循环流化床热电气焦油多联产技术的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从我国的能源消费特点来看,在今后相当长的时期内,煤炭仍将是我国最主要的一次能源。目前,我国煤炭利用的主要形式为直接燃烧,这样的利用方式不但降低了煤炭的利用率,而且给环保带来了沉重的压力。浙江大学开发的循环流化床热电气焦油多联产技术可以在一套系统中实现热力、电力、煤气、焦油的联产,采用这样的利用方式可实现煤的分级转化和利用,大幅度提高了煤的利用价值。
     煤的热解特性是研究煤的热电气焦油多联产技术的基础,本文在搭建的小型流化床实验台上进行了煤的热解特性实验,考察了煤种、温度对热解煤气、半焦、焦油产率及成分的影响;热解焦油产率随温度升高有一最大值,由于二次反应的存在,温度太高将不利于焦油的生成;在低温时煤气主要由CO和C02组成,H2含量随温度的升高不断增大,C02含量随温度升高呈下降趋势;煤种的含氧量越高,生成煤气中的CO和CO2的含量也越高,O/C比太高的煤将不利于CH4的生成。H/C较高的煤,热解焦油的轻质组分较多。煤化程度高的煤,热解焦油组成以芳香烃为主,煤化程度低的煤热解焦油组成以脂肪烃为主。
     在1MW多联产装置上对不同煤种的热解特性进行研究,考察了气化炉温度对多联产煤气,焦油产率的影响,试验结果表明,焦油产率随气化炉温度升高有一最大值,热解煤气以H2和CH4为主,随着气化炉温度的升高,煤气中H2和CO含量呈上升趋势;试验为下一步在工业上的应用提供了基础。
     12MW循环流化床热电气焦油多联产试验结果表明,热解产生的焦油是很好的化学原料,随气化炉温度的升高热解焦油的H/C比下降,粘度、软化点升高,焦油品质变差,因此应适当控制气化炉温度使焦油的生产达到质与量的最佳点。多联产系统能有效地减少NOx及SOx等污染物的排放,系统具有运行稳定、安全可靠、调节方便、焦油和煤气生产稳定等特点。试验结果验证了所开发的循环流化床热电气焦油多联产工艺是先进可行的,在工业上进行推广应用是可行的。
According to the characteristics of China's energy consumption, coal will be remaining the most important primary energy of China for a long period of time. At present, the main form of China's coal utilization is direct combustion; this approach not only reduces the coal utilization, but also brings heavy pressure to environmental protection. The circulating fluidized bed poly-generation technology developed by Zhejiang University can achieve heat, electricity, gas, tar cogeneration in a system, using such a method can achieve the classification of coal conversion and utilization, so the value of coal utilization can be increased significantly.
     The pyrolysis characteristics of coal are the basis of poly-generation technology. In this paper, the characteristics of coal pyrolysis were studied in an experimental fluidized bed device. The effects of temperature and coal type on pyrolysis gas and tar were investigated; there is a maximum tar yield with increasing pyrolysis temperature, due to the presence of secondary reaction, the high pyrolysis temperature is negative to the generation of tar. At low temperature, gas compositions mainly contain CO and CO2, H2 concentration increases with increasing temperature continuously.CO2 content in a downward trend with increasing temperature. The higher the oxygen content in the coal, the more the CO and CO2 contained in pyrolysis gas, too high or too low O/C ratio is negative to the generation of CH4. The higher H/C the coal, the more lightweight components contained in pyrolysis tar. High rank coal pyrolysis tar mainly composed by aromatic hydrocarbons, and low rank coal pyrolysis tar mainly composed by aliphatic hydrocarbons.
     The pyrolysis characteristics of different coal were studied in a 1MW poly-generation device. The influences of gasification temperature on the pyrolysis gas and yield of tar were researched; the experiment results show that there is a maximum tar yield with increasing gasifier temperature; the pyrolysis gas mainly contains H2 and CH4, With gasifier temperature increasing, H2 and CO concentrations increase continuously; 1MW poly-generation experiment provide a basis for further applications in industry.
     12MW poly-generation results show that the pyrolysis tar is a very good chemical raw material. With the gasifier temperature increasing, pyrolysis tar's H/C ratio decreased, viscosity and softening point rise, tar-quality get worse. So the gasifier temperature should be properly controlled which can make the tar quality and quantity achieve the best point. The poly-generation system can reduce NOX, SOX and other pollutant emissions effectively; the system has the characteristics of stable, safe, reliable, convenient adjustment and stability of tar and gas production.12MW poly-generation experiments verify the thermal, electric, gas, tar poly-generation technology is an advanced technology which is feasible to promote in the industry.
引文
[1]BP Statistical Review of World Energy,Jun.2009,http://www.bp.com/.
    [2]江泽民.对中国能源问题的思考.上海交通大学学报[J].2008,42(3):345-359.
    [3]刘红.我国的能源现状及发展.商场现代化[J].2004(5):20-21.
    [4]Key World EnergySatistics.2006,http://www.iea.org/atatist/ey2006.pdf
    [5]李彦梦.年中国能源工业发展思路和要求[J].中国能源.2002(6):4-5.
    [6]班瑞凤,魏晓平.中国能源结构及利用问题研究[J].徐州工程学院学报(社会科学版),2008,23(5):15-20.
    [7]王灵梅,李政,倪维斗.多联产系统的能值评估.动力工程[J].2006,26(2):278-282.
    [8]倪维斗,李政,薛元.以煤气化为核心的多联产能源系统——资源/能源/环境整体优化与可持续发展[J].中国工程科学,2000,2(8):59-68.
    [9]邓剑.煤气化多联产,上海节能[J].2006(6):45-48.
    [10]胡笑颖,顾煜炯,杨昆.浅析煤炭多联产技术.煤炭技术[J].2005,24(12):7-10.
    [11]李现勇,肖云汉,任相坤.煤基多联产系统的意义及国内外发展概况[J].洁净煤技术.2004,10(1).
    [12]罗洁.煤的热电气多联产技术分析[J].湖南电力,2007,27(1):60-63.
    [13]李现勇,肖云汉,任相坤.煤基多联产系统关键问题及在中国可能的发展途径[J].洁净煤技术,2004,10(2).
    [14]倪维斗,郑洪弢,李政,江宁.多联产系统:综合解决我国能源域五大问题的重要途径[J].动力工程,2003,23(2):2245-2252.
    [15]Li,C.-Z.Some recent advances in the understanding of the pyrolysis and gasification behaviour of Victorian brown coal [J].fuel.2007,86:p.1664-1683.
    [16]徐振刚.多联产是煤化工的发展方向[J].洁净煤技术.2002,8(2):5-8.
    [17]吕东颖.美国展望21(Vision21)研究项目简介[J].热力发电,2006(06)
    [18]Lawrence A Ruth.Vision 21:Advanced energy plantsfor the 21st century,7th Coal clean technology conference,Knoxville,June:21~24,1999.
    [19]罗陨飞,杜铭华,李文华.美国未来洁净煤技术研究推广计划概述[J].洁净煤技术,2005,11(4):5-11.
    [20]王庆一.“梦幻21”煤基能源工厂:多联产,高效率,零排放[J].中国煤炭.2001,27(9):57-62.
    [21]http://fossil.energy.gov/programs/powersy stems/futuregen/futuregenfactsheet.
    [22]贺永德.现代煤化工手册[M].北京:化学工业出版社,2004,第一版.
    [23]韩梅.以煤气化为核心的坑口多联产系统[J].洁净煤技术,2004,10(3):4-8.
    [24]程黎花.高效清洁煤炭转化技术现状.科技情报开发与经济[J].2006,16(11).
    [25]张向荣.合成氨-动力多联产系统初步研究[D].北京:中国科学院工程热物理研究所,2006,23-24.
    [26]Jens Hetland,Nils A.Rokke. Towards large-scale co-production of electricity and hydrogen via decarbonisation of fossil fuels combined with CCS(geological storage) [J].Energy Procedia,2009(1) p:3867-3875.
    [27]S.D.Peteves, E.Tzimas, F.Starr. HYPOGEN Pre-feasibility study final report.European Science and Technology Observatory,2005(1).
    [28]廖东海,刘飞,熊源泉.南钢富余煤气合成甲醇—电力多联产循环经济利用[J].节能减排,2009(3):18-22.
    [29]刘培,高健,李政.甲醇/电多联产系统变工况特性的研究[J].动力工程,2006,26(4):587-592.
    [30]张晋,段远源.甲醇合成产率对多联产系统效率的影响[J].清华大学学报(自然科学版).2003,43(10):1420-1424.
    [31]金红光,高林,郑丹星等.煤基化工与动力多联产系统开拓研究[J].工程热物理学报,2001,22(4):388-393.
    [32]冯静,倪维斗,李政.串联型化工动力多联产系统主导因素与变工况特性[J].热能动力工程,2008,23(6):625-631.
    [33]麻林巍,倪维斗,李政等.以煤气化为核心的甲醇、电的多联产系统分析(上)[J].动力工程2004,21(3):451-457.
    [34]林汝谋,金红光,高林.化工动力多联产系统及其集成优化机理[J].热能动力工程,21(4):332-340.
    [35]倪维斗,靳晖,李政.中国液体燃料的短缺及其替代问题[J].科技导报,2001(12).
    [36]陈斌,高林,金红光.二甲醚/动力多联产系统的初步研究[J].工程热物理学报,2004,25(5):741-745.
    [37]倪维斗,李政,江华.煤基多联产系统(化工过程-动力装置)的分析[J].煤炭转化,2003,26(4):1-5.
    [38]倪维斗,靳晖,李政,郑洪弢.二甲醚经济与中国的能源环境[J].节能与环保,2002(6):10-15.
    [39]谢克昌,张永发,赵炜.“双气头”多联产系统基础研究—焦炉煤气制备合成气[J].山西能源与节能,2008(2):10-13.
    [40]王明华,李政,倪维斗.“双气头”多联产中试装置的流程设计研究[J].煤炭转化,2007,30(2):48-53.
    [41]郑安庆.双气头多联产系统的模拟与评价[D].太原:太原理工大学硕士研究生学位论文,2008,3-5.
    [42]岑可法,方梦祥,骆仲泱.循环流化床热电气三联产装置研究[J].工程热物理学报,1995,16(4):499-504.
    [43]岑可法,倪明江,骆仲泱等.循环流化床燃气蒸汽联产工艺及装置[P]中国专利:ZL9210050312,1995-06.
    [44]杨天华,刘耀鑫,李润东等.循环流化床多联产系统的模型研究与性能预测[J].热力发电,2007(]0):13-18.
    [45]王俊琪,方梦祥,刘耀鑫等.以循环灰热载体热解为基础的热电气多联产技术的开发与进展[J].能源工程,2004(2):39-45.
    [46]方梦祥,骆仲泱,王勤辉.循环流化床热、电、气三联产装置的开发和应用前景分析[J].动力工程,1997,17(4):21-29.
    [47]王勤辉,骆仲泱,方梦祥.12兆瓦热电气多联产装置的开发[J].燃料化学学报,2002,30(2):141-147.
    [48]刘耀鑫,方梦祥,余春江等.循环流化床热、电、气多联产技术方案研究[J].热力发电,2003(2):2-6.
    [49]叶大戟.华能:“绿色煤电”发展战略[J].中国电力企业管理,2005(10):19-21.
    [50]金浪川,未来“绿色煤电”的思考[J]. 中国电力,2005,38 (1) 34-37.
    [51]唐先武.华能率先启动“绿色煤电”计划[J].中小企业科技,2005(7):40-41.
    [52]Jens Hetland,Li Zheng,Xu Shisen. How polygeneration schemes may develop under an advanced clean fossil fuel strategy under a joint sino-European initiative[J].Applied Energy,2009(86) p:219-229.
    [53]乌若思.未来的燃煤电厂—中国绿色煤电计划[J].中国电力,2007,40(3):6-9.
    [54]刘耀鑫.循环流化床热电气多联产试验及理论研究[D].杭州:浙江大学博士论文.2005,60-69.
    [55]Jesper V, Christiansen A.F, Flash pyrolysis of coals Temperature-dependent product distribution [J]. Journal of Analytical and Applied Pyrolysis 1995(32):p.51-63.
    [56].Chen L, Sun Y.X., Qian X. Thermogravimetric study of the pyrolysis of two Chinese coals under pressure[J]. fuel.1997(76):p.639-644.
    [57]. S.Hanson, J.W.P.,The effect of coal particle size on pyrolysis and steam gasification [J]. fuel.2002. (81): p.531-537.
    [58].A. Arenillas, F.R., J.J. Pis. Simultaneous thermogravimetric-massspectrometric study on the pyrolysis behaviour of different rank coals [J]. Journal of Analytical and Applied Pyrolysis,1999. (50):p.31-46.
    [59].N.A. Oztas, Y.Y., Pyrolysis of Turkish Zonguldak bituminous coal:Part 1.Effect of mineral matter [J]. fuel.2000(79):p.1221-1227.
    [60]熊方勋,吴少华,林伟刚.应用TG-FTIR研究鹤岗烟煤的热解特性[J].电站系统工程.2006,22(5):26-29.
    [61]J.A. MacPhee, J.-P. Charland, L. Giroux. Application of TG-FTIR to the determination of organic oxygen and its speciation in the Argonne premium coal samples [J]. Fuel Processing Technology, 2006(87) p:335-341.
    [62]杨景标,蔡宁生.应用TG-FTIR联用研究催化剂对煤热解的影响[J].燃料化学学报.2006,34(6):650-655.
    [63]杨海平,陈汉平,晏蓉.油棕废弃物热解的TG-FTIR分析[J].燃料化学学报.2006,34(3):309-315.
    [64]谢克昌,刘生玉.热解/红外光谱联用技术用于热解反应的快速检测[J].分析化学.2003,31(4):501~504.
    [65]吴国光,王祖讷.低阶煤的热重-傅里叶变换红外光谱的研究[J].中国矿业大学学报.1998,27(2):181-185.
    [66]Nurgul Ozbaya, E.A.-V.,Characterization of bio-oil obtained from fruit pulp pyrolysis[J]. Energy.2008. (33):p.1233-1240.
    [67]何国锋,戴和武,金嘉璐.低温热解煤焦油产率、组成性质与热解温度的关系[J].煤炭学报.1994,19(6):591-598.
    [68]闫金定,崔洪,杨建丽.热重质谱联用研究兖州煤的热解行为[J].中国矿业大学学报,2003, 32(3):311-316.
    [69]Philipp Morf, P.H., Mechanisms and kinetics of homogeneous sedondary reactions of tar from continuous pyrolysis of wood chips[J]. fuel.2002(30):p.843-853.
    [70]张妮.不同变质程度煤热解甲烷生成特征及反应机制[D].太原:太原理工大学硕士论文.2005,80-100.
    [71]顾海昕,唐黎华,朱子彬.煤快速加氢热解的研究一煤化程度影响的考察[J].华东理工大学学报,1999,25(1):11-16.
    [72]G. Di Nola, W.d.J., The fate of main gaseous and nitrogen species during fast heating rate devolatilization of coal and secondary fuels using a heated wire mesh reactor[J]. Fuel Processing Technology,2009(90):p. 388-395.
    [73]G. dela, Puente, J.J.P., Thermal stability of oxygenated carbons functions in activated carbons [J]. Journal of Analytical and Applied Pyrolysis.1997(43).p:125-138.
    [74]赵丽红,郭慧卿,马青兰.煤热解过程中气态产物分布的研究[J].煤炭转化.2007,30(1):5-10.
    [75]M.E. Sa ncheza, J.A. Menendezb, Effect of pyrolysis temperature on the composition of the oils obtained from sewage sludge[J]. biomass and bioenergy.2009(33):p.933-940.
    [76]Paul T. Williams, E.A.W, Fluidised bed pyrolysis of low density polyethylene to produce petrochemical feedstock[J]. Journal of Analytical and Applied Pyrolysis,1999(51):p.107-126.
    [77]A. Dommguez, J.A.M.. Investigations into the characteristics of oils produced from microwave pyrolysis of sewage sludge [J]. Fuel Processing Technology.2005 (86):p.1007-1020.
    [78]马智华,王欣荣,朱子彬.烟煤快速加氢热解的研究-温度和压力影响的考察.燃料化学学报[J].1996,24(5):416-421.
    [79]崔银萍,秦玲丽,杜娟.煤热解产物的组成及其影响因素分析[J].煤化工.2007(2):10-16.
    [80]Junhong Wang, J.D., Liping Chang. Study on the structure and pyrolysis characteristics of Chinese western coals[J]. Fuel Processing Technology.2009.
    [81]梁鹏,曲旋,毕继诚.固体热载体热解高挥发分烟煤产物分布及性质[J].煤炭转化.2007,30(1):43-49.
    [82]段春雷.低中变质程度煤的结构特征及热解过程中甲烷、氢气的生成机理[D]太原:太原理工大学硕士论文.2007,90-110.
    [83]朱子彬,王欣荣,马智华.快速加氢热解有效利用烟煤的研究[J].自然科学进展一国家重点实验室通讯.1996,6(4):495-499.
    [84]朱学栋,朱子彬,唐黎华.煤的热解研究-气氛和温度对热解的影响[J].华东理工大学学报,24(1):35-40.
    [85]樊俊杰,金晶,张建民.超细煤粉热解时轻质烃的析出规律[J].工程热物理学报.2006,27(2):231-234
    [86]Fang Mengxiang,Luo Zhongyang,Li Xuantian,et al.A multi-product cogeneration system using combined coal gasification and combustion[J].Energy.1998,23(3):p 203-212.
    [87]薛江涛.流化床煤热解气化过程中焦油析出特性研究[D].浙江大学.2005.
    [88]PEKKA S,PEKKA S, ESA K, et al. Provisional protocol for the sampling and analysis of tar and particulates in the gas from large-scale biomass gasifiers [J].Biomass and Bioenergy,2000,18 (1) p:19-38.
    [89]王传格.煤显微组分热解甲烷、氢气生成动力学及机理[D].太原:太原理工大学硕士学位论文.2006,72-85.
    [90]陈贵峰,史明志,程达.低煤阶煤热解煤气性质研究[J].洁净煤技术.1997,3(1):27-31.
    [91]Hyun Ju Parka, Y.-K.P.Pyrolysis characteristics of Oriental white oak:Kinetic study and fast pyrolysis in a fluidized bed with an improved reaction system [J]. Fuel Processing Technology.2009(90):p.186-195.
    [92]温亮,岑建孟,石振晶,方梦祥.气化炉床温对热-电-气-焦油多联产技术的影响[J].动力工程.2009,29(8):789-794.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700