化[J],感光科学与光化学, 2002, 20(4): 253.
    [111]王俊珍,傅希贤,杨秋华,等. Bi2O3对燃料的光催化降解性能[J].应用化学,2002, 19(5):483-485.
    [112] Hameed. A., Gombac. V., Montini. T., et al. Photocatalytic activity of zinc modified Bi2O3 [J]. Chem. Phys. Lett., 2009, 483(46): 254-261.
    [113] Xie. J. M., Lü. X. M., et al. The synthesis,characterization and photocatalytic activity of V(V).Pb(11).Ag(I) and Co(11)-doped Bi2O3 [J]. Dyes and Pig., 2008, 77(l): 43-47.
    [114] Wang. Y., Wen. Y. Y., Ding. H. M., et al. Improved structural stability of titanium-doped Bi2O3 during visible-light-activated photocatalytic proeesses [J]. J. Mater. Sci., 2010, 45(5): 1385-1392.
    [115]张川. Bi2WO6催化剂的合成及其光催化性能研究[C].见:清华大学硕士学位论文.北京:清华大学化学系分析化学专业, 2006, 1-17.
    [116]李慧泉,马继龙.镍铋复合氧化物的制备及其光催化活性[J].阜阳师范学院学报(自然科学版), 2005, 22(4): 38.
    [117] Zou. Z. G., Ye. J. H., Arakawa. H. Optical and structural properties of the BiTa1?xNbxO4 (0≤x≤1) compounds [J]. J. Solid. State. Chem., 2001, 119(7): 471-475.
    [118] Zou. Z. G., Ye. J. H., Arakawa. H. Preparation, structural and optical properties of a new class of compounds, Bi2MNbO7 (M=Al, Ga, In) [J]. Mater. Sci. Eng. B., 2001, 79(l): 83-85.
    [119] Tang. J. W., Zou. Z. G., Ye. J. H. Efficient Photocatalytic Decomposition of Organic Contaminants over CaBi2O4 under Visible-Light Irradiation [J]. J. Angew. Chem. int. Ed.,2004, 116(34): 4563-4566.
    [120]许效红,姚伟峰,张寅等.钛酸铋系化合物的光催化性能研究[J].化学学报, 2005, 63 (1): 5.
    [121] Thanabodeekij. N., Gulari. E., Wongkasemjit. S. Bi12TiO20 synthesized directly from bismuth (III) nitrate pentahydrate and titanium glycolate and its activity [J]. Powder Techn., 2005, 160(3): 203-208.
    [122] Yao. W. F., Wang. H., Xu. X. H., et al. Synthesis and photocatalytic property of bismuth titanate Bi4Ti3O12 [J]. Mater. Lett., 2003, 57(13-14): 1899-1902.
    [123] Yao. W. F., Wang. H., Xu. X. H., et al. Characterization and photocatalytic properties of Ba doped Bi12TiO20 [J]. J. Mol. Catal. A: Chem., 2003, 202(1-2): 305-311.
    [124] Kudo. A., Hijii. S. H2 or O2 evolution from aqueous solutions on layered oxide photocatalysts consisting of Bi3+ with 6s2 configuration and d0 transition metal ions [J]. Chem. Lett., 1999, 28(10): 1103-1104.
    [125] Tang. J. W., Zou. Z. G., Ye. J. H. Photocatalytic Decomposition of Organic Contaminants by Bi2WO6 Under Visible Light Irradiation [J]. Catal. Lett., 2004, 92(l-2): 53-56.
    [126] Shang. M., Wang. W. Z., Zhang. L., et al. A practical visible-light-driven Bi2WO6 nanofibrous materials prepared by electrospinning [J]. J. Mater. Chem., 2009, 19(34): 6213-6218.
    [127] Shang. M., Wang. W. Z., Zhang. L., et al. Bi2WO6 with significantly enhanced photocatalytic activities by nitrogen doping [J]. Mater. Chem. Phys., 2010, 120(l): 155-159.
    [128] Shang. M., Wang. W. Z., Zhang. L., et al. 3D Bi2WO6/TiO2 Hierarchical Heterostructure: Colltrollable Synthesis and Enhanced Visible Photocatalytic Degradation Performances [J]. J. Phys. Chem. C., 2009, 113(33): 14727-14731.
    [129] Ren. L., Jin. L., Wang. J. B., et al. Template-free synthesis of BiVO4 nanostruetures: I. nanotubes with hexagonal cross sections by orienied at tachment and their photocatalytic properties for water splitting under visible-light [J]. Nanotechnology, 2009, 20(11): 1156-1160.
    [130] Yu. J. Q., Kudo. A. Effects of structural variation on the photocatalytic performance of hydrothermally synthesized BiVO4 [J]. Adv. Func. Mate., 2006, 16(16): 2163-2169.
    [131] Guan. M. L., Ma. D. K., Hu. S. W., et al. From Hollow Olive-Shaped BiVO4 to n-p Core-Shell BiVO4@Bi2O3 Microspheres: Controlled Synthesis and Enhanced Visible-Light-Responsive Photocatalytic Properties [J]. Inorg. Chem., 2011, 50: 800-805.
    [132] Lim. A. R., Choh. S. H., Jang. M. S. Prominent ferroelastic domain walls in BiVO4 crystal [J]. J. Phys. Condens. Matter., 1995, 7(15): 7309-7315.
    [133] Yu. J. Q., Zhang. Y., Akihiko. K. Synthesis and photocatalytic performances of BiVO4 by ammonia co-precipitation process[J]. J. Solid. State. Chem., 2009, 182(2): 223-228.
    [134]戈磊,张宪华.微乳液法合成新犁可见米催化剂BiVO4及光催化性能研究[J].无机材料学报, 2009, 24(3): 453-456.
    [135]刘晶冰,张慧明,汪浩等.纳米钒酸铋的微波快速合成及光催化性能研究[J].无机化学学报, 2008, 2(5): 777-750.
    [136]彭秧,侯林瑞,原长洲.砖形BiVO4微米棒光催化剂的制备及其光催化性能[J].应用化学, 2008, 25(4): 455-485.
    [137] Zhang. X. F., Chen. S., Quan. X., et al. Preparation and characterization of BiVO4 film electrode and investigation of its photoelectrocatalytic (PEC) ability under visible light [J]. Sep. Pur. Technol., 2009, 64(3): 309-313.
    [138] Jiang. H. Q., Endo. H., Nator. H., et al. Fabrication and photoactivities of spherical-shaped BiVO4 photocatalysis through solution combustion synthesis method [J]. J. Eur. Cera. Soc., 2008, 28(15): 2955-2962.
    [139] Strobel, R., Metz. H. J., Pratsinis. S. E. Brilliant yellow,transparent Pure,and SiO2-coated BiVO4 nanoparticles made in flames [J]. Chem. Mater., 2008, 20(20): 6346-6351.
    [140] Zhang. A. P., Zhang. J. Z. Effects of europium doping on the photocatalytic behavior of BiVO4 [J]. J. Hazard. Mater., 2010, 173(l-3): 265-272.
    [141] Zhang. X. F., Quan. X., Chen. S., et al. Effect of Si doping on photoelectrocatalytic decomposition of phenol of BiVO4 film under visible light [J]. J. Hazard. Mater., 2010, 177(1-3): 914-917.
    [142] Scott S. D., Kenneth. S. S. Photodegradation of BiNbO4 Powder during Photocatalytic Reactions [J]. J. Phys. Chem. C., 2009, 113(24): 10341-10345.
    [143] Qin. Z. Z., Liu. Z. L., Liu. Y. B., et al. Synthesis of BiYO3 for degradation of organic compounds under visible-light irradiation [J]. Catal. Commun., 2009, 10(12): 1604-1608.
    [144] Sun. S. M., Wang. W. Z., Zhang. L., et al. Visible Light-Induced Photocatalytic Oxidation of Phenol and Aqueous Ammonia in Flowerlike Bi2Fe4O9 Suspensions [J]. J. phys. Chem. C., 2009, 113(29): 12826-12831.
    [145] Xu. X. W., Ni. Q. Y. Synihesis and characterization of novel Bi2MoO6/NaY Materials and photocatalytic activities under visible light irradiation [J]. Catal. Commun., 2010, 11(5): 359-363.
    [146] Chan. X. F., Huang. J., Cheng. C., et al. Photocatalytic decomposition of 4-t-octylPhenol over NaBiO3 driven by visible light catalytic kinetics and corrosion products characterization [J]. J. Hazard. Mater., 2010, 173(1-3): 765-772.
    [147] Shan. Z. C., Xia. Y. J., Yang. Y. X., et al. Preparation and photocatalytic activity of novel efficient photocatalyst Sr2Bi2O5 [J]. Mater. Lett., 2009, 63(l): 75-77.
    [148] Liu. W., Chen. S. F., Zhang. S. J., et al. Preparation and characterization of p-n heterojunction photocatalyst p-CuBi2O4/n-TiO2 with high photocatalytic activity under visible and UV light irradiation [J]. J. Nanopart. Res., 2010, 12(4): 1355-1366.
    [149] Chang. X. F., Huang. J., Cheng. C., et al. BiOX(X=CI,Br,I) photocatalysts prepared using NaBiO3 as the Bi source:characterization and catalytic performance [J]. Catal. Commun., 2010, 11(5): 460-464.
    [150] Wu. S. J., Wang. C., Cui. Y. F., et al. Synthesis and photocatalytic properties of BiOCl nanowire arrays [J]. Mater. Lett., 2010, 64(2): 115-118.
    [151] Zhang. L., Wang. W. Z., Zhou. L., et al. Fe3O4 Coupled BiOCl A Highly Effieient Magnetic Photocatalyst [J]. Appl. Catal. B: Environ., 2009, 90(3-4): 458-462.
    [152] Zhang. X., Zhang. L., Xie. T. F., et al. Low-Temperature Synihesis and High Visible-Light-Induced photocatalytic Activity of BiOI/TiO2 Heterostructures [J]. J. Phys.Chem. C., 2009, 113(17): 7371-7378.
    [153] Zheng. Y., Duan. F., Chen. M. Q., et al. Sythetic Bi2O2CO3 nanostructures: Novel photocatalys with conirolled special surface exposed [J]. J. Mol. Catal. A: Chem., 2010, 317(l-2): 34-40.
    [154] Chen. R. G., Bi. J. H., Wu. L., et al. Template-Free Hydrothermal Synthesis and Photocatalytic Performances of Novel Bi2SiO5 Nanosheets [J]. Inorg. Chem., 2009, 48(19): 9072-9076.
    [155] Li. L. S., Cao. R. G., Wang. Z, J., et al. TemPlate Synthesis of Hierarchical Bi2E3(E=S,Se,Te) Core-Shell MierosPheres and Their Electrochemical and Photoresponsive Properties [J]. J. Phys. Chem. C., 2009, 113(42): 18075-18081.
    [156] Zhang. K. L., Liu. C. M., Huang. F. Q., et al. Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst [J]. Appl. Catal. B: Environ., 2006, 68(3-4): 125-129.
    [157] Chang. X. F., Huang. J., Cheng. C., et al. BiOX(X=CI,Br,I) photocatalysts prepared using NaBiO3 as the Bi source: characterization and catalytic performance [J]. Catal. Commun., 2010, 11(5): 460-464.
    [158] Wu. S. J., Wang. C., Cui. Y. F., et al. Synthesis and photocatalytic properties of BiOCl nanowire arrays [J]. Mate. Lett., 2010, 64(2): 115-118.
    [159] Maeda. K., Teramura. K., Lu. D., et al. Photocatalyst releasing hydrogen from water [J]. Nature, 2006, 440: 295.
    [160] Regan. O. B., Gratzel. M. A low-cost,high-efficiency solar cell based on dye-sensitized colloidal TiO2 films [J]. Nature, 1991, 353: 737-740.
    [161] Peill. N. J., Hoffmann. M. R. Chemical and Physical Characterization of a TiO2-Coated Fiber Optic Cable Reactor [J]. Environ. Sci. Technol., 1996, 30(9): 2806-2812.
    [162] Ollis. D. F., Pelizzetti. E., Serpone. N. Photocatalyzed destruction of water contaminants [J]. Environ. Sci. Technol., 1991, 25(9): 1522-1529.
    [163] Gralzel. C. K., Jirousek. M., Gralzel. M. Decomposition of organophosphorus compounds on photoactivated TiO2 surfaces [J]. J. Mol. Catal., 1990, 60(3): 375-387.
    [164] Chen. S. F., Zhao. M. Y., Tao. Y. W. Photocatalytic Degradation of Organophosphoros Pesticides Using TiO2 Supported on Fiberglass [J]. Microchem. J., 1996, 54(1): 54-58.
    [165] Li. H. X., Bian. Z. F., Zhu. J., et al. Mesoporous Titania Spheres with Tunable Chamber Stucture and Enhanced Photocatalytic Activity [J]. J. Am. Chem. Soc., 2007, 129(27): 8406-8407.
    [166] Vinodgopal. K., Kamat. P. V. Enhanced Rates of Photocatalytic Degradation of an Azo Dye Using SnO2/TiO2 Coupled Semiconductor Thin Films [J]. Environ. Sci. Technol., 1995, 29(3): 841-845.
    [167] Tennakone. K., Ketipearachchi. U. S. Photocatalytic method for removal of mercury from contaminated water [J]. Appl. Catal. B: Environ., 1995, 5(4): 343-349.
    [168] Matsunaga. T., Okochi. M. TiO2-Mediated Photochemical Disinfection of Escherichia coli Using Optical Fibers [J]. Environ. Sci. Technol., 1995, 29(9): 501-505.
    [169] Wei. C., Lin. W. Y., Zainal. Z. Bactericidal Activity of TiO2 Photocatalyst in Aqueous Media: Toward a Solar-Assisted Water Disinfection System [J]. Environ. Sci. Technol., 1994,28(5): 934-938.
    [170] Sjogren. J. C., Sierka. R. A. Inactivation of Phage MS2 by Iron-Aided Titanium Dioxide Photocatalysis [J]. Appl. Environ. Microbiol., 1994, 60(1): 344-347.
    [171] Cai. R., Hashimoto. K., Kubota. Y. Increment of Photocatalytic Killing of Cancer Cells Using TiO2 with the Aid of Superoxide Dismutase [J]. Chem. Lett., 1992, 21(3): 427.
    [172] Yue. P. L., Khan. F., Rizzuti. L. Photocatalytic ammonia synthesis in a fluidised bed reactor [J]. Chemical Engineering Science, 1983, 38(11): 1893-1900.
    [173] Wang. R., Hashimoto. K., Fujishima. A. et al., Light-induced amphiphilic surfaces [J]. Nature, 1997, 388(6641): 431-432.
    [174] Caruso. F., Caruso. R. A., Mohwald. H. Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating [J]. Science, 1998, 282(5391): 1111-1114.
    [175] Mathiowitz. E., Jacob. J. S., Jong. Y. S., et al. Biologically erodable microspheres as potential oral drug delivery systems [J]. Nature, 1997, 386, 410-414.
    [176] Lou. X. W., Wang. Y., Yuan. C., et al. Template-Free Synthesis of SnO2 Hollow Nanostructures with High Lithium Storage Capacity [J]. Adv. Mater., 2006, 18(17): 2325-2329.
    [177] Kim. S. W., Kim. M., Lee. W. Y., et al. Fabrication of Hollow Palladium Spheres and Their Successful Application to the Recyclable Heterogeneous Catalyst for Suzuki Coupling Reactions [J]. J. Am. Chem. Soc., 2002, 124(26): 7642-7643.
    [178] Zhang. H. G., Zhu. Q. S., Zhang. Y., et al. One-Pot Synthesis and Hierarchical Assembly of Hollow Cu2O Microspheres with Nanocrystals-Composed Porous Multishell and Their Gas-Sensing Properties [J]. Adv. Funct. Mater., 2007, 17(15): 2766-2771.
    [179] Chen. J., Saeki. F. B., Wiley. J., et al. Gold Nanocages: Bioconjugation and Their Potential Use as Optical Imaging Contrast Agents [J]. Nano Lett., 2005, 5(3): 473-477.
    [180] Wolosiuk. A., Armagan. O., Braun. P. V. Double Direct Templating of Periodically Nanostructured ZnS Hollow Microspheres [J]. J. Am. Chem. Soc., 2005, 127(47): 16356-16357.
    [181] Zhang. D. B., Qi. L. M., Ma. J. M., et al. Synthesis of Submicrometer-Sized Hollow Silver Spheres in Mixed Polymer-Surfactant Solutions [J]. Adv. Mater., 2002, 14(20): 1499-1502.
    [182] Jeong. U. Y., Xia. Y. N. Photonic Crystals with Thermally Switchable Stop Bands Fabricated from Se@Ag2Se Spherical Colloids [J]. Angew. Chem., Int. Ed., 2005, 44(20): 3099-3163.
    [183] Li. J., Zeng. H. C. Size Tuning, Functionalization, and Reactivation of Au in TiO2 Nanoreactors [J]. Angew. Chem., Int. Ed. 2005, 44(28): 4342-4345.
    [184] Lou. X. W., Archer. L. A., Yang. Z. C. Hollow Micro-/Nanostructures: Synthesis and Applications [J]. Adv. Mater., 2008, 20(21): 3987-4019.
    [185] Jia. C. J., Sun. L. D., Yan. Z. G., et al. Single-crystalline iron oxide nanotubes [J]. Angew. Chem., Int. Ed., 2005, 44(28): 4328-4333.
    [186] David. W. I. F., Wood. I. G. Ferroelastic phase transition in BiVO4: VI. Some comments on the relationship between spontaneous deformation and domain walls in ferroelastics [J]. J. Phys. C: Solid State Phys., 1983, 16(26): 5149.
    [187] Hirota. K., Komatsu, G.., Yamashita. M., et al. Formation, characterization and sintering of alkoxy-derived bismuth vanadate [J]. Mater. Res. Bull., 1992, 27(7): 823-830.
    [188] Zhao. Y., Xie. Y., Zhu. X., et al. Surfactant-Free Synthesis of Hyperbranched Monoclinic Bismuth Vanadate and its Applications in Photocatalysis, Gas Sensing, and Lithium-Ion Batteries [J]. Chem. A. Eur. J., 2008, 14(5): 1601-1606.
    [189] Zhang. L., Chen. D. R., Jiao. X. L. Monoclinic Structured BiVO4 Nanosheets: Hydrothermal Preparation, Formation Mechanism, and Coloristic and Photocatalytic Properties [J]. J. Phys. Chem. B., 2006, 110(6): 2668-2673.
    [190] Kudo. A., Omori. K., Kato. H. A Novel Aqueous Process for Preparation of Crystal Form-Controlled and Highly Crystalline BiVO4 Powder from Layered Vanadates at Room Temperature and Its Photocatalytic and Photophysical Properties [J]. J. Am. Chem. Soc., 1999, 121(49): 11459-11467.
    [191] Li. G. S., Zhang. D. Q., Yu. J. C. Ordered Mesoporous BiVO4 through Nanocasting: A Superior Visible Light-Driven Photocatalyst [J]. Chem. Mater., 2008, 20(12): 3983-3992.
    [192] Tokunaga. S., Kato. H., Kudo. A. Selective Preparation of Monoclinic and Tetragonal BiVO4 with Scheelite Structure and Their Photocatalytic Properties [J]. Chem. Mater., 2001, 13(12): 4624-4628.
    [193] Zhou. L., Wang. W. Z., Liu. S. W., et al. A sonochemical route to visible-light-driven high-activity BiVO4 photocatalyst [J]. J. Mol. Catal. A., 2006, 252(1-2): 120-124.
    [194] Zhou. L., Wang. W. Z., Xu. H. L. Controllable Synthesis of Three-Dimensional Well-Defined BiVO4 Mesocrystals via a Facile Additive-Free Aqueous Strategy [J]. Cryst. Growth Des., 2008, 8(2): 728-733.
    [195] Ma. D. K., Wang. S., Cai. P., et al. Self-assembled Three-dimensional Hierarchical BiVO4 Microspheres from Nanoplates: Malic Acid-assisted Hydrothermal Synthesis and Photocatalytic Activities [J]. Chem. Lett., 2009, 38(10): 962.
    [196] Xi. G. C., Ye. J. H. Synthesis of bismuth vanadate nanoplates with exposed {001} facets and enhanced visible-light photocatalytic properties [J]. Chem. Commun., 2010, 46(11): 1893-1895.
    [197] Zhang. X., Ai. Z. H., Jia. F. L., et al. Selective synthesis and visible-light photocatalytic activities of BiVO4 with different crystalline phases [J]. Mater. Chem. Phys., 2007, 103(1): 162-167.
    [198] Li. L. Z., Yan. B. Enhanced photocatalytic activity for degradation of methylene blue over V2O5/BiVO4 composite [J]. J. Alloys Compd., 2009, 479(1-2): 821-827.
    [199] Zhao. W., Ma. W., Zhao. J., et al. Efficient degradation of toxic organic pollutants with Ni2O3/TiO2-xBx under visible irradiation [J]. J. Am. Chem. Soc., 2004, 126(15): 4782-4783.
    [200] Bandara. J., Udawatta. C. P. K.,Rajapakse. C. S. K. Highly stable CuO incorporated TiO2 catalyst for photocatalytic hydrogen production from H2O [J].Photochem. Photobiol. Sci., 2005, 4(11): 857-861.
    [201] Chen. Y. S., Crittenden. J. C., Hackney. S., et al. Preparation of a Novel TiO2-Based p-n Junction Nanotube Photo-catalyst [J]. Environ. Sci. Tech., 2005, 39 (5): 1201-1208.
    [202] Hwang. D. W., Cha. K. Y., Kim. J. Photocatalytic degradation of CH3Cl over a nickel-loaded layered perovskite [J]. Ind. Eng. Chem. Res., 2003, 42(6): 1184-1189.
    [203]靳治良,吕功煊.光催化分解水制氢研究进展[J].分子催化, 2004, 18(4): 310-320.
    [204] Kim. H. G., Borse. P. H., Lee. J. S., et al. Photocatalytic nanodiodes for visible-light photocatalysis [J]. Angew. Chem. Int. Ed., 2005, 44(29): 4585-4589.
    [205] Long. M., Cai. W., Cai. J., et al. Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation [J]. J. Phys. Chem. B., 2006, 110(41): 20211-20216.
    [206] Li. L. Z., Yan. B. BiVO4/Bi2O3 submicrometer sphere composite: Microstructure and photocatalytic activity under visible-light irradiation [J]. J. Alloys Compd, 2009, 476(1-2): 624-628.
    [207] Wang. C. H., Shao. C. L., Wang. L. J., et al. Electrospinning preparation, characterization and photocatalytic properties of Bi2O3 nanofibers [J]. J. Colloid Interf. Sci., 2009, 333(1): 242-248.
    [208] Jiang. X. C., Wang. Y. L., Herricks. T., et al. Ethylene glycol-mediated synthesis of metal oxide nanowires [J]. J. Mater. Chem., 2004, 14(4): 695-703.
    [209] Scott. R. W. J., Coombs, N., Ozin. G. A. J. Non-aqueous synthesis of mesostructured tin dioxide [J]. Mater. Chem., 2003, 13: 969-974.
    [210] Ma. D. K., Huang. S. M., Chen. W. X., et al. Self-Assembled Three-Dimensional Hierarchical Umbilicate Bi2WO6 Microspheres from Nanoplates: Controlled Synthesis, Photocatalytic Activities, and Wetability [J]. J. Phys. Chem. C., 2009, 113(11): 4369-4374.
    [211] Liu. Z. P., Peng. S., Xie. Q., et al. Large-Scale Synthesis of Ultralong Bi2S3 Nanoribbons via a Solvothermal Process [J]. Adv. Mater., 2003, 15(11): 936-940.
    [212] Yao. W. T., Yu. S. H., Pan. L., et al. Flexible Wurtzite-Type ZnS Nanobelts with Quantum-Size Effects: a Diethylenetriamine-Assisted Solvothermal Approach [J]. Small, 2005, 1(3): 320-325.
    [213] Yao. W. T., Yu. S. H., Huang. X. Y., et al. Nanocrystals of an Inorganic-Organic Hybrid Semiconductor: Formation of Uniform Nanobelts of ZnSe (Diethylenetriamine) 0.5 in a Ternary Solution [J]. Adv. Mater., 2005, 17(23): 2799-2802.
    [214] Zhou. L., Wang. W. Z., Zhang. L. S., et al. Single-Crystalline BiVO4 Microtubes with Square Cross-Sections: Microstructure, Growth Mechanism, and Photocatalytic Property [J]. J. Phys. Chem. C., 2007, 111(37): 13659.
    [215] Zhang. L. S., Wang. W. Z., Yang. J., et al. Sonochemical synthesis of nanocrystallite Bi2O3 as a visible-light-driven photocatalyst [J]. Appl. Catal. A., 2006, 308: 105-110.
    [216] Zhang. C., Zhu. Y. F. Synthesis of Square Bi2WO6 Nanoplates as High-Activity Visible-Light-Driven Photocatalysts [J]. Chem. Mater., 2005, 17(13): 3537-3545.
    [217] Bulter. M. A., Ginley. D. S. Prediction of Flatband Potentials at Semiconductor-Electrolyte Interfaces from Atomic Electronegativities [J]. J. Electrochem. Soc., 1978, 125(2): 228-232.
    [218] Prevot. A. B., Basso. A., Baiocchi. C., et al. Analytical control of photocatalytic treatments: Degradation of a sulfonated azo dye [J]. Anal. Bioanal. Chem, 2004, 378: 214-220.
    [219] Ameta. S. C., Chaudhary. R., Ameta. R., et al. Photocatalysis: A promising technologyfor wastewater treatment [J]. J. Indian Chem. Soc., 2003, 80: 257-265.
    [220] Friesen. D. A., Headley. J. V., Langford. C. H. The photooxidative degradation of N-methylpyrrolidinone in the presence of Cs3PW12O40 and TiO2 colloid photocatalysts [J]. Environ. Sci. Technol., 1999, 33: 3193-3198.
    [221] Yang. H. G., Liu. G., Qiao. S. Z., et al. Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant {001} facets [J]. J. Am. Chem. Soc., 2009, 131: 4078-4084.
    [222] Liu. G., Yang. H. G., Wang. X. W., et al. Visible light responsive nitrogen doped anatase TiO2 sheets with dominant {001} facets derived from TiN [J]. J. Am. Chem. Soc., 2009, 131: 12868-12869.
    [223] Bian. Z. F., Zhu. J., Wang. S. H., et al. Self-assembly of active Bi2O3/TiO2 visible photocatalyst with ordered mesoporous structure and highly crystallized anatase [J]. J. Phys. Chem. C., 2008, 112: 6258-6262.
    [224] Zaleska. A., Sobczak. J. W., Grabowska. E., et al. Preparation and photocatalytic activity of boron-modified TiO2 under UV and visible light [J]. Appl. Catal. B., 2008, 78: 92-100.
    [225] Bessekhouad. Y., Robert. D., Weber. J. V. Photocatalytic activity of Cu2O/TiO2, Bi2O3/TiO2, and ZnMn2O4/TiO2 heterojunctions [J]. Catal. Today., 2005, 101: 315-321.
    [226] Gombac. V., Rogatis. L. D., Gasparotto. A., et al. TiO2 nanopowders doped with boron and nitrogen for photocatalytic applications [J]. Chem. Phys., 2007, 339: 111-123.
    [227] Zhang. F., Wong. S. S. Controlled synthesis of semiconducting metal sulfide nanowires [J]. Chem. Mater., 2009, 21: 4541-4554.
    [228] Muruganandham. M., Kusumoto. Y. Synthesis of N, C codoped hierarchical porous microsphere ZnS as a visible light-responsive photocatalyst [J]. J. Phys. Chem. C., 2009, 113: 16144-16150.
    [229] Bao. H., Li. C. M., Cui. X. Q., et al. Synthesis of a highly ordered single-crystalline Bi2S3 nanowire array and its metal/semiconductor/metal back-to-back Schottky diode [J]. Small, 2008, 4: 1125-1129.
    [230] Rabin. O., Perez. J. M., Grimm. J., et al. An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles [J]. Nat. Mater., 2006, 5: 118-122.
    [231] Cademartiri. L., Scotognella. F., O’Brien. P. G., et al. Cross-linking Bi2S3 ultrathin nanowires: A platform for nanostructure formation and biomolecule detection [J]. Nano Lett., 2009, 9: 1482-1486.
    [232] Yao. K., Gong. W. W., Hu. Y. F., et al. Individual Bi2S3 nanowire-based room-temperature H2 sensor [J]. J. Phys. Chem. C., 2008, 112: 8721-8724.
    [233] Li. L. S., Sun. N. J., Huang. Y. Y., et al. Topotactic transformation of single-crystalline precursor discs into disc-like Bi2S3 nanorod networks [J]. Adv. Funct. Mater., 2008, 18: 1194-1201.
    [234] Bao. H. F., Li. C. M., Cui. X. Q., et al. Single-crystalline Bi2S3 nanowire network film and its optical switches [J]. Nanotechnology, 2008, 19: 335302.
    [235] Albuquerque. R., Neves. M. C., Mendonca. M. H., et al. Adsorption and catalyticproperties of SiO2/Bi2S3 nanocomposites on the methylene blue photodecolorization process [J]. Colloids Surf. A., 2008, 328: 107-113. nanocrystals with various morphologies [J]. J. Phys. Chem. C., 2008, 12:5322-5327.
    [236] Liu. X. W., Fang. Z., Zhang. X. J., et al. Preparation and characterization of Fe3O4/CdS nanocomposites and their use as recyclable photocatalysts [J]. Cryst. Growth Des., 2009, 9: 197-202.
    [237]天津大学.无机化学.第3版[M].北京:高等教育出版社, 2002. 1506-5071.
    [238] Tang. J. W., Zou. Z. G., Ye. J. H. J. Photophysical and Photocatalytic Properties of AgInW2O8 [J]. Phys. Chem. B., 2003, 107(51): 14265-14269.
    [239] Boullay. P., Trolliard. G., Mercurio. D. Toward a unified approach to the crystal chemistry of aurivillius-type compounds [J]. J. Solid State Chem., 2002, 164(2): 252-260.
    [240] Shi. Y. H., Feng. S. H., Cao. C. S. Hydrothermal synthesis and characterization of Bi2MoO6 and Bi2WO6 [J]. Mater. Lett., 2000, 44(3-4): 215-218.
    [241] Rangel. R., Bartolo-Perez. P., Gomez-Cortetz. A., et al. Study of microstructure and catalytic activity of Bi2MoO6 and Bi2WO6 compounds [J]. Surf. Rev. Lett., 2002, 9: 1779-1783.
    [242] Yang. Y. J., C. hen. J. L., Wang. Y. C., et al. Synthesis and Characterization of Catalyst Bi2WO6 and its Photocatalytic Activity [J]. Environ. Protec. Chem. Ind., 2007, 27(6): 501-505.
    [243] Xie. L. J., Ma. J. F., Zho u. J., et al. Morphologies-controlled synthesis and optical properties of bismuth tungstate nanocrystals by a low-temperature molten salt method [J]. J. Am. Cera. Soc, 2006, 89(5): 1717-1720.
    [244] Wu. J., Duan. F., Zheng. Y., et al. Synthesis of Bi2WO6 nanoplate-built hierarchical nest-like structures with visible-light-induced photocatalytic activity [J]. J. Phys. Chem. C., 2007, 111(34): 12866-12871.
    [245] Li. Y. Y., Liu. J. P., Huang. X. T., et al. Hydrothermal synthesis of Bi2WO6 uniform hierarchical microspheres [J]. Cryst. Growth Des., 2007, 7(7): 1350-1355.
    [246] Zhang. L. H., Wang. W. Z., Chen. Z. G., et al. Fabrication of flower-like Bi2WO6 superstructures as high performance visible-light driven photocatalysts [J]. J. Mater. Chem., 2007, 17(24): 2526-2532.
    [247] Lee. C. K., Sim. L. T., Coats. A. M., et al. On possible Cu doping of Bi2WO6 [J]. J. Mater. Chem., 2001, 11(4): 1096-1099.
    [248] Xiao. Q., Zhang. J., Xiao. C., et al. Photocatalytic degradation of methylene blue over Co3O4/Bi2WO6 composite under visible light irradiation [J]. Catal. Commun., 2008, 9(6): 1247-1253.
    [249]沈伟韧,赵文宽,贺飞等. TiO2光催化反应及其在废水处理中的应用[J].化学进展, 1998, 4: 3.
    [250]胥利先,马重芳,桑丽霞,李群伟等.高效可见光光催化分解水制氢催化剂InVO4/CNTs [J].催化学报, 2007, 28(l2): 1083.
    [251] Shi. Y. H., Feng. S. H., Cao. C. S. Hydrothermal synthesis and characterization of Bi2MoO6 and Bi2WO6 [J]. Mater. Lett., 2000, 44(3-4), 215-218.
    [252] Li. W., Liang C., Zhou W., et al. Preparation and characterization of multiwalledcarbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells [J]. J. Phys. Chem. B., 2003, 107(26): 6292. [253 ] Xu. B., Zhang. W. D. Modification of vertically aligned carbon nanotubes with RuO2 for a solid-state pH sensor [J]. Electrochim. Acta, 2010, 55(8): 2859-2864.
    [254] Zhang. W. D., Xu. B., Jiang. L. C. Functional hybrid materials based on carbon nanotubes and metal oxides [J]. J. Mater. Chem., 2010, 20(31): 6383-6391.
    [255] Wang. W. D., Serp. P., Kalck. P., et al. Visible light photodegradation of phenol on MWNT-TiO2 composite catalysts prepared by a modified sol–gel method [J]. J. Mol. Catal. A: Chem.,2005, 235(1-2): 194-199.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700