基于单片段代换系的水稻抽穗期QTL分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抽穗期决定水稻品种适宜的种植地区和种植季节,影响水稻的稳产和高产,是重要的水稻育种目标之一。探讨水稻抽穗期的遗传本质,发掘和鉴定水稻抽穗期基因并分析其光温反应特性,对于对指导育种实践和品种推广均具有重要意义。本研究以遗传背景一致的染色体单片段代换系为材料,鉴定和定位水稻抽穗期QTL,并分析它们之间的互作关系,以期获得准确可靠的研究结果,为抽穗期QTL克隆和分子标记辅助育种提供的理论依据。本研究获得以下主要结果:
     (1)次级单片段代换系的创建。通过SSR标记选择,从初级单片段代换系之间的杂交分离群体S1×S2, S1×S3,S1×S4和S1×S5中获得了20个纯合的次级单片段代换系,其中8个代换系的代换片段位于第3染色体且来源于同一供体,另外12个代换系的代换片段位于第6染色体,虽然代换片段供体来源不同,但具有相同或相近的代换区间。筛选获得的次级单片段代换系的代换片段长度相对于初级单片段代换系明显缩短。
     (2)利用单片段代换系鉴定水稻抽穗期QTL。自然长日照条件下,有20个单片段代换系的代换片段被鉴定出带有抽穗期QTL。经QTL代换作图分析,共定位出两个抽穗期QTL,其中qHD3位于第3染色体短臂末端,qHD6位于第6染色体短臂中部。研究还发现qHD3和qHD6都具有多种表型效应,其中qHD3早抽穗等位基因不仅促进抽穗,还降低株高、穗粒数和千粒重,而qHD6早抽穗等位基因则仅缩短抽穗期和降低株高,对产量性状没有显著的影响。
     (3)qHD3精细定位及候选基因分析。应用杂合的代换系分离群体将qHD3定位于第3染色体短臂SSR标记RM14314和RM569之间。通过扩大分离群体,最终将qHD3精细定位RM14314和RM14320之间到约62.4Kb的染色体区间。在qHD3所在的染色体区间存在一个MADS-box转录因子OsMADS50,该基因具有调控水稻抽穗开花的功能。基因序列分析发现OsMADS50的编码区存在一处单碱基转换,内含子序列存在两处变异,其中第二内含子上存在一处20个碱基的缺失/插入,第六内含子存在一处单碱基转换。在携带不同qHD3等位基因的单片段代换系和受体之间未发现OsMADS50转录水平的表达差异,说明上述单片段代换系和受体的抽穗期差异不是通过改变OsMADS50转录水平的表达量来调控的。
     (4)qHD6精细定位及候选基因分析。应用携带不同qHD6等位基因的单片段代换系之间的杂交分离群体将另一个抽穗期基因qHD6定位于第6染色体的短臂中部,qHD6介于SSR标记RM587和RM204之间,两标记之间的物理距离为876.6Kb,在此染色体区域已有两个水稻抽穗期基因(RFT1和Hd3a)被克隆。基因序列和转录水平的表达分析都发现RFT1和Hd3a在两个单片段代换系亲本之间存在差异,所以目前不能确定哪个基因是qHD6的目的基因。
     (5)qHD3和qHD6互作。分离群体和双基因聚合系分析都表明qHD3和qHD6之间存在显著的互作关系,其中早抽穗的qHD3等位基因对qHD6呈上位性。
Heading date of rice (Oryza sativa L.) is a key agronomic trait for adaption to cultivatedareas and seasons in order to attain an ideal grain yield, and it is also one of the leadingobjectives of rice improvement programs. Studies on genetic regulatory mechanism forheading date are useful for rice breeding and productive practice. The objectives of thisstudy were to detect QTLs for heading date and analyze their interaction effects using singlesegment substitution lines (SSSLs) with consistent genetic background. This result for QTLanalysis will be more accurate and useful for QTL cloning and molecular marker assistedbreeding. The main results were following:
     (1) Development of secondary SSSLs (S-SSSLs)
     Twenty homozygous S-SSSLs were obtained from segregation populations derived fromfour crosses between primary SSSLs (P-SSSLs): S1×S2, S1×S3,S1×S4and S1×S5.Among them, eight S-SSSLs contained the substituted segments on the short arm ofchromosome3derived from the same donor ‘Lemont’ and others contained substitutedsegments on the short arm of chromosome6derived from four different donors,‘Tetep’,‘BG367’,‘IR58025B’ and ‘Lemont’, respectively. The length of substituted segments inS-SSSL had been greatly shortened compared with the corresponding P-SSSL.
     (2) QTL identification with SSSLs
     Two QTLs, qHD3and qHD6on the short arm of chromosome3and the short arm ofchromosome6, respectively, were identified with twenty SSSLs under natural long-day(NLD). Both qHD3and qHD6had pleiotropic effects. qHD3early allele not only promotedheading, but also decreased plant height and the number of grains main panicle and affectedgrain shape and weight. qHD6affected heading date and plant height, but had no significanteffect on the other agronomic traits.
     (3) Fine mapping of qHD3and candidate gene analysis
     With substitution lines segregating population, qHD3was located between SSR markersRM14314and RM14320, the distance between the two markers was62.4Kb. Based oncandidate gene analysis, we found a transcription factor, MADS-box gene OsMADS50(heading date gene) was in qHD3target chromosomal region. Sequence alignment ofOsMADS50derived from SSSL with qHD3early heading allele and recipient HJX74 showed that the code region sequence of OsMADS50existed a nucleotide substitution andits intron sequence existed two variants,20nucleotides delete/insert and a nucleotidesubstitution. However, we did not found the differential expression at transcription level forOsMADS50from SSSL with qHD3early heading allele and recipient HJX74. This resultsuggested that the phenotypic variation of SSSLs with different qHD3alleles is not relatedto the expression of OsMADS50at transcription level.
     (4) Fine mapping of qHD6and candidate gene analysis
     With a F2segregating population derived from the cross between SSSLs which containeddifferent qHD6allele, qHD6was located on the short arm of chromosome6and betweenSSR markers RM587and RM204, the distance between the two markers was876.6Kb. Inthis chromosomal region existed two heading date gene, RFT1and Hd3a. Both RFT1andHd3a showed variations in gene sequence and expression at transcription level betweenSSSLs with different qHD6allele. Therefore, it is still unknown which gene was the targetgene of qHD6.
     (5) Analysis for interaction between qHD3and qHD6
     Analysis of double segments pyramid lines (DSPLs) and F2populations showed theexistence of epistatic interactions between qHD3and qHD6. Furthermore, qHD3wasepistatic to qHD6under NLD conditions.
引文
蔡俊迈,周元昌,李维明.杂交水稻抽穗期遗传研究Ⅱ.抽穗期基因互作的遗传.福建农学院学报,1988,17:1-9
    邓晓建,周开达,李仁端,淳泽,李平,王文明,翟文学,朱立煌.水稻完全显性早熟性的发现和基因定位.中国农业科学,2001,34:233-239
    顾兴友,顾铭洪.两个中籼水稻品种的抽穗期遗传.中国水稻科学,1997,11:151-154
    顾兴友,顾铭洪.轮回422与籼稻杂交F1抽穗期超亲遗传分析.中国水稻科学,1995,9:21-26
    郭梁,张振华,庄杰云.水稻抽穗期QTL及其与产量性状遗传控制的关系.中国水稻科学,2012,26:235-245
    胡志远,贺福初.蛋白质组研究进展.生物化学与生物物理进展,1999,26:202-205
    黄朝锋.水稻PSM标记的发展及抗虫基因的分子定位.华南农业大学硕士学位论文,2003
    李和标,邹江石.水稻籼粳亚种间F1生育期超亲表现与遗传分析.江苏农业学报,1992,8:7-12
    李仕贵,马玉清,王文明,刘国庆,周开达,朱立煌.一个新的水稻迟熟基因的遗传分析和分子标记定位.遗传学报,2000,27:133-138
    刘冠明,李文涛,曾瑞珍,张桂权.水稻亚种间单片段代换系的建立.中国水稻科学,2003,17:201-204
    毛传澡,程式华.水稻农艺性状QTL定位精确性及其影响因素的分析.农业生物技术学报,1999,7:386-394
    钱前,郭龙彪,杨长登.水稻基因设计育种.北京:科学出版社,2007,205-206
    裘俊丽.水稻感光性分子标记辅助选择,广西大学学位论文,2012
    水稻光温协作组.中国水稻品种的光温生态.北京:科学出版社,1978,1-40
    孙昌辉.水稻显性早熟基因Ef-s的精细定位及一个新的MYB转录因子的研究.四川农业大学硕士论文,2005
    唐锡华,倪彭寿,童本仙,沈瑞娟.在控制条件下对不同稻种日长和温度反应发育特性的研究.植物生理学报,1978,4:153-168
    万建林,瞿虎渠,万建民,安井秀,吉村淳.利用粳稻染色体片段置换系检测水稻抗亚铁毒胁迫有关性状QTL.遗传学报,2003,30:893-898
    王立秋,赵永锋,薛亚东,张祖新,郑用链,陈景堂.玉米衔接式单片段导入系群体的构建和评价.作物学报,2007,33:663-668
    王玉民.玉米染色体片段代换系群体的筛选和QTL定位.河南农业大学硕士论文,2008
    席章营,吴建宇.作物次级群体的研究进展.农业生物技术学报,2007,14:128-134
    徐建龙,薛庆中,罗立军,黎志康.水稻单株有效穗数和每穗粒数的QTL剖析.遗传学报,2001,28:752-759
    徐俊峰.中国主栽水稻品种抽穗期基因型分析及隐性感光抑制子的精细定位.南京农业大学博士论文,2007
    余四斌,穆俊祥,赵胜杰,周红菊,谭友斌,徐才国,罗利军,张启发.以珍汕97B和9311为背景的导入系构建及其筛选鉴定.分子植物育种,2005,3:629-636
    张书红.玉米单片段代换系群体的构建和玉米矮花叶病抗病基因的定位.河南农业大学硕士论文,2007
    朱德峰,程式华,张玉屏,林贤青,陈惠哲.全球水稻生产现状与制约因素分析.中国农业科学,2010,43:474-479
    Abe M, Fujiwara M, Kurotani K, Yokoi S, Shimamoto K. Identification of dynamin as aninteractor of rice GIGANTEA by tandem affinity purification (TAP). Plant Cell Physiol,2008,49:420-432
    Aida Y, Tsunematsu H, Doi K, Yoshimura A. Development of a series of introgression linesof japonica in the background of indica rice. Rice Genet Newslett,1997,14:41-43
    Bian X F, Liu X, Zhao Z G, Jiang L, Gao H, Zhang Y H, Zheng M, Chen L M, Liu S J, ZhaiH Q. Heading date gene, dth3controlled late flowering in O. Glaberrima Steud. bydown-regulating Ehd1. Plant Cell Rep,2011,30:2243-2254
    Brondani C, Rangel P, Brondani R, Ferreira M. QTL mapping and introgression ofyield-related traits from Oryza glumae patula to cultivated rice (Oryza sativa L.) usingmicrosatellite markers. Theor Appl Genet,2002,104:1192-1203
    Cai C M, Li W M, Zhou Y C. Complementary genes controlling photoperiod characterizationof a quantitative trait locus Hd9, controlling heading date in rice. Breed Sci,2002,52:35-41
    Cai C M, Li W M, Zhou Y C. Complementary genes controlling photoperiod sensitivity inhybrid rice. Rice Genet Newslett,1987,4:90-91
    Cao G, Zhu J, He C, Gao Y, Yan J, Wu P. Impact of epistasis and QTL×environmentinteraction on the developmental behavior of plant height in rice (Oryza sativa L.). TheorAppl Genet,2001,103:153-160
    Chang T T, li C C, Vergara B S. Component analysis of duaration from seeding to heading inrice by the basic vegetative phase and photoperiod-sensitive phase. Euphytica,1969,18:79-81
    Chardon F, Damerval C. Phylogenomic analysis of the PEBP gene family in cereals. J MolEvol,2005,61:579-590
    Chen J B, Li, X Y, Cheng, C, Wang, Y H, Qin, M, Zhu, H T, Zeng, R Z, Fu, Y L, Liu, Z Q,Zhang, G Q. Characterization of epistatic interaction of QTLs LH8and EH3controllingheading date in rice. Scientific Reports,2014,4:4263|doi:101038/srep04263
    Dai X, Ding Y, Tan L, Fu Y, Liu F, Zhu Z, Sun X, Sun X, Gu P, Cai H, Sun, C. LHD1, anallele of DTH8/Ghd8, controls late heading date in common wild rice (Oryzarufipogon). J Integr Plant Biol,2012,54(10):790-799
    Daniel, X, Sugano, S, Tobin, E M. CK2phosphorylation of CCA1is necessary for itscircadian oscillator function in Arabidopsis. Proc Natl Acad Sci, USA,2004,101:3292-3297
    Doi K, Iwata N, Yoshimura A. The construction of chromosome substitution lines of Africanrice (Oryza glaberrima Steud.) in the background of Japonica rice (O.sativa L.). RiceGenet Newslett,1997,14:39-41
    Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A. Ehd1,a B-type response regulator in rice, confers short-day promotion of flowering and controlsFT-like gene expression independently of Hd1. Genes Dev,2004,18:926-936
    Doi K, Yoshimura A, Iwata N. RFLP mapping and analysis of heading date and pollensterility using backcross populations between Oryza sativa L. and Oryza glaberrimaSteud. Breed Sci,1998,48:395-399
    Eshed Y, Zamir D. An introgression line population of lycopersicon pennellii in the cultivatedtomato enables the identification and fine mapping of yield-associated QTL. Genetics,1995,141:1147-1162
    Eshed Y, Zamir D. Less-than-additive epistatic interactions of quantitative trait loci in tomato.Genetics,1996,143:1807-1817
    Gao H, Zheng X M, Fei G L, Chen J, Jin M N, Ren Y L, Wu W X, Zhou K N, Sheng P K,Zhou F, Jiang L, Wang J, Zhang X, Guo X P, Wang J L, Cheng Z J, Wu C Y, Wang H Y,Wan J M. Ehd4encodes a novel and Oryza-genus-specific regulator of photoperiodicflowering in rice. Plos Genetics,2013,9(2): e1003281
    Hayama R, Izawa T, Shimamoto K. Isolation of rice genes possibly involved in thephotoperiodic control of flowering by a fluorescent differential display method. PlantCell Physiol,2002,43:494-504
    Hayama R, Yokoi S, Tamaki S, Yano M, Shimamoto K. Adapation of photoperiodic controlpathways produces short-day flowering in rice. Nature,2003,442:719-722
    He F H, Xi Z Y, Zeng R Z, Talukdar A, Zhang G Q. Developing single segment substitutionLines (SSSLs) in rice (Oryza sativa L.) using advanced backcrosses and MAS. ActaGenet Sin,2005,32:825-831
    Hori K, Ogiso-Tanaka E, Matsubara K, Yamanouchi U, Ebana K, Yano M. Hd16, a gene forcasein kinase I, is involved in the control of rice flowering time by modulating theday-length response. Plant J,2013,76(1):36-46
    Ichitani K, Okumoto Y, Tanisaka T. Genetic analysis of the rice cultivar Kasalath withspecial reference to two photoperiod sensitivity loci E1and Se-1. Breed Sci,1998,48:51-57
    Izawa T, Oikawa T, Tokutomi S, Okimo K, Shimamoto K. Phytochromes confer thephotoperiodic control of flowering in rice (a short-day plant). Plant J,2000,22:391-399
    Izawa T, Takahashi Y, and Yano M. Comparative biology comes to bloom: genomic andgenetic comparison of flowering pathways in rice and Arabidopsis. Curr Opin Plant Biol,2003,6:113-120
    Jeon J S, Lee S, Jung K H, Yang W S, Yi G H, Oh B G, An G H. Production of transgenic riceplants showing reduced heading date and plant height by ectopic expression of riceMADS-box genes. Mol Breed,2000,6:581-592
    Kazuki M, Utako Y, Wang Z X, Minobe Y, Izawa T, Yano M. Ehd2, a rice ortholog of themaize INDETERMINATE1gene, promotes flowering by up-regulating Ehd1. PlantPhysiol,2008,148:1425-1435
    Kerr J F, Wyllie A H, Currie A R. Apoptosis a basic biological phenomenon withwide-ranging implications in tissue kinetics. Br J Cancer,1972,26:239-257
    Kim S K, Yun C H, Lee J H, Jang YH, Park H Y, Kim J K. OsCO3, a CONSTANS-LIKEgene, controls flowering by negatively regulating the expression of FT-like genes underSD conditions in rice. Planta,2008,228(2):355-365
    Kim S K, Yun C H, Lee J H, Jang Y H, Park H Y, Kim J K. OsCO3,a CONSTANS-LIKE gene,controls flowering by negatively regulating the expression of FT-like genes under SDconditions in rice. Planta,2008,228:355-365
    Kim S L, Lee S, Kim H J, Nam H G, An, G. OsMADS51is a short-day flowering promoterthat functions upstream of Ehd1, OsMADS14, and Hd3a. Plant Physiology,2007,145(4):1484-1494
    Kobayashi K, Maekawa M, Miyao A, Hirochika H, Kyozuka J. PANICLE PHYTOMER2(PAP2), encoding a SEPALLATA subfamily MADS-box protein, positively controlsspikelet meristem identity in rice. Plant Cell Physiol,2010,51(1):47-57
    Kobayashi K, Yasuno N, Sato Y, Yoda M, Yamazaki R, Kimizu M, Yoshida H, Nagamura Y,Kyozuka J. Inflorescence meristem identity in rice is specified by overlapping functionsof three AP1/FUL-Like MADS-box genes and PAP2, a SEPALLATA MADS boxgene. Plant Cell,2012,24(5):1848-1859
    Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M. Hd3a, a riceortholog of the Arabidopsis FT gene, promotes transition to flowering downstream ofHd1under short-day condition. Plant Cell Physiol,2002,43:1096-1105
    Komiya R, Ikegami A, Tamaki S, Yokoi S, Shimamoto K. Hd3a and RFT1are essential forflowering in rice. Development,2008,135:767-774
    Komiya R, Yokoi S, Ko Shimamoto K. A gene network for long-day flowering activatesRFT1encoding a mobile flowering signal in rice. Development,2009,136:3443-3450.
    Koo B H, Yoo S C, Park J W, Kwon C T, Lee B D, An G, Zhang Z, Li J, Li Z, Paek N C.Natural variation in OsPRR37regulates heading date and contributes to rice cultivation ata wide range of latitudes. Mol Plant,2013,6(6):1877-1888
    Lee S, Kim J, Han J N, Han M J, An G. Functional analyses of the flowering time geneOsMADS50, the putative SUPPRESSOR OF OVEREXPRESSION OF CO1/AGAMOUS-LIKE20(SOC1/AGL20) ortholog in rice. Plant J,2004,38(5):754-764
    Li D, Yang C, Li X, Gan Q, Zhao X, Zhu L. Functional characterization of riceOsDof12. Planta,2009,229(6):1159-1169
    Li Z K, Pinson S R M. Stansel J W. Identification of quantitative trait loci (QTLs)for headingdate and plant height in cultivated rice (Oryza sativa L.). Theor Appl Genet,1995,91:374-381
    Li Z K, Yu S B, Lafitte H R, Huang N, Courtois B. QTL×environment interactions in rice Ⅰ.Heading date and plant height. Theor Appl Genet,2003,108:141-153
    Li ZS, Pinson RM, Park WD, Paterson AH andStansel JW. Epistasis for three grain yieldcomponents in rice (Oryza sativa L.). Genetics,1997,145:453-465.
    Lim J, Moon Y H, An G, Jang S K. Two rice MADS domain proteins interact with OsMADS1.Plant Mol Biol,2000,44:513-527
    Lin H G, Liang Z W, Sasaki T, Yano M. Fine mapping and characterization of quantitativetrait loci Hd4and Hd5controlling heading date in rice. Breed Sci,2003,53:51-59
    Lin H X, Ashikari M, Yamanouchi U, Sasaki T, Yano M. Identification and characterizationof a quantitative trait locus Hd9, controlling heading date in rice. Breed Sci,2002.52:35-41
    Lin H X, Liang Z W, Sasaki T, and Yano M. Fine mapping and characterization ofquantitative trait loci Hd4and Hd5controlling heading date in rice. Breed Sci,2003,53:51-59
    Lin H X, Yamamoto T, Sasaki T, Yano M. Characterization and detection of epistaticinteractions of3QTLs, Hd1, Hd2, and Hd3, controlling heading date in rice using nearlyisogenic lines. Thoer Appl Genet,2000,101:1021-1028
    Lin S Y, Sasaki T, Yano M. Mapping quantitative trait loci controlling seed dormancy andheading date in rice, Oryza sativa L, using backcross inbred lines. Theor Appl Genet,1998,96:997-1003
    Lin, H X, Ashikari M, Yamanouchi U, Sasaki, T and, Yano M. Identification andcharacterization of a quantitative trait locus, Hd9, controlling heading date in rice. BreedSci,2002,52:35-41
    Liu G, Yang J, Xu H, Zhu J. Influence of epistasis and QTL×environment interaction onheading date of rice (Oryza sativa L.). J Genet Genomics,2007,34(7):608-615
    Liu S, Wang F, Gao L J, Li J H, Li R B, Gao H L, Deng G F, Yang J S, Luo X J. Geneticanalysis and fine mapping of LH1and LH2, a set of complementary genes controlling lateheading in rice (Oryza sativa L.). Breed Sci,2012,62(4):310-9.
    Livak K J and Schmittgen T D. Analysis of relative gene expression data using real-timequantitative PCR and the2(T)(-Delta Delta C) method. Methods,2001,25(4):402-408
    Lu C, Shen L, Tan Z, Xu Y, He P, Chen Y. Comparative mapping of QTLs for agronomictraits of rice across environments using a doubled haploid population. Theor Appl Genet,1996,93(8):1211-1217
    Matsubara K, Ogiso-Tanaka E, Hori K, Ebana K, Ando T, Yano M. Natural variation in Hd17,a homolog of Arabidopsis ELF3that is involved in rice photoperiodic flowering. PlantCell Physiol,2012,53(4):709-716
    Matsubara K, Yamanouchi U, Nonoue Y, Sugimoto K, Wang Z X, Minobe Y, Yano M. Ehd3,encoding a plant homeodomain finger-containing protein, is a critical promoter of riceflowering. Plant J,2011,66(4):603-612
    Matsumoto T, Wu J Z, Kanamori H, Katayose Y. The map-based sequence of the ricegenome Nature,2005,436:793-800
    McCouch S R, Teytelman L, Xu Y B, Lobos B K, Clare K, Walton M, Fu B, Maghirang R, LiZ, Xing Y, Zhang Q, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, CartinhourS, Ware D, Stein L. Development and mapping of2240new SSR markers for rice (Oryzasativa L.). DNA Research,2002,9:199-207
    Michaels S D, Himelblau E, Kim S Y, Schomburg F M, Amasino R M. Integration offlowering signals in winter-annual Arabidopsis. Plant Physiol,2005,137:149-156
    Monna L, Lin H X, Kojima S, Sasaki T and Yano M. Genetic dissection of a genomic regionfor a quantitative trait locus, Hd3, into two loci, Hd3a and Hd3b, controlling heading datein rice. Theor Appl Genet,2002,104:772-778.
    Nishida H,Inoue H,Okumoto Y, Tanisaka T. A Novel ef1-h conferringan extremely longbasie vegetative grouth period in rice. Crop Sci,2002,42:348-354
    Ogiso-Tanaka E, Matsubara K, Yamamoto S, Nonoue Y, Wu J, Fujisawa H, Ishikubo H,Tanaka T, Ando T, Matsumoto T, Yano M. Natural variation of the RICE FLOWERINGLOCUS T1contributes to flowering time divergence in rice. PloS One,2013,8(10):e75959.
    Ohshima I and Kikuchi F. Identification of a recessive inhibitor for photoperiod-sensitivegene, Se-1, in photoperiod-insensitive varieties of Indica type rice. Proceedings of the7thInternational Congress SAERAO,1994,193-200
    Okumoto Y, Tanisaka T. Trisomic analysis of a strong photoperiod-sensitivity gene E1in rice(Oryza sativa L.). Euphytica,1997,95:301-307
    OkumotoY, Ichitani K, Inoue H, Tanisaka T. Photoperiod in sensitivity gene essential to thevarieties grown in the northern limit region of paddy rice (Oryza sativa L.) cultivation.Euphytica,1996,92:63-66
    Panaud O, Chen X, McCouch S R. Development of microsatellite markers andcharacterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativaL.). Mol Gen Genet,1996,252:597-607
    Paterson A H, Deverna J W, Lanini B, Tanksley S D. Fine mapping of quantitative trait lociusing selected overlapping recombinant chromosomes, in an interspecies cross of tomato.Genetics,1990,124:735-742
    Poonyarit M, Mackill D J, Vergara B S. Genetics of photoperiod sensitivity and criticaldaylength in rice. Crop Sci.1989.29:647-652
    Ryu C H, Lee S Y, Cho L H. OsMADS50and OsMADS56function antagonistically inregulating long day (LD)-dependent flowering in rice. Plant Cell Environ,2009,32:1412-1427Saito H, Okumoto Y, Yoshitake Y, Inoue H, Yuan Q, Teraishi M, Tsukiyama T, Nishida H,Tanisaka T. Complete loss of photoperiodic response in the rice mutant line X61iscaused by deficiency of phytochrome chromophore biosynthesis gene. Theor Appl Genet,2010,122(1):109-118
    Salvi S&Tuberosa R. To clone or not to clone plant QTLs: present and future challenges.Trends Plant Sci,2005,10(6):297-304
    Sano Y. A dominant suppressor for the photoperiod sensitive gene, Se-1, detected in aPhotoPeriod-sensitive cultivar of an Indica type. Rice Genet Newslett,1990,7:101-103
    Sato S, Ogata K and Shinjyo C. Thermo-sensitive action of an earliness gene EF-x in rice,Oryza sativa L. Jpn J Genet,1992,67:473-482
    Sato S, Sakamoto I, Shirakawa K, Nakasone S. Chromosomal location of an earliness geneEf1of rice, Oryza sativa L. Jpn J Breeding,1988,38:385-396
    Takahashi Y, Shomura A, Sasaki T, Yano M. Hd6a rice quantitative trait locus involved inphotoperiod sensitivity, encodes the alpha subunit of protein kinase CK2. Proc Natl AcadSci USA,2001,98:7922-7927
    Tamaki S, Matsuo S, Wong H L, Yokoi S, Shimamoto K. Hd3a protein is a mobile floweringsignal in rice. Science,2007,316(5827):1033-1036
    Tanaka E O, Matsubara K, Yamamoto S, Nonoue Y, Wu J Z, Fujisawa H, Ishikubo H, TanakaT, Ando T, Matsumoto T, Yano M. Natural variation of the RICE FLOWERING LOCUST1contributes to flowering time divergence in rice. PLoS One,2013,8(10): e75959
    Tanksley S D, Grandillo S, Fulton T M, Zamir D, Eshed Y, Petiard V, Lopez J, Beck-Bunn T.Advanced backcross QTL analysis in a cross between an elite processing line of tomatoand itswild relative L. pimpinellifolium. Theor Appl Genet,1996,92:213-224
    Teper-Bamnolker P, Samach A. The flowering integrator FT regulates SEPALLATA3andFRUITFULL accumulation in Arabidopsis leaves. Plant Cell,2005,17:2661-2675
    Tsai K H. Further observations on the EF-1gene for early heading. Rice Genet Newslettt,1985,2:77-78
    Tsai K H. Gene loci and alleles controlling the duration of basic vegetative growth of rice. In:Rice Geneties International Rice Research Institute,1986b:339-349
    Tsai K H. Genes controlling heading time found in tropical Japonica variety. Rice GenetNewslett,1986a,3:71-73
    Tsai K H. Genetic analysis for heading time in wild rice strains. Jpn J Genet,1995,70:555-562
    Tuinstra, M R, Ejeta, G, Goldsbrough, P B. Heterogeneous inbred family (HIF) analysis: amethod for developing near-isogenic lines that differ at quantitative trait loci. Theor ApplGenet,1997,95:1005-1011
    Wang W Y, Liu X, Ding F H, Jiang M S, Li G X, Liu W, Zhu C X and Yao F Y. Finemapping of a quantitative trait locus qHD3-1, controlling the heading date, to a29.5-kbDNA fragment in rice. Russ J Plant Physiol,2011,58:516-523
    Wei X J, Xu J F, Guo H N, Jiang L, Chen S H, Yu C Y, Zhou Z L, Hu P S, Zhai H Q, Wan JM. DTH8suppresses flowering in rice, influencing plant height and yield potentialsimultaneously. Plant Physiol,2010,153:1747-1758
    Wissuwa M, Wegner J, Ae N, Yano M. Substitution Mapping of Pup1: a Major QTLincreasing phosphorus uptake of rice from a phosphorus-deficient Soil. Theor Appl Genet,2002,105:890-897
    Wu W X, Zheng X M, Lu G W, Zhong Z Z, Gao H, Chen L P, Wu C Y, Wang H J, Wang Q,Zhou K N, Wang J L, Wu F Q, Zhang X, Guo X P, Cheng Z J, Lei C L, Lin Q B, Jiang L,Wang H Y, Song G, Wan J M. Association of functional nucleotide polymorphisms atDTH2with the northward expansion of rice cultivation in Asia. Proc Natl Acad Sci USA,2013,110(8):2775-2780
    Xing Y Z, Tan Y F, Hua J P, Sun C G, Xu C G, Zhang Q F. Characterization of the maineffects, epistatic effects and their environmental interactions of QTL on the genetic basisof yield traits in rice. Theor Appl Genet,2002,105:248-257
    Xue WY, Xing Y Z, Weng X Y, Zhao Y, Tang W J, Wang L, Zhou H J, Yu S B, Xu C G, Li XH, Zhang Q F. Natural variation in Ghd7is an important regulator of heading date andyield potential in rice. Nat Genet,2008,40:761-767
    Yamagata H, Okumoto Y. Tanisaka T. Aanlysis of genes controlling heading time inJapanese rice. In: Rice Genetics International Rice Research Insitute The Philipinese,1986,351-359
    Yamamoto T, Kuboki Y, Lin S Y, Sasaki T, Yano M. Fine mapping of quantitative trait lociHd-1, Hd-2, and Hd-3, controlling heading date of rice, as single Mendelian factors.Theor Appl Genet,1998,97:37-44
    Yamamoto T, Lin H, Sasaki T, Yano M. Identification of heading date quantitative trait locusHd6, and characterization of its epistatic interaction with Hd2in rice using advancedbackcross progeny. Genetic,2000,154:885-891
    Yan W H, Wang P, Chen H X, Zhou H J, Li Q P, Wang C R, Ding Z H, Zhang Y S, Yu S B,Xing Y Z, Zhang Q F. A Major QTL, Ghd8, Plays Pleiotropic Roles in Regulating GrainProductivity, Plant Height, and Heading Date in Rice. Mol Plant,2011,4(2):319-330
    Yano M, Harushima Y, Nagamura Y, Kurata N, Minobe Y, Sasaki T. Identification ofquantitative trait loci controlling heading date in rice using a high density linkage map.Theor Appl Genet,1997,95:1025-1032
    Yano M, Izawa T, Yamanouchi U, Nakagawa H, Ogiso E. Genetic control of flowering timein rice. Plant&Animal Genomes XIII Conference,2005,15-19
    Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K,Nagamura Y, Sasaki T, Umehara Y. Hd1, a major photoperiod sensitivity quantitative traitlocus in rice, is closely related to the Arabidopis flowering time gene CONSTANS. PlantCell,2000a,12:2473-2483
    Yano M, Kojima S, Takahashi Y, Lin H, Sasaki T. Genetic control of flowering time in rice,a short-day plant. Plant Physiol,2001,127:1425-1429
    Yano M, Sasaki T. Genetic and molecular dissection of quantitative traits in rice. Plant MolBiol,1997,35:145-153
    Yokoo M and Fujimaki F. Genetic analysis for heading time in rice by the aid of the1inkagewith blast resistance. Jpn J breed,1978,28:49-55
    Young N D and Tanksley S D. Restriction fragment length polymorphism maps and theconcept of graphical genotypes. Theor Appl Genet,1989,77:95-101
    Yu S B, Li J X, Xu C G, Tan Y F, Gao Y J, Li X H, Zhang QF, Saghai Maroo MA. Importanceof epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad SciUSA,1997,94:9226–9231
    Yu S B, Li J X, Xu C G, Tan Y, Li X H, Zhang Q F. Identification of quantitative trait loci andepistatic interactions for plant height and heading date in rice. Theor Appl Genet,2002,104:619-625
    Zhang G Q, Zeng R Z, Zhang Z M, Ding X H, Li W T, Liu G M, He F H, Tulukdar A, HuangC F, Xi Z Y, Qin L J, Shi J Q, Zhao F M, Feng M J, Shan Z L, Chen L, Guo X Q, Zhu H T,Lu Y G. The construction of a library of single segment substitution lines in rice (Oryzasativa L.). Rice Genet Newslett,2006,21:85-87
    Zhang Y, Luo L, Xu C, Zhang Q, Xing Y. Quantitative trait loci for panicle size, heading dateand plant height co-segregating in trait-performance derived near-isogenic lines of rice(Oryza sativa L.). Theor Appl Genet,2006,113(2):361-368
    Zhang Z H, Wang K, Guo L, Zhu Y J, Fan Y Y, Cheng S H, Zhuang J Y. Pleiotropism of thephotoperiod-insensitive allele of Hd1on heading date, plant height and yield traits in rice.PloS One,2012,7(12), e52538
    Zhuang J Y, Fan Y Y, Rao Z M, Wu J L, Xia Y W, Zheng K L. Analysis on additive effectsand additive-by-additive epistatic effects of QTLs for yield traits in a recombinant inbredline population of rice. Theor Appl Genet,2002,105:1137-1145

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700