淀粉样肽前体蛋白对容量性钙内流调节作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阿尔茨海默氏症(Alzheimer’s Disease,AD)是一种神经退行性疾病。它包括两个病理特征:淀粉样斑和神经纤维缠结。淀粉样斑的主要成分是淀粉样肽(Amyloidβ,Aβ),它由淀粉样肽前体蛋白(Amyloid Precursor Protein,APP)在β分泌酶和γ分泌酶切割下产生。
     本文研究了APP及其水解产物对于细胞容量性钙内流的作用,在此基础上对其作用机制进行了初步探讨。我们的研究结果显示:
     APP可以降低细胞的CCE。我们用稳定表达野生型人APP695的N2a细胞APPwt与野生型的N2a细胞进行比较,发现APPwt细胞的CCE显著降低,这说明人的APP695会引起细胞CCE的显著降低。我们分别用CCD系统和共聚焦系统证实了该结果。在敲除了APP基因的小鼠胚胎成纤维细胞中的实验证明,鼠的APP同样存在这种作用。
     我们的实验结果显示,APP分泌到胞外的水解产物sAPP对于细胞的CCE无显著的作用。综合β分泌酶抑制剂和γ分泌酶抑制剂的处理结果,我们推测APP的C端片断可能在CCE的下降中起重要作用。转入C99的细胞的CCE测定结果进一步证实了APP的C端片断会降低细胞的CCE。进一步的研究提示,APP的C端片断与G蛋白的相互作用可能在CCE降低中发挥重要作用。
     我们首次发现Aβ可以升高细胞的CCE,并发现其作用与Aβ在细胞膜上形成的通道密切相关。在APPswe细胞和APPwt细胞中均证实,Aβ的抗体可以引起细胞CCE的显著降低。这提示,Aβ会升高细胞的CCE。这一作用在γ分泌酶抑制剂的处理结果中得到了证实。用Aβ通道抑制剂氨丁三醇对细胞进行处理,其结果提示,Aβ在膜上形成的通道与Aβ引起的CCE升高密切相关。
     与此同时,我们在体内和体外水平探讨了Aβ通道抑制剂氨丁三醇在AD治疗中的可能作用。研究结果显示,低浓度的氨丁三醇不会影响细胞的存活。氨丁三醇会通过降低细胞内活性氧的水平减少细胞凋亡,从而起到保护细胞免受Aβ毒性作用的效果。体内的数据显示,氨丁三醇可以升高双转小鼠皮层内磷酸化erk1/2的水平,但其作用和机理还需要进行进一步的探讨。
Alzheimer’s disease (AD) is a progressive dementia affecting a large proportion of aging people. AD is characterized by two hallmark brain lesions, i.e. extracellular deposits of amyloidβ(Aβ) and intracellular neurofibrillary tangles. Aβis derived from the processing of Amyloid precursor protein (APP) byβsecretase andγsecretase.
     In the present study, we focused on the study of the effect of APP and its proteolytic fragments on capacitative calcium entry (CCE). Following are the main content of the thesis:
     (1) We compared the CCE in N2a cells stably expressing human APP695 (APPwt) with its wild type counterparts, and found that CCE was depressed in APPwt cells. Experiments using CCD and confocal laser scanning microscope got the same results. We can drawed the conclusion that APP depresses CCE. APP knock-out mouse embryo fibroblast cells have an increased CCE compared to its wild type controls, which suggests that mouse APP has the same CCE depression effect as human APP695.
     (2) Our results showed that sAPPs do not affect CCE.βsecretase inhibitor couldn’t change CCE in APPwt cells, whileγsecretase inhibitor depress CCE in APPwt cells. It’s suggested that C-terminal of APP may involved in APP caused CCE depression. We further demonstrated the role of C-terminal of APP in CCE modulation in N2a cells overexpressing C-terminal fragments of APP. Further experiments suggested that the interaction of APP and G protein may contribute to the APP caued CCE depression.
     (3) In contrast to APPwt cells, N2a cells stably expressing Swedish mutant APP (APPswe) has a potentiated CCE compared to wild type N2a cells. Anti-Aβantibody can depress CCE in both APPswe and APPwt cells, which suggested that Aβcan potentiate CCE. This conclusion can be also demonstrated inγsecretase inhibitor treatment experiment. It has been reported that Aβforms calcium permeable channels on the cell membrane. We treated the cells with an Aβchannel blocker, tromethamine. The results showed that tromethamine can significantly depress Aβcaused CCE potentiation.
     (4) We further discuss the potential role of tromethamine in AD therapy. Low concentration of tromethamine can not affect the cell viability. Tromethamine could depress cell ROS, and that may be the way through which it affects cell apoptosis and protects the cells from Aβtoxity. In vivo experiments showed that tromethamine could increase the level of phosphoralate erk protein. The mechanisms need further study.
引文
[1] Alzheimer A.über eine eigenartige Erkrankung der Hirn-rinde. Allg Z Psychiatr, 1907, 64:146.
    [2] Kraepelin E. Psychiatrie. Ein Lehrbuch für Studierende und Arzte. II. Band: Klinische Psychiatrie, Johann Ambrosius Barth, Leipzig, 1910.
    [3] Evans D A, Funkenstein H H, Albert M S, et al. Prevalence of Alzheimer's disease in a community population of older persons. Higher than previously reported. Jama, 1989, 262(18):2551-2556.
    [4] Group L. Saving Lives, Saving Money: Dividends for Americans Investing in Alzheimer Research. A report commissioned by the Alzheimer’s Association. Washington (DC) The Lewin Group. 2004.
    [5] Goedert M, Spillantini M G. A century of Alzheimer's disease. Science, 2006, 314(5800):777-781.
    [6] Mattson M P. Pathways towards and away from Alzheimer's disease. Nature, 2004, 430(7000):631-639.
    [7] Terry R D. The Fine Structure Of Neurofibrillary Tangles In Alzheimer's Disease. J Neuropathol Exp Neurol, 1963, 22:629-642.
    [8] Kidd M. Paired helical filaments in electron microscopy of Alzheimer's disease. Nature, 1963, 197:192-193.
    [9] Terry R D, Masliah E, Hansen L A. Alzheimer Disease. Philadelphia: Lippincott Williams & Wilkins, 1999.
    [10] Terry R D, Masliah E, Salmon D P, et al. Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol, 1991, 30(4):572-580.
    [11] Crystal H, Dickson D, Fuld P, et al. Clinico-pathologic studies in dementia: nondemented subjects with pathologically confirmed Alzheimer's disease. Neurology, 1988, 38(11):1682-1687.
    [12] Arriagada P V, Growdon J H, Hedley-Whyte E T, et al. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer's disease. Neurology, 1992, 42(3 Pt 1):631-639.
    [13] Gomez-Isla T, Hollister R, West H, et al. Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer's disease. Ann Neurol, 1997, 41(1):17-24.
    [14] Masters C L, Simms G, Weinman N A, et al. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci U S A, 1985, 82(12):4245-4249.
    [15] Scheff S W, Price D A. Synapse loss in the temporal lobe in Alzheimer's disease. Ann Neurol, 1993, 33(2):190-199.
    [16] St George-Hyslop P H, Tanzi R E, Polinsky R J, et al. The genetic defect causing familial Alzheimer's disease maps on chromosome 21. Science, 1987, 235(4791):885-890.
    [17] Goate A, Chartier-Harlin M C, Mullan M, et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature, 1991, 349(6311):704-706.
    [18] Giaccone G, Tagliavini F, Linoli G, et al. Down patients: extracellular preamyloid deposits precede neuritic degeneration and senile plaques. Neurosci Lett, 1989, 97(1-2):232-238.
    [19] Mann D M. Cerebral amyloidosis, ageing and Alzheimer's disease; a contribution from studies on Down's syndrome. Neurobiol Aging, 1989, 10(5):397-399.
    [20] Lemere C A, Blusztajn J K, Yamaguchi H, et al. Sequence of deposition of heterogeneous amyloid beta-peptides and APO E in Down syndrome: implications for initial events in amyloid plaque formation. Neurobiol Dis, 1996, 3(1):16-32.
    [21] Peacock M L, Murman D L, Sima A A, et al. Novel amyloid precursor protein gene mutation (codon 665Asp) in a patient with late-onset Alzheimer's disease. Ann Neurol, 1994, 35(4):432-438.
    [22] Mullan M, Crawford F, Axelman K, et al. A pathogenic mutation for probable Alzheimer's disease in the APP gene at the N-terminus of beta-amyloid. Nat Genet, 1992, 1(5):345-347.
    [23] Peacock M L, Warren J T, Jr., Roses A D, et al. Novel polymorphism in the A4 region of the amyloid precursor protein gene in a patient without Alzheimer's disease. Neurology, 1993, 43(6):1254-1256.
    [24] Janssen J C, Beck J A, Campbell T A, et al. Early onset familial Alzheimer's disease: Mutation frequency in 31 families. Neurology, 2003, 60(2):235-239.
    [25] Wakutani Y, Watanabe K, Adachi Y, et al. Novel amyloid precursor protein gene missense mutation (D678N) in probable familial Alzheimer's disease. J Neurol Neurosurg Psychiatry, 2004, 75(7):1039-1042.
    [26] Kumar-Singh S, Cras P, Wang R, et al. Dense-core senile plaques in the Flemish variant of Alzheimer's disease are vasocentric. Am J Pathol, 2002, 161(2):507-520.
    [27] Hendriks L, van Duijn C M, Cras P, et al. Presenile dementia and cerebral haemorrhage linked to a mutation at codon 692 of the beta-amyloid precursor protein gene. Nat Genet, 1992, 1(3):218-221.
    [28] Kamino K, Orr H T, Payami H, et al. Linkage and mutational analysis of familial Alzheimer disease kindreds for the APP gene region. Am J Hum Genet, 1992, 51(5):998-1014.
    [29] Nilsberth C, Westlind-Danielsson A, Eckman C B, et al. The 'Arctic' APP mutation (E693G) causes Alzheimer's disease by enhanced Abeta protofibril formation. Nat Neurosci, 2001, 4(9):887-893.
    [30] Van Broeckhoven C, Haan J, Bakker E, et al. Amyloid beta protein precursor gene and hereditary cerebral hemorrhage with amyloidosis (Dutch). Science, 1990, 248(4959):1120-1122.
    [31] Tagliavini F, Rossi G, Padovani A. A new APP mutation related to hereditary cerebral haemorrhage. Alzheimer's Reports, 1999, 2:S28.
    [32] Grabowski T J, Cho H S, Vonsattel J P, et al. Novel amyloid precursor protein mutation in an Iowa family with dementia and severe cerebral amyloid angiopathy. Ann Neurol, 2001, 49(6):697-705.
    [33] Jones C T, Morris S, Yates C M, et al. Mutation in codon 713 of the beta amyloid precursor protein gene presenting with schizophrenia. Nat Genet, 1992, 1(4):306-309.
    [34] Kumar-Singh S, De Jonghe C, Cruts M, et al. Nonfibrillar diffuse amyloid deposition due to a gamma(42)-secretase site mutation points to an essential role for N-truncated A beta(42) in Alzheimer's disease. Hum Mol Genet, 2000, 9(18):2589-2598.
    [35] Pasalar P, Najmabadi H, Noorian A R, et al. An Iranian family with Alzheimer's disease caused by a novel APP mutation (Thr714Ala). Neurology, 2002, 58(10):1574-1575.
    [36] Ancolio K, Dumanchin C, Barelli H, et al. Unusual phenotypic alteration of beta amyloid precursor protein (betaAPP) maturation by a new Val-715 --> Met betaAPP-770 mutation responsible for probable early-onset Alzheimer's disease. Proc Natl Acad Sci U S A, 1999, 96(7):4119-4124.
    [37] De Jonghe C, Esselens C, Kumar-Singh S, et al. Pathogenic APP mutations near the gamma-secretase cleavage site differentially affect Abeta secretion and APP C-terminal fragment stability. Hum Mol Genet, 2001, 10(16):1665-1671.
    [38] Cruts M, Dermaut B, Rademakers R, et al. Novel APP mutation V715A associated with presenile Alzheimer's disease in a German family. J Neurol, 2003, 250(11):1374-1375.
    [39] Eckman C B, Mehta N D, Crook R, et al. A new pathogenic mutation in the APP gene (I716V) increases the relative proportion of A beta 42(43). Hum Mol Genet, 1997, 6(12):2087-2089.
    [40] Murrell J, Farlow M, Ghetti B, et al. A mutation in the amyloid precursor protein associated with hereditary Alzheimer's disease. Science, 1991, 254(5028):97-99.
    [41] Chartier-Harlin M C, Crawford F, Houlden H, et al. Early-onset Alzheimer's disease caused by mutations at codon 717 of the beta-amyloid precursor protein gene. Nature, 1991, 353(6347):844-846.
    [42] Murrell J R, Hake A M, Quaid K A, et al. Early-onset Alzheimer disease caused by a new mutation (V717L) in the amyloid precursor protein gene. Arch Neurol, 2000, 57(6):885-887.
    [43] Kwok J B, Li Q X, Hallupp M, et al. Novel Leu723Pro amyloid precursor protein mutation increases amyloid beta42(43) peptide levels and induces apoptosis. Ann Neurol, 2000, 47(2):249-253.
    [44] Levy-Lahad E, Wasco W, Poorkaj P, et al. Candidate gene for the chromosome 1 familial Alzheimer's disease locus. Science, 1995, 269(5226):973-977.
    [45] Rogaev E I, Sherrington R, Rogaeva E A, et al. Familial Alzheimer's disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer's disease type 3 gene. Nature, 1995, 376(6543):775-778.
    [46] Sherrington R, Rogaev E I, Liang Y, et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature, 1995, 375(6534):754-760.
    [47] Annaert W G, Esselens C, Baert V, et al. Interaction with telencephalin and the amyloid precursor protein predicts a ring structure for presenilins. Neuron, 2001, 32(4):579-589.
    [48] Selkoe D J, Wolfe M S. In search of gamma-secretase: presenilin at the cutting edge. Proc Natl Acad Sci U S A, 2000, 97(11):5690-5692.
    [49] Zhang Z, Nadeau P, Song W, et al. Presenilins are required for gamma-secretase cleavage of beta-APP and transmembrane cleavage of Notch-1. Nat Cell Biol, 2000, 2(7):463-465.
    [50] Herreman A, Serneels L, Annaert W, et al. Total inactivation of gamma-secretase activity in presenilin-deficient embryonic stem cells. Nat Cell Biol, 2000, 2(7):461-462.
    [51] Pericak-Vance M A, Bebout J L, Gaskell P C, Jr., et al. Linkage studies in familial Alzheimer disease: evidence for chromosome 19 linkage. Am J Hum Genet, 1991, 48(6):1034-1050.
    [52] Schmechel D E, Saunders A M, Strittmatter W J, et al. Increased amyloid beta-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease. Proc Natl Acad Sci U S A, 1993, 90(20):9649-9653.
    [53] Strittmatter W J, Saunders A M, Schmechel D, et al. Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci U S A, 1993, 90(5):1977-1981.
    [54] Farrer L A, Cupples L A, Haines J L, et al. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. Jama, 1997, 278(16):1349-1356.
    [55] Blacker D, Haines J L, Rodes L, et al. ApoE-4 and age at onset of Alzheimer's disease: the NIMH genetics initiative. Neurology, 1997, 48(1):139-147.
    [56] Meyer M R, Tschanz J T, Norton M C, et al. APOE genotype predicts when--not whether--one is predisposed to develop Alzheimer disease. Nat Genet, 1998, 19(4):321-322.
    [57] Ballatore C, Lee V M, Trojanowski J Q. Tau-mediated neurodegeneration in Alzheimer's disease and related disorders. Nat Rev Neurosci, 2007, 8(9):663-672.
    [58] Glenner G G, Wong C W. Alzheimer's disease and Down's syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem Biophys Res Commun, 1984, 122(3):1131-1135.
    [59] Tsai J, Grutzendler J, Duff K, et al. Fibrillar amyloid deposition leads to local synaptic abnormalities and breakage of neuronal branches. Nat Neurosci, 2004, 7(11):1181-1183.
    [60] Grutzendler J, Helmin K, Tsai J, et al. Various dendritic abnormalities are associated with fibrillar amyloid deposits in Alzheimer's disease. Ann N Y Acad Sci, 2007, 1097:30-39.
    [61] Lambert M P, Barlow A K, Chromy B A, et al. Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci U S A, 1998, 95(11):6448-6453.
    [62] Conforti L, Adalbert R, Coleman M P. Neuronal death: where does the end begin? Trends Neurosci, 2007, 30(4):159-166.
    [63] Zapatero M D, Garcia de Jalon A, Pascual F, et al. Serum aluminum levels in Alzheimer's disease and other senile dementias. Biol Trace Elem Res, 1995, 47(1-3):235-240.
    [64] Tokutake S, Nagase H, Morisaki S, et al. Aluminium detected in senile plaques and neurofibrillary tangles is contained in lipofuscin granules with silicon, probably as aluminosilicate. Neurosci Lett, 1995, 185(2):99-102.
    [65] Pailler F M, Bequet D, Corbe H, et al. Aluminum, hypothetic cause of Alzheimer disease. Presse Med, 1995, 24(10):489-490.
    [66] Chen J X, Yan S D. Amyloid-beta-induced mitochondrial dysfunction. J Alzheimers Dis, 2007, 12(2):177-184.
    [67] Mattson M P, LaFerla F M, Chan S L, et al. Calcium signaling in the ER: its role in neuronal plasticity and neurodegenerative disorders. Trends Neurosci, 2000, 23(5):222-229.
    [68] Larson J, Lynch G, Games D, et al. Alterations in synaptic transmission and long-term potentiation in hippocampal slices from young and aged PDAPP mice. Brain Res, 1999, 840(1-2):23-35.
    [69] Chui D H, Tanahashi H, Ozawa K, et al. Transgenic mice with Alzheimer presenilin 1 mutations show accelerated neurodegeneration without amyloid plaque formation. Nat Med, 1999, 5(5):560-564.
    [70] Sulkava R, Wikstrom J, Aromaa A, et al. Prevalence of severe dementia in Finland. Neurology, 1985, 35(7):1025-1029.
    [71] Rocca W A, Hofman A, Brayne C, et al. Frequency and distribution of Alzheimer's disease in Europe: a collaborative study of 1980-1990 prevalence findings. The EURODEM-Prevalence Research Group. Ann Neurol, 1991, 30(3):381-390.
    [72] Zhang M Y, Katzman R, Salmon D, et al. The prevalence of dementia and Alzheimer's disease in Shanghai, China: impact of age, gender, and education. Ann Neurol, 1990, 27(4):428-437.
    [73] Fukunishi I, Hayabara T, Hosokawa K. Epidemiological surveys of senile dementia in Japan. Int J Soc Psychiatry, 1991, 37(1):51-56.
    [74] Hofman A, Rocca W A, Brayne C, et al. The prevalence of dementia in Europe: a collaborative study of 1980-1990 findings. Eurodem Prevalence Research Group. Int J Epidemiol, 1991, 20(3):736-748.
    [75] Lobo A, Dewey M, Copeland J, et al. The prevalence of dementia among elderly people living in Zaragoza and Liverpool. Psychol Med, 1992, 22(1):239-243.
    [76] Van Duijn C M, Clayton D G, Chandra V, et al. Interaction between genetic and environmental risk factors for Alzheimer's disease: a reanalysis of case-control studies. EURODEM Risk Factors Research Group. Genet Epidemiol, 1994, 11(6):539-551.
    [77] Heyman A, Wilkinson W E, Stafford J A, et al. Alzheimer's disease: a study of epidemiological aspects. Ann Neurol, 1984, 15(4):335-341.
    [78] Derrington D C. Head injury and Alzheimer's disease. Neurology, 1985, 35(10):1530-1531.
    [79] Mortimer J A, French L R, Hutton J T, et al. Head injury as a risk factor for Alzheimer's disease. Neurology, 1985, 35(2):264-267.
    [80] Roberson E D, Mucke L. 100 years and counting: prospects for defeating Alzheimer's disease. Science, 2006, 314(5800):781-784.
    [81] Geling A, Steiner H, Willem M, et al. A gamma-secretase inhibitor blocks Notch signaling in vivo and causes a severe neurogenic phenotype in zebrafish. EMBO Rep, 2002, 3(7):688-694.
    [82] Weiner H L, Frenkel D. Immunology and immunotherapy of Alzheimer's disease. Nat Rev Immunol, 2006, 6(5):404-416.
    [83] Bard F, Cannon C, Barbour R, et al. Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med, 2000, 6(8):916-919.
    [84] McLaurin J, Kierstead M E, Brown M E, et al. Cyclohexanehexol inhibitors of Abeta aggregation prevent and reverse Alzheimer phenotype in a mouse model. Nat Med, 2006, 12(7):801-808.
    [85] Tuszynski M H. Growth-factor gene therapy for neurodegenerative disorders. Lancet Neurol, 2002, 1(1):51-57.
    [86] Tuszynski M H, Thal L, Pay M, et al. A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nat Med, 2005, 11(5):551-555.
    [87] Townsend K P, Pratico D. Novel therapeutic opportunities for Alzheimer's disease: focus on nonsteroidal anti-inflammatory drugs. FASEB J, 2005, 19(12):1592-1601.
    [88] Wolozin B. A fluid connection: cholesterol and Abeta. Proc Natl Acad Sci U S A, 2001, 98(10):5371-5373.
    [89] Jacobsen J S, Reinhart P, Pangalos M N. Current concepts in therapeutic strategies targeting cognitive decline and disease modification in Alzheimer's disease. NeuroRx, 2005, 2(4):612-626.
    [90] Caporaso G L, Takei K, Gandy S E, et al. Morphologic and biochemical analysis of the intracellular trafficking of the Alzheimer beta/A4 amyloid precursor protein. J Neurosci, 1994, 14(5 Pt 2):3122-3138.
    [91] Schmechel D E, Goldgaber D, Burkhart D S, et al. Cellular localization of messenger RNA encoding amyloid-beta-protein in normal tissue and in Alzheimer disease. Alzheimer Dis Assoc Disord, 1988, 2(2):96-111.
    [92] Selkoe D J. Amyloid beta protein precursor and the pathogenesis of Alzheimer's disease. Cell, 1989, 58(4):611-612.
    [93] Greenfield J P, Gouras G K, Xu H. Cellular and molecular basis of beta-amyloid precursor protein metabolism. Front Biosci, 1998, 3:d399-407.
    [94] Tanaka S, Shiojiri S, Takahashi Y, et al. Tissue-specific expression of three types of beta-protein precursor mRNA: enhancement of protease inhibitor-harboring types in Alzheimer's disease brain. Biochem Biophys Res Commun, 1989, 165(3):1406-1414.
    [95] Ponte P, Gonzalez-DeWhitt P, Schilling J, et al. A new A4 amyloid mRNA contains a domain homologous to serine proteinase inhibitors. Nature, 1988, 331(6156):525-527.
    [96] Tanzi R E, McClatchey A I, Lamperti E D, et al. Protease inhibitor domain encoded by an amyloid protein precursor mRNA associated with Alzheimer's disease. Nature, 1988, 331(6156):528-530.
    [97] Oltersdorf T, Ward P J, Henriksson T, et al. The Alzheimer amyloid precursor protein. Identification of a stable intermediate in the biosynthetic/degradative pathway. J Biol Chem, 1990, 265(8):4492-4497.
    [98] Weidemann A, Konig G, Bunke D, et al. Identification, biogenesis, and localization of precursors of Alzheimer's disease A4 amyloid protein. Cell, 1989, 57(1):115-126.
    [99] Tomimoto H, Akiguchi I, Wakita H, et al. Ultrastructural localization of amyloid protein precursor in the normal and postischemic gerbil brain. Brain Res, 1995, 672(1-2):187-195.
    [100] Schubert W, Prior R, Weidemann A, et al. Localization of Alzheimer beta A4 amyloid precursor protein at central and peripheral synaptic sites. Brain Res, 1991, 563(1-2):184-194.
    [101] Shigematsu K, McGeer P L, McGeer E G. Localization of amyloid precursor protein in selective postsynaptic densities of rat cortical neurons. Brain Res, 1992, 592(1-2):353-357.
    [102] Hayashi H, Mizuno T, Michikawa M, et al. Amyloid precursor protein in unique cholesterol-rich microdomains different from caveolae-like domains. Biochim Biophys Acta, 2000, 1483(1):81-90.
    [103] Marchesi V T. An alternative interpretation of the amyloid Abeta hypothesis with regard to the pathogenesis of Alzheimer's disease. Proc Natl Acad Sci U S A, 2005, 102(26):9093-9098.
    [104] Esch F S, Keim P S, Beattie E C, et al. Cleavage of amyloid beta peptide during constitutive processing of its precursor. Science, 1990, 248(4959):1122-1124.
    [105] Vassar R, Bennett B D, Babu-Khan S, et al. Beta-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE. Science, 1999, 286(5440):735-741.
    [106] Hardy J, Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer's disease. Trends Pharmacol Sci, 1991, 12(10):383-388.
    [107] De Strooper B. Aph-1, Pen-2, and Nicastrin with Presenilin generate an active gamma-Secretase complex. Neuron, 2003, 38(1):9-12.
    [108] Edbauer D, Winkler E, Regula J T, et al. Reconstitution of gamma-secretase activity. Nat Cell Biol, 2003, 5(5):486-488.
    [109] Zheng H, Jiang M, Trumbauer M E, et al. beta-Amyloid precursor protein-deficient mice show reactive gliosis and decreased locomotor activity. Cell, 1995, 81(4):525-531.
    [110] Heber S, Herms J, Gajic V, et al. Mice with combined gene knock-outs reveal essential and partially redundant functions of amyloid precursor protein family members. J Neurosci, 2000, 20(21):7951-7963.
    [111] von Koch C S, Zheng H, Chen H, et al. Generation of APLP2 KO mice and early postnatal lethality in APLP2/APP double KO mice. Neurobiol Aging, 1997, 18(6):661-669.
    [112] Mattson M P, Cheng B, Culwell A R, et al. Evidence for excitoprotective and intraneuronal calcium-regulating roles for secreted forms of the beta-amyloid precursor protein. Neuron, 1993, 10(2):243-254.
    [113] Small D H, Nurcombe V, Reed G, et al. A heparin-binding domain in the amyloid protein precursor of Alzheimer's disease is involved in the regulation of neurite outgrowth. J Neurosci, 1994, 14(4):2117-2127.
    [114] Schubert D, Jin L W, Saitoh T, et al. The regulation of amyloid beta protein precursor secretion and its modulatory role in cell adhesion. Neuron, 1989, 3(6):689-694.
    [115] Henry A, Li Q X, Galatis D, et al. Inhibition of platelet activation by the Alzheimer's disease amyloid precursor protein. Br J Haematol, 1998, 103(2):402-415.
    [116] White A R, Reyes R, Mercer J F, et al. Copper levels are increased in the cerebral cortex and liver of APP and APLP2 knockout mice. Brain Res, 1999, 842(2):439-444.
    [117] Wang P, Yang G, Mosier D R, et al. Defective neuromuscular synapses in mice lacking amyloid precursor protein (APP) and APP-Like protein 2. J Neurosci, 2005, 25(5):1219-1225.
    [118] Mucke L, Masliah E, Johnson W B, et al. Synaptotrophic effects of human amyloid beta protein precursors in the cortex of transgenic mice. Brain Res, 1994, 666(2):151-167.
    [119] Perez R G, Zheng H, Van der Ploeg L H, et al. The beta-amyloid precursor protein of Alzheimer's disease enhances neuron viability and modulates neuronal polarity. J Neurosci, 1997, 17(24):9407-9414.
    [120] Breen K C, Bruce M, Anderton B H. Beta amyloid precursor protein mediates neuronal cell-cell and cell-surface adhesion. J Neurosci Res, 1991, 28(1):90-100.
    [121] Chen M, Yankner B A. An antibody to beta amyloid and the amyloid precursor protein inhibits cell-substratum adhesion in many mammalian cell types. Neurosci Lett, 1991, 125(2):223-226.
    [122] Mok S S, Sberna G, Heffernan D, et al. Expression and analysis of heparin-binding regions of the amyloid precursor protein of Alzheimer's disease. FEBS Lett, 1997, 415(3):303-307.
    [123] Beher D, Hesse L, Masters C L, et al. Regulation of amyloid protein precursor (APP) binding to collagen and mapping of the binding sites on APP and collagen type I. J Biol Chem, 1996, 271(3):1613-1620.
    [124] Kibbey M C, Jucker M, Weeks B S, et al. beta-Amyloid precursor protein binds to the neurite-promoting IKVAV site of laminin. Proc Natl Acad Sci U S A, 1993, 90(21):10150-10153.
    [125] Storey E, Katz M, Brickman Y, et al. Amyloid precursor protein of Alzheimer's disease: evidence for a stable, full-length, trans-membrane pool in primary neuronal cultures. Eur J Neurosci, 1999, 11(5):1779-1788.
    [126] Chang K A, Suh Y H. Pathophysiological roles of amyloidogenic carboxy-terminal fragments of the beta-amyloid precursor protein in Alzheimer's disease. J Pharmacol Sci, 2005, 97(4):461-471.
    [127] Moya K L, Benowitz L I, Schneider G E, et al. The amyloid precursor protein is developmentally regulated and correlated with synaptogenesis. Dev Biol, 1994, 161(2):597-603.
    [128] Sisodia S S, Koo E H, Hoffman P N, et al. Identification and transport of full-length amyloid precursor proteins in rat peripheral nervous system. J Neurosci, 1993, 13(7):3136-3142.
    [129] Card J P, Meade R P, Davis L G. Immunocytochemical localization of the precursor protein for beta-amyloid in the rat central nervous system. Neuron, 1988, 1(9):835-846.
    [130] Masliah E, Mallory M, Ge N, et al. Amyloid precursor protein is localized in growing neurites of neonatal rat brain. Brain Res, 1992, 593(2):323-328.
    [131] Loffler J, Huber G. Beta-amyloid precursor protein isoforms in various rat brain regions and during brain development. J Neurochem, 1992, 59(4):1316-1324.
    [132] Clarris H J, Key B, Beyreuther K, et al. Expression of the amyloid protein precursor of Alzheimer's disease in the developing rat olfactory system. Brain Res Dev Brain Res, 1995, 88(1):87-95.
    [133] Koo E H, Park L, Selkoe D J. Amyloid beta-protein as a substrate interacts with extracellular matrix to promote neurite outgrowth. Proc Natl Acad Sci U S A, 1993, 90(10):4748-4752.
    [134] Qiu W Q, Ferreira A, Miller C, et al. Cell-surface beta-amyloid precursor protein stimulates neurite outgrowth of hippocampal neurons in an isoform-dependent manner. J Neurosci, 1995, 15(3 Pt 2):2157-2167.
    [135] Dawson G R, Seabrook G R, Zheng H, et al. Age-related cognitive deficits, impaired long-term potentiation and reduction in synaptic marker density in mice lacking the beta-amyloid precursor protein. Neuroscience, 1999, 90(1):1-13.
    [136] Huber G, Bailly Y, Martin J R, et al. Synaptic beta-amyloid precursor proteins increase with learning capacity in rats. Neuroscience, 1997, 80(2):313-320.
    [137] Nishimoto I, Okamoto T, Matsuura Y, et al. Alzheimer amyloid protein precursor complexes with brain GTP-binding protein G(o). Nature, 1993, 362(6415):75-79.
    [138] Giambarella U, Yamatsuji T, Okamoto T, et al. G protein betagamma complex-mediated apoptosis by familial Alzheimer's disease mutant of APP. EMBO J, 1997, 16(16):4897-4907.
    [139] Lichtenthaler S F, Haass C. Amyloid at the cutting edge: activation of alpha-secretase prevents amyloidogenesis in an Alzheimer disease mouse model. J Clin Invest, 2004, 113(10):1384-1387.
    [140] Wang H W, Pasternak J F, Kuo H, et al. Soluble oligomers of beta amyloid (1-42) inhibit long-term potentiation but not long-term depression in rat dentate gyrus. Brain Res, 2002, 924(2):133-140.
    [141] Lacor P N, Buniel M C, Chang L, et al. Synaptic targeting by Alzheimer's-related amyloid beta oligomers. J Neurosci, 2004, 24(45):10191-10200.
    [142] Holscher C. Possible causes of Alzheimer's disease: amyloid fragments, free radicals, and calcium homeostasis. Neurobiol Dis, 1998, 5(3):129-141.
    [143] Haass C, Schlossmacher M G, Hung A Y, et al. Amyloid beta-peptide is produced by cultured cells during normal metabolism. Nature, 1992, 359(6393):322-325.
    [144] Loo D T, Copani A, Pike C J, et al. Apoptosis is induced by beta-amyloid in cultured central nervous system neurons. Proc Natl Acad Sci U S A, 1993, 90(17):7951-7955.
    [145] Morishima Y, Gotoh Y, Zieg J, et al. Beta-amyloid induces neuronal apoptosis via a mechanism that involves the c-Jun N-terminal kinase pathway and the induction of Fas ligand. J Neurosci, 2001, 21(19):7551-7560.
    [146] Rohn T T, Head E, Nesse W H, et al. Activation of caspase-8 in the Alzheimer's disease brain. Neurobiol Dis, 2001, 8(6):1006-1016.
    [147] Demuro A, Mina E, Kayed R, et al. Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J Biol Chem, 2005, 280(17):17294-17300.
    [148] Arispe N, Pollard H B, Rojas E. beta-Amyloid Ca(2+)-channel hypothesis for neuronal death in Alzheimer disease. Mol Cell Biochem, 1994, 140(2):119-125.
    [149] Arispe N, Pollard H B, Rojas E. The ability of amyloid beta-protein [A beta P (1-40)] to form Ca2+ channels provides a mechanism for neuronal death in Alzheimer's disease. Ann N Y Acad Sci, 1994, 747:256-266.
    [150] Arispe N, Rojas E, Pollard H B. Alzheimer disease amyloid beta protein forms calcium channels in bilayer membranes: blockade by tromethamine and aluminum. Proc Natl Acad Sci U S A, 1993, 90(2):567-571.
    [151] Quist A, Doudevski I, Lin H, et al. Amyloid ion channels: a common structural link for protein-misfolding disease. Proc Natl Acad Sci U S A, 2005, 102(30):10427-10432.
    [152] Arispe N, Diaz J C, Simakova O. Aβion channels. Prospects for treating Alzheimer's disease with Aβchannel blockers. Biochimica et Biophysica Acta, 2007, 1768:1952-1965.
    [153] Lin H, Bhatia R, Lal R. Amyloid beta protein forms ion channels: implications for Alzheimer's disease pathophysiology. Faseb J, 2001, 15(13):2433-2444.
    [154] Lin H, Zhu Y J, Lal R. Amyloid beta protein (1-40) forms calcium-permeable, Zn2+-sensitive channel in reconstituted lipid vesicles. Biochemistry, 1999, 38(34):11189-11196.
    [155] Rhee S K, Quist A P, Lal R. Amyloid beta protein-(1-42) forms calcium-permeable, Zn2+-sensitive channel. J Biol Chem, 1998, 273(22):13379-13382.
    [156] Cullen W K, Suh Y H, Anwyl R, et al. Block of LTP in rat hippocampus in vivo by beta-amyloid precursor protein fragments. Neuroreport, 1997, 8(15):3213-3217.
    [157] Chapman P F, White G L, Jones M W, et al. Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice. Nat Neurosci, 1999, 2(3):271-276.
    [158] Nalbantoglu J, Tirado-Santiago G, Lahsaini A, et al. Impaired learning and LTP in mice expressing the carboxy terminus of the Alzheimer amyloid precursor protein. Nature, 1997, 387(6632):500-505.
    [159] Berger-Sweeney J, McPhie D L, Arters J A, et al. Impairments in learning and memory accompanied by neurodegeneration in mice transgenic for the carboxyl-terminus of the amyloid precursor protein. Brain Res Mol Brain Res, 1999, 66(1-2):150-162.
    [160] Kawas C, Resnick S, Morrison A, et al. A prospective study of estrogen replacement therapy and the risk of developing Alzheimer's disease: the Baltimore Longitudinal Study of Aging. Neurology, 1997, 48(6):1517-1521.
    [161] Choi S H, Park C H, Koo J W, et al. Memory impairment and cholinergic dysfunction by centrally administered Abeta and carboxyl-terminal fragment of Alzheimer's APP in mice. Faseb J, 2001, 15(10):1816-1818.
    [162] Kerr M L, Small D H. Cytoplasmic domain of the beta-amyloid protein precursor of Alzheimer's disease: function, regulation of proteolysis, and implications for drug development. J Neurosci Res, 2005, 80(2):151-159.
    [163] Cao X, Sudhof T C. Dissection of amyloid-beta precursor protein-dependent transcriptional transactivation. J Biol Chem, 2004, 279(23):24601-24611.
    [164] von Rotz R C, Kohli B M, Bosset J, et al. The APP intracellular domain forms nuclear multiprotein complexes and regulates the transcription of its own precursor. J Cell Sci, 2004, 117(Pt 19):4435-4448.
    [165] Kimberly W T, Zheng J B, Guenette S Y, et al. The intracellular domain of the beta-amyloid precursor protein is stabilized by Fe65 and translocates to the nucleus in a notch-like manner. J Biol Chem, 2001, 276(43):40288-40292.
    [166] Mucke L, Abraham C R, Masliah E. Neurotrophic and neuroprotective effects of hAPP in transgenic mice. Ann N Y Acad Sci, 1996, 777:82-88.
    [167] Furukawa K, Barger S W, Blalock E M, et al. Activation of K+ channels and suppression of neuronal activity by secreted beta-amyloid-precursor protein. Nature, 1996, 379(6560):74-78.
    [168] Furukawa K, Mattson M P. Secreted amyloid precursor protein alpha selectively suppresses N-methyl-D-aspartate currents in hippocampal neurons: involvement of cyclic GMP. Neuroscience, 1998, 83(2):429-438.
    [169] Putney J W, Jr. A model for receptor-regulated calcium entry. Cell Calcium, 1986, 7(1):1-12.
    [170] Berridge M J. Elementary and global aspects of calcium signalling. J Physiol, 1997, 499 (Pt 2):291-306.
    [171] Barritt G J. Receptor-activated Ca2+ inflow in animal cells: a variety of pathways tailored to meet different intracellular Ca2+ signalling requirements. Biochem J, 1999, 337 (Pt 2):153-169.
    [172] Randriamampita C, Tsien R Y. Emptying of intracellular Ca2+ stores releases a novel small messenger that stimulates Ca2+ influx. Nature, 1993, 364(6440):809-814.
    [173] Berridge M J. Capacitative calcium entry. Biochem J, 1995, 312 (Pt 1):1-11.
    [174] Baranska J, Przybylek K, Sabala P. Capacitative calcium entry. Glioma C6 as a model of nonexcitable cells. Pol J Pharmacol, 1999, 51(2):153-162.
    [175] Rosado J A, Sage S O. A role for the actin cytoskeleton in the initiation and maintenance of store-mediated calcium entry in human platelets. Trends Cardiovasc Med, 2000, 10(8):327-332.
    [176] Zhang S L, Yu Y, Roos J, et al. STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature, 2005, 437(7060):902-905.
    [177] Targos B, Baran0ska J, Pomorski P. Store-operated calcium entry in physiology and pathology of mammalian cells. Acta Biochim Pol, 2005, 52(2):379-409.
    [178] Putney J W, Jr. Capacitative calcium entry revisited. Cell Calcium, 1990, 11(10):611-624.
    [179] Akbari Y, Hitt B D, Murphy M P, et al. Presenilin regulates capacitative calcium entry dependently and independently of gamma-secretase activity. Biochem Biophys Res Commun, 2004, 322(4):1145-1152.
    [180] Artalejo A R, Ellory J C, Parekh A B. Ca2+-dependent capacitance increases in rat basophilic leukemia cells following activation of store-operated Ca2+ entry and dialysis with high-Ca2+-containing intracellular solution. Pflugers Arch, 1998, 436(6):934-939.
    [181] Cooper D M, Mons N, Fagan K. Ca(2+)-sensitive adenylyl cyclases. Cell Signal, 1994, 6(8):823-840.
    [182] McFadzean I, Gibson A. The developing relationship between receptor-operated and store-operated calcium channels in smooth muscle. Br J Pharmacol, 2002, 135(1):1-13.
    [183] Woods N M, Cuthbertson K S, Cobbold P H. Agonist-induced oscillations in cytoplasmic free calcium concentration in single rat hepatocytes. Cell Calcium, 1987, 8(1):79-100.
    [184] Parekh A B, Putney J W, Jr. Store-operated calcium channels. Physiol Rev, 2005, 85(2):757-810.
    [185] Yoo A S, Krieger C, Kim S U. Process extension and intracellular Ca2+ in cultured murine oligodendrocytes. Brain Res, 1999, 827(1-2):19-27.
    [186] Smith I F, Boyle J P, Vaughan P F, et al. Ca(2+) stores and capacitative Ca(2+) entry in human neuroblastoma (SH-SY5Y) cells expressing a familial Alzheimer's disease presenilin-1 mutation. Brain Res, 2002, 949(1-2):105-111.
    [187] Yoo A S, Cheng I, Chung S, et al. Presenilin-mediated modulation of capacitative calcium entry. Neuron, 2000, 27(3):561-572.
    [188] Waldron R T, Short A D, Gill D L. Store-operated Ca2+ entry and coupling to Ca2+ pool depletion in thapsigargin-resistant cells. J Biol Chem, 1997, 272(10):6440-6447.
    [189] Meldolesi J, Pozzan T. The heterogeneity of ER Ca2+ stores has a key role in nonmuscle cell signaling and function. J Cell Biol, 1998, 142(6):1395-1398.
    [190] Kogel D, Schomburg R, Schurmann T, et al. The amyloid precursor protein protects PC12 cells against endoplasmic reticulum stress-induced apoptosis. J Neurochem, 2003, 87(1):248-256.
    [191] Brouillet E, Trembleau A, Galanaud D, et al. The amyloid precursor protein interacts with Go heterotrimeric protein within a cell compartment specialized in signal transduction. J Neurosci, 1999, 19(5):1717-1727.
    [192] Neer E J. Heterotrimeric G proteins: organizers of transmembrane signals. Cell, 1995, 80(2):249-257.
    [193] van Blitterswijk W J, van der Meer B W, Hilkmann H. Quantitative contributions of cholesterol and the individual classes of phospholipids and their degree of fatty acyl (un)saturation to membrane fluidity measured by fluorescence polarization. Biochemistry, 1987, 26(6):1746-1756.
    [194] Avdulov N A, Chochina S V, Igbavboa U, et al. Amyloid beta-peptides increase annular and bulk fluidity and induce lipid peroxidation in brain synaptic plasma membranes. J Neurochem, 1997, 68(5):2086-2091.
    [195] Hajimohammadreza I, Brammer M J, Eagger S, et al. Platelet and erythrocyte membrane changes in Alzheimer's disease. Biochim Biophys Acta, 1990, 1025(2):208-214.
    [196] Simakova O, Arispe N J. Early and late cytotoxic effects of external application of the Alzheimer's Abeta result from the initial formation and function of Abeta ion channels. Biochemistry, 2006, 45(18):5907-5915.
    [197] Kremer J J, Pallitto M M, Sklansky D J, et al. Correlation of beta-amyloid aggregate size and hydrophobicity with decreased bilayer fluidity of model membranes. Biochemistry, 2000, 39(33):10309-10318.
    [198] Muller W E, Koch S, Eckert A, et al. beta-Amyloid peptide decreases membrane fluidity. Brain Res, 1995, 674(1):133-136.
    [199] Behl C, Davis J B, Lesley R, et al. Hydrogen peroxide mediates amyloid beta protein toxicity. Cell, 1994, 77(6):817-827.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700