促黄体素对人排卵前卵泡中缝隙连接和局部凋亡途径的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景与研究目的:颗粒细胞(granulosa cell,GC)是组成卵泡的主要体细胞成分,它在卵泡生长和发育中有重要的作用,与生殖细胞的生长、发育相互依赖、相互协助。一些研究者认为在体外授精.胚胎移植(in vitro fertilization-embryo transfer,IVF-ET)中,黄素化GC中某些超微结构的特征和凋亡可以作为预测IVF结局的指标。但是到目前为止,对影响黄素化GC凋亡的因子尚不完全清楚。本研究以IVF中排卵前卵泡作为研究对象,研究不同浓度的促黄体素(luteinized hormone,LH)是否会对卵泡的卵泡液和黄素化颗粒细胞的凋亡相关因子及细胞间的缝隙连接蛋白的表达产生不同的影响,以期寻找能对IVF妊娠结局有较强预测性的一种或几种因子。
     材料与方法本研究收集、分离了从体外受精-胚胎移植病人排卵前卵泡中获得的黄素化颗粒细胞,进行原代培养,3天后分别加入促卵泡素(follicle-stimulating hormone,FSH) 3IU/ml(对照组)、LH 1IU/ml(LHI组)、LH 3IU/ml(LH2组)和LH 6IU/ml(LH3组),培养24小时,分别测定黄素化GC中凋亡效应子半胱氨酸蛋白酶caspase-3、caspase-7和缝隙连接蛋白Cx43的mRNA和蛋白质的表达。并且在IVF取卵时收集排卵前卵泡的卵泡液,测定卵泡液中可溶性Fas(sFas)、sFasL和LH的浓度,分析在妊娠组和未妊娠组中这三个指标之间的差别,以及sFas、sFasL和LH与妊娠的相关性,应用Logistic回归分析sFas、sFasL和LH之间的相关性。
     结果:
     1、黄素化颗粒细胞体外原代培养是一个很好的估计卵巢功能及卵细胞质量的系统。原代细胞培养的优势在于最大程度地保存了细胞的特性,使体外实验结果更符合于体内的情况。
     2、在黄素化颗粒细胞中,加入FSH和不同浓度的LH后,高浓度的LH3组的Caspase-3的mRNA和蛋白质的相对表达量高于其余各组,其中mRNA的表达在各组中有统计学差异,而蛋白的表达无显著统计学差异;而且随着外源性给予的LH浓度的增加,Caspase-3的mRNA和蛋白质相对表达量也有逐渐升高的趋势。Caspase-7的mRNA和蛋白质的相对表达也随着外源性给予的LH的增加也逐渐增高,其中LH3组的表达最高,且在mRNA的表达中LH3组显著高于LH1组和LH2组:而蛋白质的表达中各组间都没有统计学差异。
     4、FSH组、LH1组和LH2组之间Cx43的mRNA和蛋白质的相对表达量没有差异,但是LH3组明显下降,与FSH组、LH1组和LH2组分别相比较,其中mRNA的表达有统计学的显著性差异,蛋白质的表达无统计学差异。
     5、在IVF中,妊娠组排卵前卵泡液中的LH和sFasL水平都明显高于未妊娠组,两组之间的sFas水平没有明显差异。
     6、通过logistic回归分析,卵泡液中与妊娠有统计学相关的因素仅为LH,OR=4.117,虽然sFasL在妊娠组和未妊娠组中有显著性差异,但经过回归分析后,它和sFas一样,都与IVF中病人是否妊娠没有相关性。
     7、应用Spearman相关分析,发现卵泡液中的LH和sFasL的水平呈明显正相关关系,而卵泡液中的sFas和LH之间并没有相关性。
     结论:
     1、低剂量的LH(1IU/ml和3IU/ml)可以对黄素化GC发挥类似FSH抗凋亡的作用,在低剂量的LH作用下,细胞中Caspase-3、Caspase-7和Cx43的mRNA和蛋白质的表达与FSH组中的表达无明显差异;但高剂量的LH(6IU/ml)会使凋亡相关因子表达增加,引起细胞凋亡,影响缝隙连接蛋白Cx43的表达,并且有可能通过异常表达的Cx43导致细胞间连接失耦联,影响卵泡中的正常信息传导,影响GC的存活,导致GC的凋亡增加,从而间接影响卵母细胞的发育、成熟。
     2、IVF妊娠组中排卵前卵泡卵泡液中的LH和sFasL明显高于未妊娠组;但是经过相关性分析和logistic回归分析后,发现只有卵泡液中的LH水平与妊娠有明显相关性。LH可能是通过某些其他途径对卵泡液中sFasL产生影响,并且LH可能对IVF的结局有很高的预测价值。
Background and objectives:
     Granulosa cells(GC) are the main somatic cells in follicles, which are very important during the follicular growth and development. The ovarian oocyte-granulosa cell interactions are essential for normal follicular development. The characteristics of ultrastructure and apoptosis of luteinized granulosa cells obtained from in vitro fertilization-embryo transfer (IVF-ET) maybe the good indicators for IVF prognosis. But it is unclear on some factors that influencing the apoptosis of luteinized GC. To explore the effects of different concentration of luteinizing hormone (LH) on the apoptosis-associated factors and gap junction (GJ) in the follicle fluid and luteinized GC , we have studied the preovulatoty follicles during IVF, so that we would find one or more factors to indicate the IVF result.
     Materials and methods:
     All luteinized GC were obtained from women who undergoing IVF at IVF center, West China Second University Hospital. After 3 days primary cultures, all cells were grouped as adding FSH 3IU/ml (control),LH HU/ml(LHl group), LH 3IU/ml(LH2 group) and LH 6IU/mL(LH3 group)for 24 hours. We analyzed the mRNA and protein expression levels of caspase-3, caspase-7 and Connexin 43. We also detected the LH, soluble Fas (sFas) and the soluble Fas ligand (sFasL) in the follicular fluid to analyzed relevance between these factors and pregnancy results, as well as between the LH and sFas -sFasL system.
     Results:
     1、The advantage in primary culture of luteinized GC is to preserve the its determined properties , which making the experiments in vitro more likely with the environment in vivo.
     2、After adding FSH and different dosage of LH, the relative mRNA and protein expressions in LH 3 group are higher than other groups, the relative mRNA expressions have statistical difference, but relative protein expressions have not statistical difference. Moreover, the expression of mRNA and protein of caspase-3 are gradually increased along with the increased dosage of exogenous LH. The expression of mRNA and protein of caspase-7 are also gradually increased along with the increased dosage of exogenous LH, and the mRNA expression in LH 3 group are statistical higher than that in LH 1 and LH 2 group, but there are no statistical difference in protein expression between these four groups.
     4、The relative expressions of mRNA and protein of Cx43 in control group、LH1 group and LH2 group have no difference. However, the relative expression of mRNA in LH 3 group is lower than in other three groups, and no difference on protein expression.
     5、The levels of LH and sFasL in the preovulatory follicle fluid are higher inpregnancy group than that in non pregnancy group, and in these twogroups ,there is no difference in sFas level.
     6、Using logistic regression analysis method, we found that LH in follicle fluidhad statistical relationship with the pregnancy result, and the odds ratio was4.117. Although there were statistical difference in sFasL between pregnancygroup and non pregnancy group by using the matched t-test, there were norelevance between sFasL and pregnancy result by using logistic regressionanalysis.
     7、The LH level in follicular fluid had positive relevant relationship withsFasL, but no relationship with sFas, by using Spearman relevanceanalysis .
     Conclusions:
     1、Low dose of LH (1IU/ml, 3IU/ml) can mimic the function of FSH on luteinized GC, that making the expression of mRNA and protein of caspase-3and caspase-7 increased, Cx43 decreased . But the high dose of LH(6IU/ml)would make the caspase-3 and caspase-7 increasing, and induce luteinized GC apoptosis, meanwhile it also influence the expression of Cx43, which may destroy the gap junctional coupling between GCs, influence the normal message conduction within follicles and induce the apoptosis of luteinized GC,and as a result,indirectly influence the oocyte development and maturation.
     2、In the preovulatory follicle fluid, the levels of LH and sFasL in pregnancy group are significantly higher than that in non-pregnancy group, but through relevance analysis and logistic regression analysis, only LH level in follicle fluid was associated with pregnancy. LH may influence sFasL level in follicle fluid through other pathway, and it maybe a good indicator for IVF prognosis.
引文
1、 Fortune JE, Cushman RA, Wahl CM et al. The primordial to primary follicle transition. Mol Cell Endocrinol .2000; 163: 53-60.
    2、 Nilsson EE and Skinner MK . Bone morphogenetic protein-4 acts as an ovarian follicle survival factor and promotes primordial follicle development. Biol Reprod.2003; 69:1265-1272.
    3、 Suh CS, Sonntag B , Erickson GF . The ovarian life cycle: a contemporary view. Rev Endocr Metab Disord 2002;3:5-12
    4、 Joanne EG, Kevin JB, Barbara CD et al. Interplay between paracrine signaling and gap junctional communication in ovarian follicles. J Cel Sci, 2005; 118:113-122
    5、 Eppig J.J. A comparison between oocyte growth in coculture with granulosa cells and ooocytes with granulosa cell-oocyte junctional contact maintained in vitro. J Exp Zool. 1979,209:345-353
    6、 Eppig J.J and Wiggles worth K. Development of mouse and rat oocytes in chimeric reaggregated ovaries after interspecific exchange of somatic and germ cell components. Biol Reprod. 2000,63:1014-1023
    7、 Greg F, Jay M.B. Granulosa cells regulate intracellular pH of murine growing oocyte via gap junctions: development of independent homeostasis during oocyte growth. Development. 2006,133:591-599
    8、 Gilchrist R.B, Morrissey M.P, Ritter L.J et al. Comparison of oocyte factors and transforming growth factor-beta in the regulation of DNA synthesis in bovine granulosa cells. Mol Cell Endocrinol. 2003,201:87-95
    9、 Filicori M, Cognigni GE, Samara A et al. The use of activity to drive folliculogenesis: exploring uncharted territories in ovulation induction. Hum Reprod Update. 2002;6:543-557
    10、Joyce I.M, Pendola F.L, Wigglesworth K et al. Oocyte regulation of kit ligand expression in mouse ovarian follicles. Dev Biol. 1999,214:342-353
    11、Manabe N, Inoue N, Miyano T et al. Ovarian follicle selection in mammalian ovaries: regulatory mechanisms of granulosa cell apoptosis during follicular atresia. In: Leung PK, Adashi E(eds.),The Ovary, 2nd ed. Amsterdam: Academic Press/Elsevier Science Publishers; 2003:369-385
    12、马黔红,李尚为,黄仲英等。长效促性腺激素释放激素激动剂用于体外受精-胚胎移植中降调节后延迟卵巢启动时间的探讨。实用妇产科杂志,2006,22:603-606
    13、Sasson S, Rimon E, Dantes Aet al. Gonadotrophin-induced gene regulation in human granulosa cells obtained from IVF patients. Modulation of steroidogenic genes, cytoskeletal genes and genes coding for apoptotic signaling and protein kinases. Mol Hum Reprod, 2004(10): 299-311
    14、Sifer C, Blanc-Layrac G, Bringuir A et al. Effects of a gonadotropin-releasing hormone agonist and follicle stimulating hormone on the incidence of apoptosis in human luteinized granulosa cells. Eur J Ob/Gy Reprod Biol, 2003(110): 43-48
    15、Sasson R, Dantes A, Tajima K et al. Novel genes modulated by FSH in normal and immortalized FSH-responsive cells: new insights into the mechanism of FSH action. FASEB J, 2003; 17:1256-1266, 13
    16、Zamono PL, Mahesh VB , De - Sevilla LM, et al. Expression and localization of the leptin receptor in endocrine and neuroendocrine tissue of the rat. Neuroendocrinology, 1997, 65:223-233
    17、Porter MB, Brumsted JR, Sites CK1. Effect of prolactin on follicle-stimulating hormone receptor binding and progesterone production in cultured porcine granulosa cells. Fertil Steril, 2000, 73 : 99-105.
    18、Rodgers RJ, Irving R, Rodgers HF, van Wezel IL, et al. Dynamics of the membrane granulosa during expansion of the ovarian follicular antrum. Mol Cell Endocrinol, 2001, 171:41-48.
    19、Salmassi A, Zhang Z, Schmutzler AG et al. Expression of mRNA and protein of macrophage colony-stimulating factor and its receptor in human follicular luteinized granulosa cells. Fertil Steril, 2005, 83:419-425
    20、白晓红,糜若然,岳天孚等。体外培养人卵巢黄素化颗粒细胞的鉴定及其分泌功能变化。中华妇产科杂志,2005;40:351-352
    21、刘文,朱桂金。黄素化颗粒细胞端粒酶的表达及与卵巢功能关系的初步研究。中华妇产科杂志。2003;7:402-404
    22、Mofftt O, Drury S, Tomlnson M et al. The apoptotic profile of human cumulus ceils changes with patient age and after exposure to sperm but not in relation to oocyte maturation. Fertil Steril. 2002;77:1006-1011
    23、Seifer DB, Gardiner AC, Ferreira KA et al. Apoptosis as a function of ovarian reserve in women undergoing in vitro fertilization. Fertil Steril. 1996;66:593-598
    24、Nakahara K, Saito H, Saito T et al. The incidence of apoptotic bodies in membrane granulosa can predict prognosis of ova from patients participating in in vitro fertilization programs. Fertil Steril.; 1997:68: 321-317
    25、Mahmoud R. Hussein. Apoptosis in the ovary: molecular mechanisms。Hum Reprod Update. 2005;11:162-178
    26、Ashkenazi A, Dixit V.M. Apoptosis control by death and decoy receptors. Cur Opi Cell Biol. 1999,11:255-260
    27、Grutter M.G. Caspases: key players in programmed cell death. Curr Opin Struc Biol. 2000,10:649-655
    28、 Khan SM, Daufffenbach LM, Yeh J. Mitochondria and caspases in induced apoptosis in human luteinized granulosa cells. Biochem Biophys Res Commun. 2000;269:542-545
    29、 Matikainen T, Perez GI, Zheng TS et al. Caspase-3 gene knockout defines cell lineage specificity for programmed cell death signaling in the ovary. Endocrinology, 2001;142:2468-2480
    30、 Glamoclija V, Vilovic K, Saraga-Babic M et al. Apoptosis and active caspase-3 expression in human granulosa cell. Fertil Steril, 2005;83: 426-431
    31、 Yacobi K, Wojtowicz A, Tsafriri A et al. Gonadotropins enhance caspase-3 and -7 activity and apoptosis in the theca-interstitial cells of rat preovulatory follicles in culture. Endocrinology. 2004;145:1943-51.
    32、 Flaws JA, Hirshfield AN, Hewitt JN et al. Effects of Bcl-2 on the primodial follicle endowment in the mouse ovary. Biol Reprod. 2001;64:1153-1159
    33、 Ginther OJ, Bergfelt MA, Beg MA et al. Follicle seletion in cattle: role of luteinizing hormone. Biol Reprod. 2001; 64:197-205
    34、 Joanne E.G, Kevin J.B, Barbara C.V et al. Interplay between paracrine signaling and gap junctional communication in ovarian follicles. J Cell Sci. 2005,118:113-122
    35、 Irit G, Edna B, Amihai B et al. Connexin43 in rat oocytes: developmental modulation of its phosphorylation. Biol Reprod. 2002,66:568-573
    36、 Gittens JE, Barr KJ, Vanderhyder BC et al. Interplay between paracrine signaling and gap junctional communication in ovarian follicles. J Cel Sci. 2005;118:113-122
    
    37、Kalma Y, Granot I, Galiani D et al. Luteinizing hormone-induced connexin 43 down-regulation: inhibition of translation. Endocrinology. 2004;145:1617-24.
    
    38、 Johnson ML, Redmer DA, Reynlods LP et al. Gap junctioal intercellular communication of bovine granulosa and thecal cells from antral follicles: effects of luteinizing hormone and follicle-stimulating hormone. Endocrine.2002,18:261-270
    
    39、Westergaard LG, Chritensen U, McNattu KP. Steriod levels in ovarian follicular fluid related to follicle size and health status during the normal menstrual cycle. Hum Reprod. 1986; 1:227-232
    
    40、Dor J Bider D, Shulman A et al. Effects of gonadotrophin-releasing hormone agonists on human ovarian steroid secretion in vivo and in vitro-results of a prospective, randomized in vitro fertilization study. Hum Reprod. 2000; 15:1225-1230
    
    41、 Garcia-Velasco JA, Isaza V, Vidal C et al. Human ovarian steroid secretion in vivo: effects of GnRH agonist versus antagonist (cetrorelix). Hum Reprod. 2001 ;16: 2533-2539
    42、 Mendoz C,Ruiz-Requena, Ortega E et al. Follicular fluid markers of oocyte developmental potential. Hum Reprod. 2002; 17:1017-1022
    43、 Teissier MP, Chable H, Paulhac S er al. Recombinant human follicle stimulating hormone versus human menopausal gonadotropin induction : effects in mature follicle endocrinology. Hum Reprod. 1999; 14:2236-2241
    44、 Srivastava M, Lippes J, Fichorova R et al. Soluble Fas(sFas) and Soluble Fas ligand(sFas-L) in human reproductive tract fluid.IN: Processings of the 45~(th) Annual Meeting of the Society for Gynecologic Investigation; 1998,Chicago, IL.Abstract T203.
    45、de los Santos MJ, Anderson DJ, Racowsky C et al. Presence of Fas-Fas Ligand System and Bcl-2 Gene Products in Cells and Fluids from Gonadotropin-Stimulated Human Ovaries. Biol Reprod, 2000; 63: 1811 -1816.
    46、Kayagaki N, Kawasaki A, Ebata T, Ohmoto H, Ikeda S, Inoue S, Yoshino K, Oknura K, Yagita H. Metalloproteinase-mediated release of human Fas ligand. J Exp Med 1995,192:1777-1783
    47、 Cataldo NA, Fujimoto VY, Jaffe RB. Interferon-gamma and activin A promote insulin-like growth factor-binding protein-2 and -4 accumulation by human luteinizing granulosa cells, and interferon-gamma promotes their apoptosis. J Clin Endocrinol Metab 1998; 83:179-186.
    48、 Quirk SM, Cowan RG, Joshi SG, Henrikson KP. Fas antigen-mediated apoptosis in human granulosa/luteal cells. Biol Reprod 1995; 52:279-287
    49、 Porter DA, Harman RM, Cowan RG et al. Susceptibility of ovarian granulosa cells to apoptosis differs in cells isolated before or after the preovulatory LH surge. Mol Cell Endocrinol. 2001 ;15:13-20.
    50、 Westergaard LG, Erb K, Laursen SB et al. Concentrations of gonadotropins and steroids in pre-ovulatory follicular fluid and serum in relation to stimulation protocol and outcome of assisted reproduction treatment. RBMonline. 2004;8: 516-523
    51、 Slot KA, de Boer-Brouwer M, Houweling M et al. Luteinizing hormone inhibits Fas-induced apoptosis in ovarian surface epithelial cell lines. J Endocrinol, 2006; 188: 227-239
    
    52、Chen Q, Yano T, Matsumi H et al. Cross-talk between Fas/Fas ligand system and nitric oxide in the pathway subserving granulosa cell apoptosis: a possible regulatory mechanism for ovarian atresia. Endocrinology. 2005; 146: 808-815
    1、 Eppig JJ. A comparison between oocyte growth in coculture with granulosa cells and ooocytes with granulosa cell-oocyte junctional contact maintained in vitro. J Exp Zool. 1979; 209:345-353
    2、Eppig JJ and Wigglesworth K. Development of mouse and rat oocytes in chimeric reaggregated ovaries after interspecific exchange of somatic and germ cell components. Biol Reprod. 2000;63:1014-1023
    3、 Greg F, Jay MB. Granulosa cells regulate intracellular pH of murine growing oocyte via gap junctions: development of independent homeostasis during oocyte growth. Development. 2006; 133:591-599
    4、 Li R, Norman RJ, Armstrong DT et al. Oocyte-secreted factor(s) determine functional differences between bovine mural granulosa cells and cumulus cells. Biol Reprod.2000; 63:839-845
    5、 Gilchrist RB, Ritter LJ, Armstrong DT et al. Mouse oocyte mitogenic activity id developmentally coordinated throughout folliculogenesis and meiotic maturation. Dev Biol.2001; 240:289-298
    6、 Gilchrist RB, Morrissey MP, Ritter LJ et al. Comparison of oocyte factors and transforming growth factor-beta in the regulation of DNA synthesis in bovine granulosa cells. Mol Cell Endocrinol. 2003;201:87-95
    7、 Hickey M, Marrocco DL, Gilchrist RB et al. Interaction between androgen and growth factors in granulosa cell subtypes of porcine antral follicles. Biol Reprod. 2004; 71: 45-52
    8、 Eppig JJ. Oocyte control of ovarian follicular development and function in mammals. Reproduction. 2001;122: 829-838
    9、 Eppig JJ, Wigglesworth K, Pendola F et al. Murine oocytes suppress expression of luteinizing hormone receptor messenger ribonucleic acid by granulosa cells. Biol Reprod. 1997;56:976-984
    10、 el-Fouly MA, Cook B, Nekola M et al. Role of ovum in follicular luteinization. Endocrinology. 1970;87:286-293
    
    11、 Glister C, Groome NP, Knight PG. Oocyte-mediated suppression of follicle-stimulating hormone- and insulin-like growth factor-induced secretion of steroids and inhibin-related proteins by bovine granulosa cells in vitro: possible role of transforming growth factor alpha. Biol Reprod. 2003;68:758-765
    12、 Knight PG, Glister C. Local roles of TGF-beta superfamily members in the control of ovarian follicle development. Anim Reprod Sci. 2003;78:165-183
    
    13、 Sutton ML, Cetica PD, Beconi MT et al. Influence of oocyte-secreted factors and culture duration on the metabolic activity of bovine cumulus cell complexes. Reproduction. 2003;126:27-34
    14、 Hirshfield AN. Patterns of [~3H]thymidine incorporation differ in immature rats and mature, cycling rats. Biol Reprod. 1986; 34:229-235
    15、 Fulop C, Szanto S, Mukhopadhyay D et al. Impaired cumulus mucification and female sterility in tumor necrosis factor-induced protein-6deficient mice. Development.2003;130:2253-2261
    16、 Eppig JJ, Wigglesworth K, Pendola FL. The mammalian oocyte orchestrates the rate of ovarian follicular development. Proc Natl Acad Sci U.S.A 2002; 99:2890-2894
    17、Joyce IM, Clark AT, Pendola FL et al. Comparison of recombinant growth differentiation factor-9 and oocyte regulation of KIT ligand messenger ribonucleic acid expression in mouse ovarian follicles. Biol Reprod. 2000; 63:1669-1675
    18、 Joyce IM, Pendola FL, Wigglesworth K et al. Oocyte regulation of kit ligand expression in mouse ovarian follicles. Dev Biol. 1999;214:342-353
    19、 Joyce IM, Pendola FL, O'Brien M et al. Regulation of prostaglandin-endoperoxide synthase 2 messenger ribonucleic acid expression in mouse granulosa cells during ovulation. Endocrinology. 2001; 142:3187-3197
    20、 Vanderhyden BC, Macdonald EA, Nagyova E et al. Evaluation of members of the TGFbeta superfamily as candidates for the oocyte factors that control mouse cumulus expansion and steroidogenesis. Reprod Suppl. 2003; 62:370-377
    21、 Galloway SM, McNatty KP, Cambridge LM et al. Mutations in an oocyte-derived growth factor gene(BMP15) cause increased ovulation rate and infertility in a dosage-sensitive manner. Nature Genet. 2000; 130:2253-2261
    22、 Hanrahan JP, Gregan SM, Mulsant P et al. Mutations in the genes for oocyte-derived growth factors GDF9 and BMP 15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep (Ovis aries). Biol Reprod. 2004;70:900-909
    23、 Ralph JH, Telfer EE, Wilmut I. Bovine cumulus cell expansion does not depend on the presence of an oocyte secreted factor. Mol Reprod. 1995;42:248-253
    21、Yan C, Wang P, DeMayo FJ et al. Synergistic roles of bone morphogenetic protein 15 and growth differentiation factor 9 in ovarian function. Mol Endocrinol. 2001; 15:854-866
    25、 Matuk MM. Revelations of ovarian follicle biology from gene knockout mice. Mol Cell Endocrinol. 2000; 163: 61-66
    
    26、 Vitt UA, Hayashi M, Klein C et al. Growth differentiation factor-9 stimulates proliferation but suppresses the follicle-stimulating hormone-induced differentiation of cultured granulosa cells from small antral and preovulatory rat follicles. Biol Reprod. 2000; 62:370-377
    27、 Otsuka F, Yamamlto S, Erickson G.F et al. Bone morphogenetic protein-15inhibits follicle-stimulating hormone(FSH) action by suppressing FSH receptor expression. J Biol Chem.2001;276:11387-11392
    28、Otsuka F, Moore RK, Shimasaki S. Biological function and cellular mechanisms of bone morphogenetic protein-6 in the ovary. J Biol Chem. 2001;276:32889-32895
    29、 Elvin JA, Clark AT, Wang P et al. Paracrine actions of growth differentiation factor-9 in the mammalian ovary. Mol Endocrinol. 1999; 13:976-984
    30、 McGrath SA, Esquela AF, Lee SJ. Oocyte-specific expression of growth/diffetnetiation factor-9. Mol Endocriol. 1995; 9:131-136
    
    31、 Richard JS. New signaling pathways for hormones and cyclic adenosine 3,5 -monophosphate action in endocrine cells. Mol Endocrinol 2001;15:209-218
    32、 Venkataraman S, Michael DR, Suzanne ML et al. Cyclic guanosine 5 -monophosphate-dependent protein kinase II is induced by luteinizing hormone and progesterone receptor-dependent mechanisms in granulosa cells and cumulus oocyte complexes of ovulating follicles. Mol Endocrinol 2006;20:348-361 33、1Adashi EY, Resnick CE, Hurwitz A et al. Insulin-like growth factors: the ovarian connection. Hum Reprod. 1991;6:1213-1219
    34、Miro F, Hillier SG. Modulation of granulosa cell deoxyribonucleic acid synthesis and differentiation by activin. Endocrinology. 1996; 137:464-468 35、Thomas FH, Ethier JF, Shimasaki S et al. Follicle-stimulating hormone regulates oocyte growth by modulation of expression of oocyte and granulosa cell factors. Endocrinology. 2005; 146:941-949
    36、Laitinen M, Rutanen EM, Ritvos O. Expression of c-kit ligand messenger ribonucleic acids in human ovaries and regulation of their steady state levels by gonadotropins in cultured granulosa-luteal cells. Endocrinology. 1995;136:4407-4414
    37、 Christophe S, Grazielle B, Annie-France B et al. Effects of a gonadotropin-releasing hormone agonist and follicle stimulating hormone on the incidence of apoptosis in human luteinized granulosa cells. Euro J Ob/Gy Reprod Biol. 2003;110:43-48
    38、 Sasson R, Rimon E, Dantes A st al. Gonadotrophin-induced gene regulation in human granulosa cells obtained from IVF patients. Modulation of steroidogenic genes, cytoskeletal genes and genes coding for apoptotic signaling and protein kinases. Mol Hum Reprod. 2004;10:299-311
    39、Ravid S, Ada D, Kimihisa T et al. Novel genes modulated by FSH in normal and immortalized FSH-responsive cells: new insights into the mechanism of FSH action. FASEB J. 2003;17:1256-1266 40、 Kumar TR, Palapattu G, Wang P et al. Trangenic models to study gonadotropin function: the role of follicle-stimulating hormone in gonadal growth and tumorigenesis. Mol Endocrinol. 1999;13:851-865 41、Allan CM, Haymood M, Swaraj's J et al. A novel transgenetic model to characterize the specific effects of follicle-stimulating hormone on gonadal physiology in the absence of luteinizing hormone actions. Endocrinology. 2001;142:2213-2220
    
    42、 Hillier SG. Current concepts of the role of follicle stimulating hormone and luteinizing hormone in folliculogenesis. Hum Reprod. 1994; 9:188-191
    
    43、 Marco F, Graciela EC, Arafat S, et al. The use of LH activity to drive folliculogenesis: exploring uncharted territories in ovulation induction. Hum Reprod Update. 2002; 8:543-557
    44、 Smith MF, Gutierrez CG, Ricke W et al. Production of matrix metalloproteinases by cultured bovine theca and granulosa cells. Reproduction. 2005; 129:75-87
    45、Venkataraman S, Michael DR, Suzanne ML et al. Cyclic guanosine 5 -monophosphate-dependent protein kinase II is induced by luteinizing hormone and progesterone receptor-dependent mechanisms in granulosa cells and cumulus oocyte complexes of ovulating follicles. Mol Endocrinol 2006;20:348-361
    
    46、Risma KA, Clay CM, Nett TM et al. Tageted overexpression of luteinizing hormone in transgenic mice leave infertility, polycystic ovaries, and ovarian tumours. Proc Natl Acad Sci USA. 1995;92:1322-1326
    47、Mann RJ, Keri RA, Nilson JH. Transgenic mice with chronically elevated luteinizing hormone are infertile due to anovulation, defects in uterine receptivity, and midgestation pregnancy failure. Endocrinology. 1999; 140:2592-2601
    
    48、Vaskivuo TE, Anttonen M, Kispert A et al. Survival of human ovarian follicles from fetal to adult life: apoptosis, apoptosis-related proteins and transcription factor GATA-4. J Cli Endocrinol Metab, 2001,86:3421-3429
    
    49、Imai Y, Manabe N, Uchio K et al. Interactions of apoptosis and extracellular matrices in granulosa cells of atretic follicles in porcine ovaries. J Mamm Ova Res. 1999; 16:59-66
    
    50、Sugimoto M, Manabe N, Kimura Y et al. Ultrastructural changes in granulosa cells in porcine antral follicles undergoing atresia indicate apoptotic cell death. Reprod Dev. 1998;44:7-14
    
    51、Ellis R.E, Yuan J.Y, Horvitz H.R. Mechanisms and functions of cell death. Annu Rev Cell Biol. 1991,7:663-698
    
    52、Ashkenazi A, Dixit VM. Apoptosis control by death and decoy receptors. Cur Opi Cell Biol. 1999;11:255-260
    
    53、 Grutter MG. Caspases: key players in programmed cell death. Curr Opin Struc Biol. 2000; 10:649-655
    
    54、 Manabe N, Inoue N, Miyano T et al. Ovarian follicle selection in mammalian ovaries: regulatory mechanisms of granulosa cell apoptosis during follicular atresia. In: Leung PK, Adashi E(eds.),The Ovary, 2~(nd) ed. Amsterdam: 55、Academic Press/Elsevier Science Publishers; 2003:369-385
    
    55、 Matsui T, Manabe N, Goto Y et al. Expression and activity of Apafl and caspase-9 in granulosa cells during follicular atresia in pig ovaries. Reproduction. 2003;126:113-120 56、Goto Y, Matsuda-Minehata F, Inoue N et al. Porcine cellular flice-like inhibitory protein(cFLIP): molecular cloning and comparison with the human and murine cFLIP. J Reprod Dev. 2004;50:549-556
    57、Keren Y, Anna W, Alex T et al. Gonadotropins enhance caspsse-3 and -7 activity and apoptosis in the theca-interstitial cells of rat preovulatory follicles in culture. Endocrinology. 2004; 145:1943-1951
    58、 Matikainen T, Perez GI, Zheng TS et al. Caspase-3 gene knockout defines cell lineage specificity for programmed cell death signaling in the ovary. Endocrinology, 2001; 142:2468-2480
    59、 Joanne EG, Kevin JB, Barbara CV et al. Interplay between paracrine signaling and gap junctional communication in ovarian follicles. J Cell Sci. 2005; 118:113-122
    60、 frit G, Edna B, Amihai B et al. Connexin43 in rat oocytes: developmental modulation of its phosphorylation. Biol Reprod. 2002;66:568-573
    
    61、 Kidder G.M, Mhawi AA. Gap junctions and ovarian folliculogenesis. Reprod. 2002;123:613-620
    
    62、 De La Fuente R, Eppig JJ. Transcriptional activity of the mouse oocyte genome: companion granulosa cells modulate transcription and chromatin remodeling. Dev Biol. 2001;229:224-236
    
    63、 Cecconi S, Ciccarelli C, Barberi M et al. Granulosa cell-oocyte interactions. Eur J Obstet Gynecol Reprod Biol. 2004, 115:19-22
    
    64、 Trosko JE, Ruch RJ. Cell-cell communication in carcinogenesis. Front Biosci. 1998;3:D208-236
    
    65、 Perez-Armendariz EM, Saez JC, Bravo-Moreno JF et al. Connexin43 is expressed in mouse fetal ovary. Anat Rec. 2003; 271A:360-367
    
    66、 Gittens JE, Mhawi AA, Lidington D et al. Functional analysis of gap junctions in ovarian granulosa cells: distinct role for connexin43 in early stages of folliculogenesis. Am J Physiol.2003;284:C880-887
    
    67、 Rosenfeld CS, Wagner JS, Hasegawa R et al. Intraovarian actions of oestrogen. Reproduction. 2001; 122:215-226
    
    68、 Juneja SC, Barr KJ, Enders GC et al. Defects in the germ line and gonadsof mice lacking connexin43. Biol Reprod.1999; 60:1263-1270
    
    69、 Dmitri VK, Sulvie M, Luc L et al. Gap junctional communication and connexin43 expression in relation to apoptotic cell death and survival of granulosa cells
    70、 Johnson ML, Redmer DA, Reynlods LP et al. Gap junctioal intercellular communication of bovine granulosa and thecal cells from antral follicles: effects of luteinizing hormone and follicle-stimulating hormone. Endocrine.2002; 18:261 -270
    71、 Gittens JE, Barr KJ, Vanderhyden BC et al. Interplay between paracrine signaling and gap junctional communication in ovarian follicles. J Cell Sci. 2005; 118:113-122
    
    72、 Simon AM, Goodenough DA, Li E et al. Female fertility in mice lacking connexin37. Nature, 1997; 585:525-529
    
    73、 Wright CS, Becker DL, Lin JS et al. Stage-specific and differential expression of gap junctions in the mouse ovary: connexin-specific roles in follicular regulation. Reproduction. 2001; 121:77-88
    
    74、 Carabatsos MJ, Sellitto C, Goodenough DA et al. Oocyte-granulosa cell heterologous gap junctions are required for the coordination of nuclear and cytoplasmic meiotic competence. Dev Biol. 2000; 226:167-179

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700