爆炸流场及容器内爆流固耦合问题计算研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究的两个主要问题是:炸药爆炸流场和受冲击载荷作用的流固耦合问题。数值研究的难点表现为:高温、高压爆炸气体产物的膨胀和结构的动力学响应问题。前者涉及大压比、大密度比和多介质的流体界面追踪和界面边界条件提法,这是当前计算流体动力学的难点问题。后者主要是确定与时间相关的载荷和计算应力、应变场。结构动力学响应计算的准确性依赖于冲击波载荷,而爆炸产物膨胀流场计算的精确程度又决定着冲击波载荷。因此,需要对炸药爆炸、冲击波传播和结构响应全过程进行高精度的数值求解。在此基础上,建立必要的三维计算软件平台,这就是本文研究的目标。鉴于此,本文主要内容介绍如下:
     (1)第一章介绍了本文研究背景和相关研究进展,说明了本文主要内容及特色。
     (2)在简要描述研究对象及介绍状态方程的基础上,第二章重点介绍数值研究爆源、爆炸流场和结构动力学响应、界面追踪等问题所采用的控制方程,及方程的定解条件和无量纲化,这是本文数值分析的基础。用ALE方程描述具有运动边界的爆炸流场,用虚功原理描述固体结构的动力学响应。爆源分别采用点爆炸模型和有限反应速率模型。前者忽略爆源和近场特性,后者考虑了爆源物理和几何特性以及点火、爆轰过程。爆炸产物气体膨胀与空气的界面用levelset方程描述。本章将高精度的界面追踪技术和内边界条件提法引入到爆源和爆炸流场数值研究中。
     (3)第三章主要介绍第二章中控制方程的数值求解方法。自相似解的常微分方程组采用四阶Runge-Kutta方法求解,反应度模型方程和界面levelset方程采用五阶WENO格式求解,ALE方程采用PPM格式求解,虚功原理采用动力有限元求解,针对这些数值方法,分别考核了相关的校核算例,为下一章的数值研究奠定基础。
     (4)选择爆炸容器内爆问题作为典型例子,第四章运用第二章的数学模型和第三章数值方法模拟了带平板封头和带椭球封头的容器内爆流场及流固耦合问题。数值结果表明:本文较好地解决了炸药爆炸气体产物膨胀问题,为全过程的数值模拟奠定了基础。还给出了爆源点火与爆轰、爆炸流场的冲击波传播和反射、圆柱壳的应力波传播和透射以及结构振动的计算结果。这些结果真实地反映了爆炸容器的工作过程,也与实验结果符合。本章最后讨论了计算结果的误差来源。
     (5)第五章给出本文主要结论,并对开展下一步研究提出建议。
This paper presents the solutions of the two main problems: explosion of the condensed high energy explosives and the fluid-structure interaction with impacts. The main difficulties are how to deal with the expansion of explosion gas products in state of high pressure and temperature, and the interaction of blast waves and structural responses. The former essentially is associated with the problem of interface with big pressure/density proportion and the multi-media tracking or capturing. This is one of the current main problems in computational fluid dynamics. The later is involved with the accurately obtained pressure close to structure for structural analysis. Since explosion field and structure deformation are coupled on boundaries, we have to solve these problems systematically. To setup a 3-d numerical analysis platform, we have conducted the studies listed below:
     1) Chapter 1 introduces the background and the progress of related works, at the end of this chapter, we have noted the characteristic of this investigation.
     2) Chapter 2 gives a brief description of the problem and the state equations. This chapter introduces the reaction mode, the governing equations, the interface capturing method employed in this work in great detail. Moreover, the non-dimensionalization and the initial conditions as well as boundary conditions were presented. To get the detonation process of explosives, Euler equations with source terms were used. As a simplified method, dot-explosion self-similar solution was also adopted in the computation, which omitted the detonation process. The interface of gas products and ambient air was tracked with the levelset function. ALE (Arbitrary Lagrangian Eulerian) equation was established to obtain the explosion field while the principle of virtual work was used to obtain the structural responses.
     3) Chapter 3 presents the numerical methods used to solve the equations given in chapter 2. PPM (Piecewise Parabolic Method) scheme was of 3rd order accuracy used to solve ALE equations in finite volume method. Finite ele- ment method was used to solve the principle of virtual work, Newmark method was adopted in time integration. Levelset equation was solved by the 5th order WENO scheme, and so did the reaction rate equation. The 4th order Runge-Kutta method was chosen to solve the ODE (Ordinary Differential Equation) derived from 1-d spherical Euler equations. Some typical problems were chosen to check the codes.
     4) Numerical results are obtained by applying the validated codes to simulate the typical tests. It was shown that our codes have successfully solved the problem of explosion products expansion to air. The given figures have clearly shown the ignition and detonation growth, the blast wave propagation, the fluid-structure interaction processes and the deformation of structures, etc. The results are also in consistent with the experimental data reported. At the end, causes of calculation errors are discussed.
     5) Conclusions and suggestions to the future work are given in the final chapter of this paper.
引文
[1] Baker WE. The Response of Elastic Shells to Spherically Symmetric Internal Blast Loading. Proc 3rd US Nat. Cong. App. Mech., 1958: 79-84
    [2] Baker WE. Elastic Response of Large Transient Elastic and Plastic Deformations of Structures Subjected to Blast Loading. JAM, Vol. 33, 1960: 139-144
    [3] Baker WE. Elastic Response of Thin Spherical Shell to Axisymmetric Blast Lading. JAM, Vol. 33, No.4, 1966:800-806
    [4] Hodge PG. Impact Pressure Loading of Rigid-Plastic Cylindrical Shells. Journal of the Mechanics and Physics of Solids. Vol. 3, 1955: 176-188
    [5] Hodge PG. The Influentce of Blast Characteristics on the Final Deformation of Circular Cylindrical Shells. ASME, JAM. Vol. 23, 1959:617-624
    [6] Duffey TA, Mitchell D. Containment of Explosions in Cylindrical Shells. International Journal of Mechanical Sciences. Vol. 15, 1973: 237-242
    [7] Walters RM, Jones N. An approximate theoretical study of the dynamic plastic behavior of shells. International Journal of the Non-Linear Mechanics. Vol. 7, 1972: 255-273
    [8] Jones N, Walters RM. A comparison of theory and experiments on dynamic plastic behavior of shells. Archives of Mechanics. Vol. 24, No.5-6, 1972: 701-714
    [9] 钟方平.双层圆柱形爆炸容器弹塑性结构响应的实验和理论研究.博士学位论文.合肥:中国科学技术大学,1999.3-4
    [10] 赵士达.爆炸容器.爆炸与冲击.Vol.9,No.1,1989:86-96
    [11] 段卓平,恽寿榕.密闭爆炸容器实验研究及数值模拟.中国安全科学学报,Vol.4 No.3,1994:1-7
    [12] 朱文辉,薛鸿陆,刘万仓等.爆炸容器承受内部加载的实验研究.爆炸与冲击.Vol.15,No.4,1995:374-380
    [13] 胡八一,刘大敏等.脉冲载荷下球形爆炸容器的弹性响应.振动与冲击.Vol.3.1998:1-61
    [14] 霍宏发.组合式爆炸容器动态特性分析及实验研究.博士学位论文.西安:西安交通大学,2000.17
    [15] 张鹏.轴对称爆炸容器中冲击波与壁面耦合作用的数值研究.学士学位论文.合肥:中国科学技术大学,2000
    [16] 张亚军,张梦萍,徐胜利,张鹏.爆炸容器内冲击波系演化及壳体响应的数值研究.爆炸与冲击.Vol.23,No.4,2003:331-335
    [17] 张亚军,徐胜利.中心内爆引起的圆柱壳流固耦合问题数值模拟.中国科学技术大学学报.Vol.37,No.1,2007:6-12
    [18] 徐康,于德洋,许云样等.水箱法——一种可用小药量测定炸药爆轰压力的方法.爆炸与冲击,Vol.2,1981:89-95
    [19] 陆守香,张金城.工业炸药爆轰压力的简易测定,爆炸与冲击,Vol.13,No.3,1993:280-284
    [20] 张厚生.用氮当量公式和修正氮当量公式计算炸药爆轰压力.爆炸与冲击.Vol.2.1983:79-82
    [21] 贺成林,郝保田.实际空气中的点爆炸数值计算.爆炸与冲击,Vol.1,1981:37-48
    [22] Wharton RK,Formby SA,Merrifield R.Airblast TNT equivalence for a range of commercial blasting explosives. Journal of Hazardous Materials. Vol. 79, Issue 1-2, 2000: 31-39
    [23] Vanderstraeten B, Lefebvre M, Berghmans J. A simple blast wave model for bursting spheres based on numerical simulation, Journal of Hazardous Materials, Vol. 46, Issue 2-3, 1996: 145-157
    [24] A. Alia, M. Souli. High explosive simulation using multi-material formulations. Applied Thermal Engineering. Vol. 26, Issue 10, 2006:1032-1042
    [25] M. B. Liu, G. R. Liu, Z. Zong, K. Y. Lam. Computer simulation of high explosive explosion using smoothed particle hydrodynamics methodology. Computers and Fluids. Vol. 32, Issue, 3, March 2003: 305-322
    [26] G. W. Ma, H. Hao and Y. X. Zhou. Modeling of wave propagation induced by underground explosion. Computers and Geotechnics. Vol. 22, Issues 3-4, April 1998: 283-303
    [27] Alia, A., Souli, M. High explosive simulation using multi-material formulations. Applied Thermal Engineering. Vol. 26, Issue 10, 2006: 1032-1042
    [28] K. Ramajeyathilagam, C. P. Vendhan and V. Bhujanga Rao. Non-linear transient dynamic response of rectangular plates under shock loading. International Journal of Impact Engineering. Vol. 24, Issue 10, November 2000: 999-1015
    [29] Chengqing Wu, Hong Hao, Yong Lu, Shangqing Sun. Numerical simulation of structural responses on a sand layer to blast induced ground excitations. Computers and Structures, Vol. 82, Issues 9-10, April 2004: 799-814
    [30] S. Mohammadi, A. Bebamzadeh. A coupled gas-solid interaction model for FE/DE simulation of explosion. Finite Elements in Analysis and Design, Vol. 41, Issue 13, July 2005: 1289-1308
    [31] E. L. Lee, C.M. Tarver. Phenomenological model of shock initiation in heterogeneous explosives. Phys. Fluids. Vol. 23, Issue 12, 1980:2362-2372
    [32] P. Clark Souers, Raul Garza, and Peter Vitello. Ignition & Growth and JWL++ Detonation Models in Coarse Zones. Propellants, Explosives, Pyrotechnics. Vol. 27, 2002:62-71
    [33] Juhua Zhang, Zhuping Duan, Jing Ding. Simulating Shock to Detonation Transition: Algorithm and Results. Journal of Computational Physics. Vol. 150, 1999: 128-142
    [34] A. L. Nichols. Statistical Hot Spot Model for Explosive Detonation. UCRLCONF-204119,2004
    [35] 浣石,张振宇.固体炸药反应速率方程与状态方程的相容性研究.湖南大学学报(自然科学版).第30卷,第3期,2003:15-18
    [36] 于明.用点火成长模型模拟凝聚态炸药的起爆过程.含能材料.第z1期,第12卷,2004:516-520
    [37] 楼建锋,于恒.CTVD格式数值计算非均匀炸药爆轰问题.计算物理.第22卷,第4期,2005:358-364
    [38] 李德元,李维新.爆炸冲击研究中的数值模拟.爆炸与冲击,Vol.4,No.1,1984:89-96
    [39] 吴雄华,黄敦,朱幼兰.反射爆炸波通过爆心后流动的数值计算.爆炸与冲击,Vol.3,No.2,1983:1-11
    [40] Harten A, P. D. Lax, B. van Leer. On upstream differencing and Godunovtype schemes for hyperbolic conservation laws. SIAM Rev. Vol. 25, 1983: 35-61
    [41] S. F. Davis. Simplified second-order Godunov-type methods. SIAM J. Sci. Statist. Comput. Vol. 9, 1988: 445
    [42] B. Einfeldt, C. D. Munz, P. L. Roe, B. Sjogreen. On Godunov-type methods near low densities. J. Comput. Phys. Vol. 92, 1991: 273-295
    [43] W. J. Rider. An adaptive Riemann solver using a two-shock approximation. Computers and Fluids. Vol. 28, 1999: 741-777
    [44] D. W. Schwendeman, C. W. Wahle and A. K. Kapila. The Riemann problem and a high-resolution Godunov method for a model of compressible twophase flow. Journal of Computational Physics, Vol. 212, Issue 2, 2006: 490-526
    [45] Thomas Barberon, Philippe Helluy. Finite Vol. simulation of cavitating flows. Computers and Fluids. Vol. 34, Issue 7, 2005: 832-858
    [46] O. Le M e tayer, J. Massoni, R. Saurel. Modelling evaporation fronts with reactive Riemann solvers, Journal of Computational Physics. Vol. 205, Issue 2, 2005: 567-610
    [47] Vincent Guinot. An approximate two-dimensional Riemann solver for hyperbolic systems of conservation laws. Journal of Computational Physics. Vol. 205, Issue 1, 2005:292-314
    [48] Shengtai Li. An HLLC Riemann solver for magneto-hydrodynamics, Journal of Computational Physics. Vol. 203, Issue 1, 10 February 2005: 344-357
    [49] G. H. Miller. An iterative Riemann solver for systems of hyperbolic conservation laws, with application to hyperelastic solid mechanics. Journal of Computational Physics Vol. 193, Issue 1, 1 January 2004: 198-225
    [50] L. Quartapelle, L. Castelletti, A. Guardone, G. Quaranta. Solution of the Riemann problem of classical gasdynamics. Journal of Computational Physics. Vol. 190, Issue 1, 2003: 118-140
    [51] John O. Hallquist. LS-DYNA theory manual. Livemore Software Technology Corporation. 2006
    [52] G. H. Miller, P. Colella. A Conservative Three-Dimensional Eulerian Method for Coupled Solid-Fluid Shock Capturing. J. Comput. Phys.. Vol. 183, 2002: 26-82
    [53] Fedkiw, Ronald P., Marquina, Antonio and Merriman, Barry. An Isobaric Fix for the Overheating Problem in Multimaterial Compressible Flows. Journal of Computational Physics. Vol. 148, Issue 2, January 20, 1999: 545-578
    [54] Fedkiw, Ronald P., Aslam, Tariq, Merriman, Barry and Osher, Stanley. A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method). Journal of Computational Physics. Vol. 152, Issue 2, July 1, 1999: 457-492
    [55] Osher, Stanley and Fedkiw, Ronald P. Level Set Methods: An Overview and Some Recent Results. Journal of Computational Physics. Vol. 169, Issue 2, May 20, 2001: 463-502
    [56] Fedkiw RP. Coupling an Eulerian Fluid Calculation to a Lagrangian Solid Calculation with Ghost Fluid Method. Journal of Comput. Phys Vol. 175, 2002: 200-224
    [57] Aslam, Tariq D. A Level-Set Algorithm for Tracking Discontinuities in Hyperbolic Conservation Laws. Journal of Computational Physics. Vol. 167, Issue 2, March 1, 2001: 413-438
    [58] Caiden, Rachel, Fedkiw, Ronald P. and Anderson, Chris. A Numerical Method for Two-Phase Flow Consisting of Separate Compressible and Incompressible Regions. Journal of Computational Physics. Vol. 166, Issue 1, 2001:1-27
    [59] Hao, Yue and Prosperetti, Andrea. A numerical method for threedimensional gas-liquid flow computations. Journal of Computational Physics. Vol. 196, Issue 1, 2004: 126-144
    [60] Koren, B., Lewis, M. R., van Brummelen, E. H. and van Leer, B. Riemann-Problem and Level-Set Approaches for Homentropic Two-Fluid Flow Computations. Journal of Computational Physics. Vol. 181, Issue 2, September 20, 2002: 654-674
    [61] A. Marquina, P. Mulet. A flux-split algorithm applied to conservative models for multicomponent compressible flows. Journal of Computational Physics. Vol. 185, Issue 1, February 10, 2003:120-138
    [62] Liu, Xu-Dong, Fedkiw, Ronald P., Kang, Myungjoo. A Boundary Condition Capturing Method for Poisson's Equation on Irregular Domains. Journal of Computational Physics. Vol. 160, Issue 1, May 1, 2000: 151-178
    [63] Liu, T. G., Khoo, B.C., Yeo, K.S. Ghost fluid method for strong shock impacting on material interface. Journal of Computational Physics. Vol. 190, Issue 2, 2003: 651-681
    [64] Liu, T.G., Khoo, B. C. and Xie, W.F. Isentropic one-fluid modelling of unsteady cavitating flow. Journal of Computational Physics. Vol. 201, Issue 1, November 20, 2004: 80-108
    [65] Liu, T. G., Khoo, B. C. and Wang, C. W. The ghost fluid method for compressible gas-water simulation. Journal of Computational Physics. Vol. 204, Issue 1, March 20, 2005:193-221
    [66] Liu, T.G., Khoo, B.C., Yeo, K.S. The simulation of compressible multimedium flow. Computers and Fluids. Vol. 30, Issue 3, March, 2001: 315-337
    [67] Liu, T. G., Khoo, B. C., Yeo, K. S. The simulation of compressible multimedium flow. I. A new methodology with test applications to 1D gas-gas and gas-water cases. Computers and Fluids. Vol. 30, Issue 3, March, 2001: 291-314
    [68] T. G. Liu, B. C. Khoo, W. F. Xie. The Modified Ghost Fluid Method as Applied to Extreme Fluid-Structure Interaction in the Presence of Cavitation. Communications in Computational Physics. Vol. 1 No. 5, 2006:898-919
    [69] Yokoi, Kensuke, Xiao, Feng, Liu, Hao, Fukasaku, Kazuaki Threedimensional numerical simulation of flows with complex geometries in a regular Cartesian grid and its application to blood flow in cerebral artery with multiple aneurysms. Journal of Computational Physics. Vol. 202, Issue 1, 2005: 1-19
    [70] Macklin P., Lowengrub J. Evolving interfaces via gradients of geometrydependent interior Poisson problems: application to tumor growth. Journal of Computational Physics. Vol. 203, Issue 1, 2005: 191-220
    [71] Marella, S., Krishnan, S., Liu, H., Udaykumar, H.S. Sharp interface Cartesian grid method Ⅰ: An easily implemented technique for 3D moving bound- ary computations. Journal of Computational Physics. Vol. 210, Issue 1, 2005:1-31
    [72] Miller GH, Colella P. A Conservative Three-Dimensional Eulerian Method for Coupled Solid-Fluid Shock Capturing. Journal of Comput Phys. Vol. 183, 2002:26-82
    [73] Colella P, Woodward P. The piecewise parabolic method(PPM) for gasdynamical simulation. J. Comput. Phys.. Vol. 54, 1984: 174-201
    [74] Ted Belytschko,Wing Kam Liu,Brian Moran,庄茁(译).Nonlinear Finite Elements for Continua and Structures(连续体和结构的非线性有限元).北京:清华大学出版社.2002年12月第一版.341-342
    [75] Braess, Henning and Wriggers, Peter. Arbitrary Lagrangian Eulerian finite element analysis of free surface flow. Computer Methods in Applied Mechanics and Engineering. Vol. 190, Issue 1-2, 2002: 95-109
    [76] Qun Zhang, Hisada, Toshiaki. Analysis of fluid-structure interaction problems with structural buckling and large domain changes by ALE finite element method. Computer Methods in Applied Mechanics and Engineering. Vol. 190, Issue 48, 2001:6341-6357
    [77] Yamaguchi, H., Mishima, A., Yasumoto, T. and Ishikawa, T. An arbitrary Lagrangian-Eulerian approach for simulating stratified viscoelastic fluids. Journal of Non-Newtonian Fluid Mechanics. Vol. 89, Issue 3, 2000:251-272
    [78] Arif Masud, Thomas J. R. Hughes. A space-time Galerkin/least-squares finite element formulation of the Navier-Stokes equations for moving domain problems. Computer Methods in Applied Mechanics and Engineering. Vol. 146, Issue 1-2, 1997:91-126
    [79] Lesoinne, Michel and Farhat, Charbel. Geometric conservation laws for flow problems with moving boundaries and deformable meshes, and their impact on aeroelastic computations. Computer Methods in Applied Mechanics and Engineering. Vol. 134, Issue 1-2, 1996:71-90
    [80] Farhat, Charbel, Geuzaine, Philippe, Grandmont, C e line. The Discrete Geometric Conservation Law and the Nonlinear Stability of ALE Schemes for the Solution of Flow Problems on Moving Grids. Journal of Computational Physics. Vol. 174, Issue 2, 2001: 669-694
    [81] Thomas, P. D. and Lombard, C. K.. Geometry Conservation Law and it's application to flow computations on moving grids. AIAA J.. Vol. 17, 1979:1030-1037
    [82] Le Tallec, P. and Mouro, J. Fluid structure interaction with large structural displacements. Computer Methods in Applied Mechanics and Engineering. Vol. 190, Issue 24-25, 2001: 3039-3067
    [83] Luo, Hong, Baum, Joseph D. and L?hner, Rainald. On the computation of multi-material flows using ALE formulation. Journal of Computational Physics. Vol. 194, Issue 1, 2004:304-328
    [84] De Bortoli, A. L. Aeroelastic analysis of panels in compressible flows. Journal of Fluids and Structures. Vol. 20, Issue 2, February, 2005:189-195
    [85] Farhat, C., Lesoinne, M., Stern, P., Lant e ri, S. High performance solution of three-dimensional nonlinear aeroelastie problems via parallel partitioned algorithms: methodology and preliminary results. Advances in Engineering Software. Vol. 28, Issue 1, January, 1997:43-61
    [86] Hirt, C. W., Amsden, A. A. and Cook, J. L. An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds. Journal of Computational Physics. Vol. 135, Issue 2, 1997: 203-216
    [87] Hu, Howard H., Patankar, N. A. and Zhu, M. Y. Direct Numerical Simulations of Fluid-Solid Systems Using the Arbitrary Lagrangian-Eulerian Technique. Journal of Computational Physics. Vol. 169, Issue 2, 2001: 427-462
    [88] Geuzaine, Philippe, Grandmont, C e line, Farhat, Charbel. Design and analysis of ALE schemes with provable second-order time-accuracy for inviscid and viscous flow simulations. Journal of Computational Physics. Vol. 191, Issue 1, 2003: 206-227
    [89] Aquelet, N., Souli, M. and Olovsson, L. Euler-Lagrange coupling with damping effects: Application to slamming problems. Computer Methods in Applied Mechanics and Engineering. Vol. 195, Issue 1-3, January 1, 2006: 110-132
    [90] Harten A. High resolution schemes for hyperbolic onservation laws. Journal of Computational Physics. Vol. 49, 1983: 357-393
    [91] Huazhong Tang, Tiegang Liu. A note on the conservation schemes for the Euler equations. Journal of Computational Physics. Vol. 218, 2006:451-459
    [92] C. W. Wang, T.G. Liu, B.C. Khoo. A real ghost fluid method for the simulation of multimedium compressible flow. SIAM J. SCI. COMPUT. (In Press)
    [93] 恽寿榕,赵衡阳.爆炸力学.北京:国防工业出版社,2005年5月,第1版,30-34
    [94] Hong-Kai Zhao, T. Chan, B. Merriman, S. Osher. A Variational Level Set Approach to Multiphase Motion. Journal of Computational Physics. Vol. 127, 1996:179-195
    [95] Hong-Kai Zhao,Barry Merriman, Stanley Osher, and Lihe Wang. Capturing the Behavior of Bubbles and Drops Using the Variational Level Set Approach. Journal of Computational Physics.143, 1998:495-518
    [96] 倪振华.振动力学.西安:西安交通大学出版社,1989:367-376
    [97] 周毓麟.一维非定常流体力学.北京:科学出版社,1990
    [98] A. K. Kapila, D. W. Schwendeman, J. B. Bdzil, W. D. Henshaw. A Study of Detonation Diffraction in the Ignition-and-Growth Model. Report. 2006: 1-41
    [99] 张亚军.爆炸容器内冲击波系演化和壳体动态响应的数值研究.学士学位论文.合肥:中国科学技术大学,2001年
    [100] Jing Shi, Changqing Hu, Chi-Wang Shu. A Technique of Treating Negative Weights in WENO Schemes. Journal of Computational Physics. Vol. 175, 2002: 108-127
    [101] 陈菲.运动激波与气气和气水界面相互作用的数值研究.硕士学位论文.合肥:中国科学技术大学,2006年
    [102] 水鸿寿.一维流体力学差分方法.北京:国防工业出版社.1998
    [103] 苏铭德,黄素逸.计算流体力学基础.北京:清华大学出版社.1997
    [104] Stanislaw Cudzilo, Andrzej Maranda, Jerzy Nowaczewski and Wandemar Trzcinski. Shock Initiation Studies of Ammonium Nitrate Explosives. COMBUSTIONAND FLAME. Vol. 102, 1995: 64-12
    [105] L. B. Tran and H. S. Udaykumar. A particle-level set-based sharp interface cartesian grid method for impact, penetration, and void collapse. Journal of Computational Physics. Vol. 193, Issue 2, 2004:469-510
    [106] Chenghai Sun and Andrew Hsu. Multi-level lattice Boltzmann model on square lattice for compressible flows. Computers & Fluids. Vol. 33, Issue 10, 2004: 1363-1385
    [107] S e bastien Tanguy and Alain Berlemont. Application of a level set method for simulation of droplet collisions. International Journal of Multiphase Flow. Vol. 31, Issue 9, 2005: 1015-1035
    [108] Douglas Enright, Ronald Fedkiw, Joel Ferziger and Ian Mitchell. A Hybrid Particle Level Set Method for Improved Interface Capturing. Journal of Computational Physics. Vol. 183, Issue 1, 2002:83-116

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700