基于环三磷腈的液晶功能材料的设计、凝胶特性及胆甾相光阀
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自环三磷腈液晶被发现以来,绝大部分研究工作集中在以偶氮苯、联苯等为刚性基团时的末端烷基链长度对其液晶性的影响方面。六氯环三磷腈中P-Cl键具有高的反应活性,有利于在磷腈环上引入新型功能性基团作为液晶刚性基团以及赋予环三磷腈衍生物相应的功能性。有机光电领域特别是液晶领域的快速发展,为环三磷腈衍生物液晶尤其是盘状液晶的应用提供了良好的契机。
     本文合成了一系列具有不同长度末端烷基取代基的腈基二苯乙烯基取代环三磷腈衍生物,探讨了烷基链长度、腈基取代位置、烷基链数目及端基取代基种类对环三磷腈衍生物液晶性的影响。通过1H,13C,31P-NMR表征了化合物分子结构,并使用元素分析确定了化合物的纯度。通过差式扫描量热(DSC)和偏光显微镜(POM)研究了环三磷腈衍生物的液晶性。
     结果表明,所有具有1个末端取代基的腈基二苯乙烯基取代环三磷腈衍生物均表现出向列相液晶态,而具有2个末端取代基的腈基二苯乙烯基取代环三磷腈衍生物则表现出柱状液晶态。显然,端基取代基数目对环三磷腈衍生物的分子构型有极大的影响,连有单取代基的环三磷腈倾向于形成取代基3上3下的棒状分子构型,而连有双取代烷基链的环三磷腈倾向于形成取代基向侧面铺展的盘状分子构型;随着末端烷基链长度的增加,环三磷腈衍生物的清亮点温度逐渐升高;腈基取代位置不同的环三磷腈衍生物表现出不同的相转变焓变值;末端取代基对环三磷腈衍生物的液晶性有显著的影响:没有端基取代基的化合物未能表现出液晶态,而具有端基取代基的化合物均能表现出单向或双向向列相液晶态,说明了端基取代基是环三磷腈衍生物表现出液晶态的基本条件之一。此外,柔性烷基链数目的增多增加了环三磷腈化合物分子的柔性,降低了清亮点温度。末端烷基双取代化合物具有比单取代化合物更低的清亮点温度。同时,柔性烷基链数目的增多也有利于在降温中保持液晶态织构。
     通过加热-冷却操作制备了环三磷腈衍生物的有机凝胶,研究了凝胶性质及烷基链长度对荧光增强现象的影响。结果表明所研究的环三磷腈衍生物在单一有机溶剂中不能够形成稳定的凝胶,而在四氢呋喃/甲醇等混合溶剂中可以形成稳定的有机凝胶。经冷冻干燥后的凝胶的形貌为纤维网状。环三磷腈衍生物在四氢呋喃/水混合液中可以表现出明显的荧光增强现象,随着末端烷基链长度的增加,化合物表现出的荧光增强比例逐渐增大,其在80%水含量的四氢呋喃/水溶液中形成的纳米颗粒的直径也逐渐减小。较小的颗粒直径和较大的颗粒含量有利于产生更强的荧光发射。
     此外,聚合物稳定胆甾相织构(PSCT)光阀在使用过程中的能耗问题一直限制着其发展,需要开发新型低能耗PSCT光阀以满足其逐步增大的市场需求。为了降低PSCT液晶光阀在使用过程中的能耗,通过调整聚合物浓度,制备了双稳态PSCT光阀,并研究了其热稳定性。结果表明含有高聚合物浓度的液晶光阀表现出相对最好的热稳定性。具有5.10%单体浓度的PSCT光阀在温度高于41℃时呈现散射态,温度降低后只需施加短的电压脉冲便可将光阀恢复透明态,这种热写入电擦除式的液晶光阀可以应用于高楼外墙的智能窗。
     在水平和垂直两种模式液晶盒中研究了液晶单体4-腈基苯基-4’-(6-丙烯酸己酯氧基)苯甲酸酯(RM23)的光聚合行为。结果表明在3%单体浓度下,液晶聚合物具有较小的分子量分布指数(PDI)。聚合物的PDI和分子量随着单体浓度的增加而逐渐增大。在水平模式液晶盒中,光聚合后的混合物表现出均匀的暗红色织构。在垂直模式液晶盒中,光聚合后的混合物随着聚合物浓度的增大,向列相液晶织构逐渐消失。
Since the first report about cyclotriphosphazene-based liquid crystal, the main work in this field was focusing on the effect of the length of terminal alkyl chain on the liquid crystalline properties of cyclotriphosphazenes with azobenzene or biphenyl rigid groups. The high reactivity of P-Cl bond in hexachlorocyclotriphosphazene facilitates the introduction of novel functional group on the phosphazene ring. Therefore, the introduced functional group not only could act as a rigid group but also could functionalize the corresponding cyclotriphosphazene derivative. More opportunities for the application of cyclotriphosphazene-based liquid crystal, especially the disk-like liquid crystal are anticipated due to the rapid development of organophotonics and liquid crystals.
     In this thesis, a series of cyanostilbene-containing cyclotriphosphazene derivatives with different lengths of terminal alkyl chains were synthesized. The effects of the length of alkyl chain, cyano-substituted position, the number of terminal alkyl chain and different kinds of terminal group on the liquid crystalline properties of the cyclotriphosphazene derivatives were studied. The molecular structures and purity of the products were characterized by 1H,13C,31P-NMR and elemental analysis. The liquid crystalline properties of cyclotriphosphazene derivatives were studied by the means of differential scanning calorimetry (DSC) and polarizing optical microscopy (POM).
     It was found that all the compounds with one terminal substituent exhibited nematic phases, and all the compounds with two terminal alkyl chains exhibited columnar phases. The number of the terminal substituent has great effect on the alignment of the cyclotriphosphazene molecule. Mesogenic units that contain only one terminal group give rise to calamitic alignment with three arms pointing upward and three other arms pointing downward. On the other hand, mesogenic units that contain two terminal alkyl chains give rise to disk-like alignment. As the length of the terminal alkyl chain was increased, the clear temperatures of cyclotriphosphazene-based liquid crystals increased. The cyclotriphosphazene derivatives with different substituted position of the cyano group exhibited different enthalpies of phase transition. The terminal subtituent has obvious effect on the liquid crystalline properties of cyclotriphosphazene derivatives. Compound without terminal substituent didn't exhibit liquid crystalline properties both on heating and cooling run. Compounds with different terminal substituents exhibited monotropic or enantiotropic nematic phases. The results mean that the terminal substituent is essential to the formation of liquid crystallinity in cyclotriphosphazene derivatives. Moreover, the rigidity of the cyclotriphosphazene molecule was reduced with increasing number of soft alkyl chains, therefore, the clear temperature of the cyclotriphosphazene-based liquid crystal was also reduced. Compounds with relatively large number of alkyl chains exhibited lower clear temperatures than those of compounds with one terminal alkyl chain. At the same time, the increase of number of terminal alkyl chains facilitated holding the liquid crystalline textures on cooling.
     The organogels formed by cyclotriphosphazene derivatives were prepared through heating-cooling method. The gelation properties and effect of length of alkyl chain on the fluorescent enhanced emission phenomenon were studied. It was found that cyclotriphosphazene derivatives could form stable organogels in THF/methanol mixed solvents, but could not form stable gels in single solvents. Fibrous aggregates were observed in the dried gels of cyclotriphosphazene derivatives. All the studied compounds could exhibit the aggregation-induced enhanced emission (AIEE) phenomenon in diluted THF/water mixed solution due to the formation of nanoparticles' suspension. Compounds with increasing length of terminal alkyl chains showed increasing fluorescence intensities in the nanoparticles' suspension. The size of nanoparticles (H2O/THF=4/1, v/v) decreased with increasing length of terminal alkyl chains. Small size of nanoparticle and large content of nanoparticle in nanoparticles'suspension facilitated the strong fluorescent emission.
     The development of polymer stabilized cholesteric texture (PSCT) light shutter is limited by its high energy consumption, novel PSCT light shutter with low energy consumption is required to meet the requirement of developing market. In order to reduce the energy used to stabilize the PSCT light shutter, bistable PSCT light shutters were developed by increasing the polymer concentration. The thermal properties of the PSCT light shutters were studied. It was found that the liquid crystal light shutter with the relatively highest polymer concentration exhibited the best thermal stability. The light shutter with 5.10% of monomer concentration was switched to scattering state when the temperature was higher than 41℃. The scattering state was switched to transparent state when the light shutter was applied a short voltage pulse. This thermally written and electrically erased light shutter could be used as smart windows in high buildings.
     The photo-polymerization of liquid crystalline monomer 4-cyanophenyl-4'-(6-acryloyloxyhexyloxy)benzoate (RM23) was studied both in reverse and normal mode liquid crystal cells. The results indicated that the low PDI was obtained in the reverse and normal modes at the monomer concentration of 3%. The PDI and molecular weight increased with monomer concentration. In the reverse mode cells, uniform dark red textures were observed after photo-polymerization. In the normal mode cells, textures attributed to the nematic phase disappered gradually with monomer concentration.
引文
[1]Chen-Yang Y W, Chuang J R, Yang Y C, et al. New UV-curable cyclotriphosphazenes as fire-retardant coating materials for wood[J]. Journal of Applied Polymer Science,1998,69(1):115-122.
    [2]Zhang T, Cai Q, Wu D, et al. Phosphazene cyclomatrix network polymers:Some aspects of the synthesis, characterization, and flame-retardant mechanisms of polymer[J]. Journal of Applied Polymer Science,2005,95(4):880-889.
    [3]Modesti M, Zanella L, Lorenzetti A, et al. Thermally stable hybrid foams based on cyclophosphazenes and polyurethanes[J]. Polymer Degradation and Stability,2005, 87(2):287-292.
    [4]Song S, Lee S B, Lee B H, et al. Synthesis and antitumor activity of novel thermosensitive platinum(Ⅱ)-cyclotriphosphazene conjugates [J]. Journal of Controlled Release,2003,90(3):303-311.
    [5]Bing B C, Li B. Synthesis, thermal property and hydrolytic degradation of a novel star-shaped hexa[p-(carbonylglycinomethylester)phenoxy]cyclotriphosphazene[J]. Science in China Series B:Chemistry,2009,52(12):2186-2194.
    [6]Waltman R J, Lengsfield B, Pacansky J. Lubricants for Rigid Magnetic Media Based upon Cyclotriphosphazenes:Interactions with Lewis Acid Sites[J]. Chemistry of Materials,1997,9(10):2185-2196.
    [7]Waltman R J, Pocker D J, Deng H, et al. Investigation of a new cyclotriphosphazene-terminated perfluoropolyether lubricant. properties and interactions with a carbon surface[J]. Chemistry of Materials,2003,15(12):2362-2375.
    [8]Liu W, Zhu J, Liang Y. Effect of bridged cyclotriphosphazenes as lubricants on the tribological properties of a steel-on-steel system[J]. Wear,2005,258(5-6):725-729.
    [9]Fushimi T, Allcock H R. Cyclotriphosphazenes with sulfur-containing side groups: refractive index and optical dispersion[J]. Dalton Transactions,2009(14):2477-2481.
    [10]Guo Y, Zhao C, Liu S, et al. Synthesis and properties of the optical resin composed of cyclotriphosphazenes[J]. Polymer Bulletin,2009,62(4):421-431.
    [11]Zhang L, Shi J, Jiang Z W, et al. Photorefractive performance of hyperstructured cyclotriphosphazene molecular glasses containing carbazole moieties[J]. Advanced Functional Materials,2008,18(2):362-368.
    [12]Singler R E, Willingham R A, Lenz R W, et al. Liquid crystalline side-chain phosphazenes[J].Macromolecules,1987,20(7):1727-1728.
    [13]Allcock H R, Kim C. Liquid crystalline phosphazenes. High polymeric and cyclic trimeric systems with aromatic azo side groups[J]. Macromolecules,1989,22(6): 2596-2602.
    [14]Moriya K, Suzuki T, Yano S, et al. Liquid crystalline phase transitions in cyclotriphosphazenes with different mesogenic moieties in the side chains[J]. Liquid Crystals,1995,19(5):711-713.
    [15]Moriya K, Suzuki T, Kawanishi Y, et al. Liquid-crystalline phase transition in organophosphazenes[J]. Applied Organometallic Chemistry,1998,12(10-11):771-779.
    [16]Moriya K, Yamane T, Suzuki T, et al. Mesogenicity of organophosphazenes:the effect of phosphazene rings and side groups on the phase transition[J]. Phosphorus, Sulfur, and Silicon and the Related Elements,2002,177(6):1427-1432.
    [17]Allcock H R, Kim C. Liquid crystalline phosphazenes bearing biphenyl mesogenic groups[J]. Macromolecules,1990,23(17):3881-3887.
    [18]Moriya K, Miyata S, Yano S, et al. The liquid crystalline state in organophosphazenes with biphenyl mesogenic groups[J]. Journal of Inorganic and Organometallic Polymers,1992,2(4):443-454.
    [19]Moriya K, Mizusaki H, Kato M, et al. Liquid crystalline phase transitions in hexakis(4-(4'-heptyloxy)biphenoxy)cyclotriphosphazene[J]. Liquid Crystals,1995, 18(5):795-800.
    [20]Moriya K, Mizusaki H, Kato M, et al. Thermal and structural study on liquid-crystalline phase transition in hexakis(4-(4'-alkyloxy)biphenoxy)cyclotriphosphazene [J]. Chemistry of Materials,1997,9(1):255-263.
    [21]Barbera J, Bardaji M, Jimenez J, et al. Columnar mesomorphic organizations in cyclotriphosphazenes[J]. Journal of the American Chemical Society,2005,127(25):
    8994-9002.
    [22]范星河.图解液晶聚合物[M].北京:化学工业出版社,2005.16-18.
    [23]Peter J C, Hird M. Introduction to liquid crystals[M]. Philadelphia:Taylor & Francis, 1997.5-9.
    [24]Chandrasekhar S. Liquid crystals[M]. Cambridge:Cambridge University Press,1992. 13-21.
    [25]Chandrasekhar S, Sadashiva B K, Suresh K A. Liquid crystals of disc-like molecules[J]. Pramana,1977,9(5):471-480.
    [26]Laschat S, Baro A, Steinke N, et al. Discotic liquid crystals:from tailor-made synthesis to plastic electronics [J]. Angewandte Chemie International Edition,2007, 46(26):4832-4887.
    [27]Hirai Y, Monobe H, Mizoshita N, et al. Enhanced hole-transporting behavior of discotic liquid-crystalline physical gels[J]. Advanced Functional Materials,2008, 18(11):1668-1675.
    [28]Kumar S. Recent developments in the chemistry of triphenylene-based discotic liquid crystals[J]. Liquid Crystals,2004,31(8):1037-1059.
    [29]毛学军.液晶显示技术[M].北京:电子工业出版社,2008.8-17.
    [30]黄子强.液晶显示原理[M].北京:国防工业出版社,2006.29-35.
    [31]王新久.液晶光学和液晶显示[M].北京:科学出版社,2006.22-29.
    [32]Doane J W, Vaz N A, Wu B G, et al. Field controlled light scattering from nematic microdroplets[J]. Applied Physics Letters,1986,48(4):269-271.
    [33]Yang D K, Chien L C, Doane J W. Cholesteric liquid crystal/polymer dispersion for haze-free light shutters[J]. Applied Physics Letters,1992,60(25):3102-3104.
    [34]Yang D. Fundamentals of liquid crystal devices (Wiley Series in Display Technology) (Hardcover)[M]. Chichester:Wiley,2006.26-41.
    [35]Bao R, Liu C, Yang D. Smart bistable polymer stabilized cholesteric texture light shutter[J]. Applied Physics Express,2009,2(112401):1-3.
    [36]Ma J, Shi L, Yang D. Bistable polymer stabilized cholesteric texture light shutter [J]. Applied Physics Express,2010,3(021702):1-3.
    [37]Martina M, Hutmacher D W. Biodegradable polymers applied in tissue engineering
    research:a review[J]. Polymer International,2007,56(2):145-157.
    [38]Kim J K, Toti U S, Song R, et al. A macromolecular prodrug of doxorubicin conjugated to a biodegradable cyclotriphosphazene bearing a tetrapeptide[J]. Bioorganic & Medicinal Chemistry Letters,2005,15(15):3576-3579.
    [39]Jun Y J, Min J H, Ji D E, et al. A micellar prodrug of paclitaxel conjugated to cyclotriphosphazene[J]. Bioorganic & Medicinal Chemistry Letters,2008,18(24): 6410-6413.
    [40]Toti U S, Moon S H, Kim H Y, et al. Thermosensitive and biocompatible cyclotriphosphazene micelles[J]. Journal of Controlled Release,2007,119(1):34-40.
    [41]Yu J Y, Jun Y J, Jang S H, et al. Nanoparticulate platinum(Ⅱ) anticancer drug: synthesis and characterization of amphiphilic cyclotriphosphazene-platinum(Ⅱ) conjugates[J]. Journal of Inorganic Biochemistry,2007,101(11-12):1931-1936.
    [42]Cho Y W, Lee J, Song S. Novel thermosensitive 5-fluorouracil-cyclotriphosphazene conjugates:synthesis, thermosensitivity, degradability, and in vitro antitumor activity[J]. Bioconjugate Chemistry,2005,16(6):1529-1535.
    [43]Siwy M, Sek D, Kaczmarczyk B, et al. Synthesis and in vitro antileukemic activity of some new 1,3-(oxytetraethylenoxy)cyclotriphosphazene derivatives§[J]. Journal of Medicinal Chemistry,2006,49(2):806-810.
    [44]Yuan W, Yuan J, Huang X, et al. Synthesis, characterization, and in vitro degradation of star-shaped P(caprolactone)-b-poly(L-lactide)-b-poly(D,L-lactide-co-glycolide) from hexakis [p-(hydroxymethyl)phenoxy]cyclotriphosphazene initiator[J]. Journal of Applied Polymer Science,2007,104(4):2310-2317.
    [45]Kuan J, Lin K. Synthesis of hexa-allylamino-cyclotriphosphazene as a reactive fire retardant for unsaturated polyesters [J]. Journal of Applied Polymer Science,2004, 91(2):697-702.
    [46]Chen S, Zheng Q, Ye G, et al. Fire-retardant properties of the viscose rayon containing alkoxycyclotriphosphazene[J]. Journal of Applied Polymer Science,2006, 102(1):698-702.
    [47]Chen-Yang Y W, Lee H F, Yuan C Y. A flame-retardant phosphate and cyclotriphosphazene-containing epoxy resin:Synthesis and proper[J]. Journal of
    Polymer Science Part A:Polymer Chemistry,2000,38(6):972-981.
    [48]Levchik G F, Grigoriev Y V, Balabanovich A I, et al. Phosphorus-nitrogen containing fire retardants for poly(butylene terephthalate)[J]. Polymer International, 2000,49(10):1095-1100.
    [49]Yuan C Y, Chen S Y, Tsai C H, et al. Thermally stable and flame-retardant aromatic phosphate and cyclotriphosphazene-containing polyurethanes:synthesis and properties[J]. Polymers for Advanced Technologies,2005,16(5):393-399.
    [50]徐建中,何勇武,唐然肖等.六氯环三磷腈的合成及对木材的阻燃研究[J].河北大学学报(自然科学版),2006,26(2):170-174.
    [51]李然,孙德,张龙.六(苯胺基)环三磷腈的合成及其在ABS树脂无卤阻燃中的应用[J].化工新型材料,2007,35(9):75-76.
    [52]孙德,高维全,李然等.新型无卤阻燃剂六苯胺基环三磷腈的合成[J].中国氯碱,2007,12:9-11.
    [53]陈胜,郑庆康,叶光斗等.烷氧基环三磷腈共混改性阻燃粘胶纤维阻燃机理研究[J].四川大学学报(工程科学版),2006,38(2):109-113.
    [54]姚淑焕,徐建军,叶光斗.苯胺基环磷腈的合成及PVA阻燃纤维的制备[J].高分子材料科学与工程,2009,25(7):13-16.
    [55]El Gouri M, El Bachiri A, Hegazi S E, et al. Thermal degradation of a reactive flame retardant based on cyclotriphosphazene and its blend with DGEBA epoxy resin[J]. Polymer Degradation and Stability,2009,94(11):2101-2106.
    [56]Liu R, Wang X. Synthesis, characterization, thermal properties and flame retardancy of a novel nonflammable phosphazene-based epoxy resin[J]. Polymer Degradation and Stability,2009,94(4):617-624.
    [57]Shin Y J, Ham Y R, Kim S H, et al. Application of cyclophosphazene derivatives as flame retardants for ABS[J]. Journal of Industrial and Engineering Chemistry,2010, 16(3):364-367.
    [58]Chen-Yang Y W, Yuan C Y, Li C H, et al. Preparation and characterization of novel flame retardant (aliphatic phosphate)cyclotriphosphazene-containing polyurethanes [J]. Journal of Applied Polymer Science,2003,90(5):1357-1364.
    [59]张昌洪,刚聂,宁陈等.一种磷腈化合物的合成及其在PS无卤阻燃体系中的应用[J].中国塑料,2004,18(2):78-83.
    [60]卢启明,王海忠,叶承峰等.(4-氟-3-三氟甲基苯氧基)环三磷嗪添加剂对季戊四醇酯减摩抗磨作用的影响[J].摩擦学学报,2003,23(6):509-513.
    [61]Glerial M, Jaeger R D. Applicative aspects of cyclotriphosphazenes[M]. New York: Nova Science Publishers, Inc.,2004.55-71.
    [62]Keller M A, Saba C S. Oxidative Stability and Degradation Mechanism of a Cyclotriphosphazene Lubricant[J]. Analytical Chemistry,1996,68(19):3489-3492.
    [63]Lin J, Yates Jr. J T. Thermal-and electron-stimulated chemistry of a cyclotriphosphazene lubricant on a magnetic disk with a hard carbon overcoat[J]. The Journal of Vacuum Science and Technology A,1995,13(4):1867-1871.
    [64]Zhu L, Li F, Chang S. Degradation study of lubricant with cyclotriphosphazene moiety under low-energy electron impact[J]. Journal of Physics and Chemistry of Solids,2009,70(1):142-146.
    [65]Liu W, Ye C, Chen Y, et al. Tribological behavior of sialon ceramics sliding against steel lubricated by fluorine-containing oils[J]. Tribology International,2002,35(8): 503-509.
    [66]Zhu J, Liang Y, Liu W. Effect of novel phosphazene-type additives on the tribological properties of Z-DOL in a steel-on-steel contact[J]. Tribology International,2004,37(4):333-337.
    [67]Liu W, Ye C, Zhang Z, et al. Relationship between molecular structures and tribological properties of phosphazene lubricants [J]. Wear,2002,252(5-6):394-400.
    [68]Kasai P H, Raman V. Perfluoropolyethers with dialkylamine end groups:ultrastable lubricant for magnetic disk application[J]. Tribology Letters,2002,12(2):117-122.
    [69]Hara H, Nishiguchi I, Sugi S, et al. Investigation of micro-phase separation of the additive, cyclotriphosphazene, in lubricant films of hard disk media[J]. Tribology Letters,2001,10(3):143-148.
    [70]Waltman R J, Kobayashi N, Shirai K, et al. The tribological properties of a new cyclotriphosphazene-terminated perfluoropolyether lubricant[J]. Tribology Letters, 2004,16(1-2):151-162.
    [71]Jianbin L, Mingchu Y, Chaohui Z, et al. Study on the cyclotriphosphazene film on magnetic head surface[J]. Tribology International,2004,37(7):585-590.
    [72]Tagawa N, Mori A. Behavior of ultrathin liquid lubricant films for contact sliders in hard disk drives[J]. Tribology Letters,2005,19(3):203-209.
    [73]Tao Z, Bhushan B. Bonding, degradation, and environmental effects on novel perfluoropolyether lubricants[J]. Wear,2005,259(7-12):1352-1361.
    [74]Allcock H R, Klingenberg E H. Synthesis of liquid crystalline phosphazenes containing chiral mesogens[J]. Macromolecules,1995,28(13):4351-4360.
    [75]Moriya K, Nakagawa S, Yano S, et al. Ferroelectric liquid crystalline phase transition of (S)-hexakis(4-(4'-(6-methyl)octyloxy)biphenoxy)cyclotriphosphazene [J]. Liquid Crystals,1995,18(6):919-921.
    [76]Barbera J, Jimenez J, Laguna A, et al. Cyclotriphosphazene as a dendritic core for the preparation of columnar supermolecular liquid crystals[J]. Chemistry of Materials, 2006,18(23):5437-5445.
    [77]Xu J, Ling T C, He C. Hydrogen bond-directed self-assembly of peripherally modified cyclotriphosphazenes with a homeotropic liquid crystalline phase[J]. Journal of Polymer Science Part A:Polymer Chemistry,2008,46(14):4691-4703.
    [78]Zhan X, Wang S, Liu Y, et al. New series of blue-emitting and electron-transporting copolymers based on cyanostilbene[J]. Chemistry of Materials,2003,15(10):1963-1969.
    [79]Scott J C, Kaufman J H, Brock P J, et al. Degradation and failure of MEH-PPV light-emitting diodes[J]. Journal of Applied Physics,1996,79(5):2745-2751.
    [80]Martinez-Ruiz P, Behnisch B, Schweikart K H, et al. Tuning of photo-and electroluminescence of new soluble, PPV-analogous short-chain compounds with naphthalene moieties[J]. Chemistry-A European Journal,2000,6(8):1294-1301.
    [81]Zou Y, Peng B, Liu B, et al. Conjugated copolymers of cyanosubstituted poly(p-phenylene vinylene) with phenylene ethynylene and thienylene vinylene moieties: Synthesis, optical, and electrochemical properties [J]. Journal of Applied Polymer Science,2010,115(3):1480-1488.
    [82]Greenham N C, Moratti S C, Bradley D D C, et al. Efficient light-emitting diodes based on polymers with high electron affinities [J]. Nature,1993,365(6447):628-630.
    [83]Yu Y, Lee H, Vanlaeken A, et al. A new precursor polymer via a new 1,6-polymerization reaction. a new route to cyano poly(p-phenylene vinylenes)[J]. Macromolecules,1998,31(16):5553-5555.
    [84]Granstrom M, Petritsch K, Arias A C, et al. Laminated fabrication of polymeric photovoltaic diodes[J]. Nature,1998,395(6699):257-260.
    [85]Pu Y, Kurata T, Soma M, et al. Triphenylamine-and oxadiazole-substituted poly(1,4-phenylenevinylene)s:synthesis, photo-, and electroluminescent properties[J]. Synthetic Metals,2004,143(2):207-214.
    [86]Tu G, Li H, Forster M, et al. Conjugated triblock copolymers containing both electron-donor and electron-acceptor blocks[J]. Macromolecules,2006,39(13):4327-4331.
    [87]Sato S, Tajima K, Hashimoto K. Synthesis and characterization of regioregular cyano-substituted poly(p-phenylenevinylene)[J]. Macromolecules,2009,42(6): 1785-1788.
    [88]Ahmed A M, Feast W J, Tsibouklis J. A new class of main-chain liquid crystalline polymers based on an unsymmetrically disubstituted cyanostilbene[J]. Polymer,1993, 34(6):1297-1302.
    [89]Ajayaghosh A, Praveen V K. π-Organogels of self-assembled p-phenylenevinylenes: soft Materials with distinct size, shape, and functions[J]. Accounts of Chemical Research,2007,40(8):644-656.
    [90]Terech P, Weiss R G. Low molecular mass gelators of organic liquids and the properties of their gels [J]. Chemical Reviews,1997,97(8):3133-3160.
    [91]Diring S, Camerel F, Donnio B, et al. Luminescent ethynyl-pyrene liquid crystals and gels for optoelectronic devices[J]. Journal of the American Chemical Society, 2009,131(50):18177-18185.
    [92]Sugiyasu K, Fujita N, Shinkai S. Visible-light-harvesting organogel composed of cholesterol-based perylene derivatives [J]. Angewandte Chemie International Edition, 2004,43(10):1229-1233.
    [93]Kim T H, Kim D G, Lee M, et al. Synthesis of reversible fluorescent organogel containing 2-(2'-hydroxyphenyl)benzoxazole:fluorescence enhancement upon gelation and detecting property for nerve gas simulant[J]. Tetrahedron,2010,66(9): 1667-1672.
    [94]Chung J W, Yoon S, Lim S, et al. Dual-mode switching in highly fluorescent organogels:binary logic gates with optical/thermal inputs[J]. Angewandte Chemie International Edition,2009,48(38):7030-7034.
    [95]Hisaki I, Shigemitsu H, Sakamoto Y, et al. Octadehydrodibenzo[12]annulene-based organogels:two methyl ester groups prevent crystallization and promote gelation[J]. Angewandte Chemie International Edition,2009,48(30):5465-5469.
    [96]Tamaru S, Nakamura M, Takeuchi M, et al. Rational design of a sugar-appended porphyrin gelator that is forced to assemble into a one-dimensional aggregate[J]. Organic Letters,2001,3(23):3631-3634.
    [97]Ajayaghosh A, George S J. First phenylenevinylene based organogels:self-assembled nanostructures via cooperative hydrogen bonding and π-stacking[J]. Journal of the American Chemical Society,2001,123(21):5148-5149.
    [98]An B, Lee D, Lee J, et al. Strongly fluorescent organogel system comprising fibrillar self-assembly of a trifluoromethyl-based cyanostilbene derivative [J]. Journal of the American Chemical Society,2004,126(33):10232-10233.
    [99]Lin H, Su S, Chang C. Fluorescent organic nanoparticle formation in lysosomes for cancer cell recognition[J]. Organic and Biomolecular Chemistry,2009,7(10):2036-2039.
    [100]An B, Kwon S, Jung S, et al. Enhanced emission and its switching in fluorescent organic nanoparticles[J]. Journal of the American Chemical Society,2002,124(48): 14410-14415.
    [101]Kasai H, Yoshikawa Y, Seko T, et al. Optical properties of perylene microcrystals[J]. Molecualar Crystals and Liquid Crystals,1997,294:173-176.
    [102]Fu H, Yao J. Size effects on the optical properties of organic nanoparticles[J]. Journal of the American Chemical Society,2001,123(7):1434-1439.
    [103]Dierking I, Kosbar L L, Afzali-Ardakani A, et al. Two-stage switching behavior of polymer stabilized cholesteric textures[J]. Journal of Applied Physics,1997,81(7):
    3007-3014.
    [104]Wu S, Yang D. Reflective liquid crystal displays (Wiley Series in Display Technology) (Hardcover)[M]. Chichester:Wiley; 1 edition,2001.7-12.
    [105]Crawford G P, Zumer S. Liquid crystals in complex geometries:formed by polymer and porous networks (Hardcover)[M]. Taylor & Francis; 1 edition,1996.77-79.
    [106]Ren H, Wu S. Reflective reversed-mode polymer stabilized cholesteric texture light switches[J]. Journal of Applied Physics,2002,92(2):797-800.
    [107]ter Wiel M K J, Odermatt S, Schanen P, et al.1,3-Diethynylallenes:stable monomers, length-defined oligomers, asymmetric synthesis, and optical resolution[J]. European Journal of Organic Chemistry,2007,2007(21):3449-3462.
    [108]Ndayikengurukiye H, Jacobs S, Tachelet W, et al. Alkoxylated p-phenylenevinylene oligomers:synthesis and spectroscopic and electrochemical properties [J]. Tetrahedron,1997,53(40):13811-13828.
    [109]Emsley J, Udy P B. Factors influencing the preparation of the cyclic phosphonitrilic chlorides[J]. Journal of the Chemical Society A:Inorganic, Physical, Theoretical, 1971:768-772.
    [110]Pandey S, Suryawanshi S N, Gupta S, et al. Chemotherapy of leishmaniasis part Ⅱ: synthesis and bioevaluation of substituted arylketene dithioacetals as antileishmanial agents[J]. European Journal of Medicinal Chemistry,2005,40(8):751-756.
    [111]Kinami M, Crenshaw B R, Weder C. Polyesters with built-in threshold temperature and deformation sensors[J]. Chemistry of Materials,2006,18(4):946-955.
    [112]Yao D, Zhang B, Li Y, et al. Synthesis and mesomorphism of novel star-shaped glassy liquid crystals containing pentaerythritol esters[J]. Tetrahedron Letters,2004, 45(48):8953-8956.
    [113]Pez D, Leal I, Zuccotto F, et al.2,4-Diaminopyrimidines as inhibitors of Leishmanial and Trypanosomal dihydrofolate reductase[J]. Bioorganic & Medicinal Chemistry,2003,11(22):4693-4711.
    [114]Diring S, Camerel F, Donnio B, et al. Luminescent ethynyl-pyrene liquid crystals and gels for optoelectronic devices[J]. Journal of the American Chemical Society, 2009,131(50):18177-18185.
    [115]Voisin E, Johan Foster E, Rakotomalala M, et al. Effects of symmetry on the stability of columnar liquid crystals[J]. Chemistry of Materials,2009,21(14):3251-3261.
    [116]Shimura H, Yoshio M, Hamasaki A, et al. Electric-field-responsive lithium-ion conductors of propylenecarbonate-based columnar liquid crystals[J]. Advanced Materials,2009,21(16):1591-1594.
    [117]Hu J, Zhang M, Ju Y. A simple oleanlic acid derivative as potent organogelator[J]. Soft Matter,2009,5:4971-4974.
    [118]Xu M, Yang D. Dual frequency cholesteric light shutters[J]. Applied Physics Letters, 1997,70(6):720-722.
    [119]Yang D K, Doane J W, Yaniv Z, et al. Cholesteric reflective display:drive scheme and contrast[J]. Applied Physics Letters,1994,64(15):1905-1907.
    [120]Yang D, Huang X, Zhu Y. Bistable cholesteric reflective displays:materials and drive schemes [J]. Annual Review of Materials Science,1997,27:117-146.
    [121]Fung Y K, Yang D K, Ying S, et al. Polymer networks formed in liquid crystals[J]. Liquid Crystals,1995,19(6):797-801.
    [122]Ma R, Yang D. Freedericksz transition in polymer-stabilized nematic liquid crystals[J]. Physical Review E,2000,61(2):1567-1573.
    [123]Fung Y K, Borstnik A, Zumer S, et al. Pretransitional nematic ordering in liquid crystals with dispersed polymer networks[J]. Physical Review E,1997,55(2):1637-1645.
    [124]Petit M, Daoudi A, Ismaili M, et al. Electroclinic effect in a chiral smectic liquid crystal stabilized by an anisotropic polymer network[J]. Physical Review E,2006, 74(6):61707-61714.
    [125]Kikuchi H, Yokota M, Hisakado Y, et al. Polymer-stabilized liquid crystal blue phases[J]. Nature Materials,2002,1:64-68.
    [126]Liu J, Wang Y, Chen C, et al. Synthesis and characterization of optically active liquid crystalline polyacrylates containing mesogenic phenylbenzoate groups[J]. Polymer,2008,49(18):3938-3949.
    [127]Cowie J M G, Hunter H W. Liquid-crystal side-chain copolymers composed of a non-chiral mesogenic monomer and a chiral non-mesogenic monomer[J]. Polymer, 1995,36(21):4147-4149.
    [128]Cowie J M G, Hunter H W. Optical properties of side-chain liquid crystal copolymers of monosubstituted cholesteryl itaconate and a non-chiral mesogen[J]. Canadian Journal of Chemistry,1995,73:1811-1817.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700