SiC晶须增韧硅化物及SiC/玻璃高温防氧化涂层的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
炭/炭(C/C)复合材料具有优异的高温性能,在航空航天等领域有极其广阔的应用前景。高温易氧化是C/C复合材料作为热结构材料使用的瓶颈问题,而防氧化涂层是解决这一难题的有效手段。本文以研制C/C复合材料高温防氧化涂层为研究目标,采用包埋法、料浆法等制备了SiC晶须增韧硅化物涂层以及SiC/玻璃双层涂层,借助XRD、SEM、EDS等测试手段分析了涂层的相组成、微观形貌与元素分布,考察了涂层的防氧化与抗热震性能,研究了热震与氧化对涂层试件力学性能的影响,并对涂层的防氧化机理与失效原因进行了研究,主要研究内容与结果如下:
     采用两次包埋法制备出SiC-CrSi_2双相涂层,研究了该涂层的微观结构及防氧化性能,着重探讨了Si/Cr比对涂层微观结构及抗氧化性能的影响,表明CrSi连续相有效填充了SiC涂层中的孔隙与裂纹,提高了涂层的致密性;随着包埋原料中Cr/Si质量比的增大,涂层中SiC含量逐渐减少,CrSi_2连续相含量增加,裂纹尺寸增大;防氧化能力表现出先提高后降低的趋势。
     采用料浆法与包埋法制备出SiC晶须增韧SiC-CrSi_2涂层,研究了SiC晶须含量对涂层微观结构、抗氧化性能及抗热震性能的影响;讨论了SiC晶须增韧SiC/Si-Cr涂层试件在不同温度下的氧化行为,并对涂层的氧化失效机制进行了分析,结果表明:随着料浆中SiC晶须含量的增加,制备的SiC晶须增韧SiC-CrSi_2涂层裂纹尺寸减小,厚度降低,涂层中CrSi_2相含量先增后减,涂层防氧化能力表现出先提高后下降的趋势;当SiC晶须含量为15wt.%时,涂层具有较好的防氧化与抗热震性能,且该涂层在1500℃时表现出相对较好的防氧化能力,氧化50小时后涂层试件失重率仅为0.66%;涂层试件的氧化失重主要是山于在高温←→室温的热循环过程中氧通过涂层中的裂纹扩散至基体表面氧化C/C所引起的。
     采用料浆法与包埋法制备出SiC晶须增韧Si-SiC涂层,着重研究SiC晶须含量对涂层微观结构、抗氧化性能及抗热震性能的影响;并对涂层制备工艺进行了优化,研究SiC晶须增韧Si-SiC涂层试件热疲劳行为,分析涂层的氧化失效机制,结果表明:涂层中游离硅的存在有利于阻碍裂纹的扩展,在涂层与基体界面处形成了一层SiC-C梯度过渡层;SiC晶须含量为10wt.%制备的SiC晶须增韧Si-SiC涂层具有优良的防氧化性能,在1500℃静态空气中可对C/C复合材料有效保护310小时以上,在1600℃静态空气中可对C/C复合材料有效保护128小时;涂层试件经历1600℃静态空气3分钟←→100℃沸水热循环50次后试件失重2.76%,弯曲强度保持率为74.5%,其失重和弯曲强度下降是由于C/C基体被氧气和水蒸气氧化引起的。
     采用料浆法与包埋法相结合,在C/C复合材料表面制备出SiCw晶须增韧MoSi_2-SiC-Si多相涂层,探讨了晶须含量、制备温度等对涂层微观结构及防氧化性能的影响规律,研究了涂层对试件力学性能的影响,结果显示:当SiCw含量为10wt.%,料浆法制备温度为1800℃,包埋法制备温度为2000℃所制备的涂层具有较为理想的防氧化性能,1500℃静态空气中氧化240小时后的氧化失重率仅为0.33%;试件的弯曲强度提高,经1500℃←→室温热震10次以及1500℃氧化60分钟后,涂层试件的弯曲强度保持率分别为81.97%和89.63%,涂层试件氧化后弯曲强度下降主要是由于环境中的氧通过涂层中的裂纹与孔洞等缺陷扩散而氧化C/C基体所引起的。
     采用两次包埋法制备出B_2O_3改性SiCw-MoSi_2-SiC涂层,研究了B_2O_3含量对涂层性能的影响,结果表明,当B_2O_3含量为5%时,涂层具有较好的防氧化能力,经1500℃氧化242小时后试件增重0.18%。该涂层在1600℃←→400℃变温氧化阶段防氧化能力较差的原因是涂层在800℃附近存在尺寸较大的开放性裂纹。
     以硅溶胶为粘结剂,以B_4C和玻璃粉为主要原料,采用料浆法在C/C复合材料SiC内涂层表面制备出适用于900℃防氧化的玻璃外涂层,研究了B_4C含量及SiC内涂层结构对涂层性能的影响,分析了涂层的防氧化失效原因,结果显示:B_4C含量为10wt.%以及SiC内层为采用两步包埋法制备的致密涂层时,SiC/玻璃涂层具有较好的防氧化性能,试件在900℃静态空气中氧化100小时后失重率仅为0.14%,玻璃涂层在氧化温度下的缓慢挥发是涂层试件在氧化过程中表现为微量失重的主要原因。
     采用料浆法在多孔β-SiC过渡层表面制备出适用于1300℃防氧化的玻璃密封层,研究了涂层的微观结构及防氧化性能,分析了涂层氧化失效机制。密封层的结构为MoSi_2相分散于硼硅酸盐玻璃相中;带有β-SiC/玻璃密封层的C/C试件在1300℃的静态空气中氧化150小时以及经20次1300℃←→室温急冷急热循环后,涂层试样的氧化失重率仅为1.07%;涂层试件的氧化主要是由于氧通过涂层中的裂纹扩散至基体表面而氧化基体,以及部分区域的涂层脱落所引起的。
     直接以SiO_2、B_2O_3、Al_2O_3等为原料,采用料浆法在C/C复合材料SiC内涂层表面制备出适用于1500℃防氧化的玻璃涂层,研究了涂层的微观结构及防氧化性能,分析了涂层氧化失效机制。该涂层可在1500℃空气中对C/C复合材料有效保护140小时,试样失重率仅为0.98%;该涂层试件的氧化失重主要是玻璃涂层的开裂以及涂层表面气孔的形成引起的。
     分别对SiC晶须增韧Si-SiC/玻璃涂层及SiC晶须增韧MoS_2-SiC-Si/SiC/玻璃涂层的高温抗冲刷性能进行了研究,结果表明,以上两种涂层可在1500℃风洞环境下对C/C复合材料有效保护16和53小时,涂层在热冲击以及气流冲击的恶劣环境下的开裂是其在高温燃气冲刷环境中防氧化失效的主要原因。
Carbon/carbon (C/C) composites are provided with excellent properties at high temperature, and are considered as the most promising candidate materials for high temperature application such as in aviation, space flight fields. However, C/C composites are prone to oxidize at high temperature, which limits their applications as high-temperature structural materials. Anti-oxidation coatings are considered to be an effective method for preventing C/C composites from oxidation at high temperature. In order to exploit the oxidation protective coatings using at high temperature, SiC whisker-toughened silicides coating and SiC/glass double-layer coating were prepared by pack cementation and slurry. The phase composition, microstructure and element distributing of the as-prepared coatings were characterized by XRD, SEM and EDS analyses. The oxidation protective ability and thermal shock resistance of the as-obtained coatings were investigated. Moreover, the anti-oxidation mechanism and the failure reason of the coatings were also discussed. The main contents and conclusions are listed as follows:
     The SiC-CrSi_2 double-phase coating was produced by a two-step pack cementation technique. The microstructure and oxidation protective ability of the coating were investigated. The effect of Si/Cr with the different weight ratio on the microstructure and anti-oxidation property was discussed. The results show that the CrSi_2 phase can be filled in the holes and cracks of the SiC inner layer, resulting in the dense structure of the coating. With the increasing of Cr/Si in the initial pack power, the content of SiC phase in the coating decreases, CrSi_2 phase and the size of the cracks in the coating increase gradually, and the oxidation protective ability of the coating increase firstly and decrease later.
     SiC whisker (SiCw) toughened SiC-CrSi_2 oxidation protective coating was prepared by slurry and pack cementation. The effects of SiC whisker content on the microstructure, oxidation protective ability and thermal chock resistance were investigated. The oxidation behavior of the SiC whisker-toughened SiC-CrSi_2 coating at different temperatures were discussed and the failure mechanism of the coating was also analyzed. With the increasing of the SiCw content, the size of the cracks in the coating and the thickness of the coating decease, while the CrSi_2 content in the coating and the oxidation protective ability of the coating exhibit the trend of increase first and decrease afterwards. The coating containing with 15wt.% SiCw exhibits excellent oxidation protective ability and thermal shock resistance. The weight loss of the coated specimens was only 0.66% aider oxidation for 50h at 1500℃in air. The failure of the coated specimens mainly results from the oxidation between the oxygen diffusing though the cracks in the coating and C/C matrix during the thermal cycles between high temperature and room temperature.
     SiCw toughened Si-SiC coating was obtained by slurry and pack cementation technique. The effects of the SiCw content on the microstructure, oxidation resistance and thermal shock resistance were investigated and the preparing process was also optimized. The effect of the thermal shock on the mechanical property of the coated samples was discussed. The SiCw toughened Si-SiC coating is provided with excellent oxidation resistance, and can protect C/C composites from oxidation for more than 310 h at 1773℃and for 128h at 1873℃in air. After thermal cycle between 1873K air and 373K boiling water for 50 times, the weight loss of the SiC coated sample was 2.76% and the remaining strength percentage was 74.5%. The decreasing of the flexural strength during the thermal cycle was primarily due to the oxidation between the coated samples and oxygen or vapor.
     SiCw toughened MoSi_2-SiC-Si multi-phase coatings were produced on the surface of C/C composites by slurry and pack cementation. The effects of the SiCw content and the preparing temperature on the microstructure and oxidation protective ability of the as-obtained coating were investigated. The effect of the coating on the mechanical property of the samples was also discussed. The results show that when the SiCw content is 10wt.%, the preparing temperatures for the slurry method and pack cementation are 1800℃and 2000℃respectively, the coating is provide with excellent oxidation resistance, which could effectively protect C/C composites at 1500℃for 240h and the corresponding weight loss was only 0.33%. The flexural strength of the specimens increases after they are coated. The percentage of remaining flexural strength of the coated specimens were 81.97% and 89.63% respectively after thermal shock between 1500℃and room temperature for 10 times and isothermal oxidation at 1500℃for 60 min. The decreasing of the flexural strength is mainly attributed to the formation of the cracks and holes in the coating, through which the oxygen can diffuse into the C/C matrix and oxidize the C/C matrix.
     SiCw toughened SiCw-MoSi_2-SiC coating modified by B_2O_3 was produced by a two-step pack cementation technique. The effect of B_2O_3 content on the property of the coating was investigated. The result shows that as the B_2O_3 content is 5%, the coating exhibits better oxidation resistance. After oxidation at 1500℃for 242 hours, the weight gain of the coated specimens is 0.18%. The poor oxidation resistance at the changing temperature stage from 1600℃to 400℃is due to the formation of the open cracks at about 800℃.
     Using silicon-sol as the binder, glass power and B4C particles as main raw materials, the glass outer coating applied at 900℃was prepared on the surface of SiC inner coating. The effects of the B4C content and the structure of the SiC inner coating on the oxidation protective ability of the as-obtained coating were investigated. The failure reason of the coated specimens was also discussed. The results show that as the B4C content is 10 wt.% and the SiC inner layer is dense structure obtained by two-step pack cementation, the SiC/glass coating exhibits excellent oxidation protective ability, which can protect C/C composites at 900℃in air for 100h and the weight loss is only 0.14%. The slight weight loss is mainly attributed to the gradual volatilization of the glass coating during oxidation test.
     The glass oxidation protective coating for application at 1300℃was prepared on the surface of a porousβ-SiC bonding layer by slurry. The microstructure and oxidation resistance of the coated specimens was investigated. The oxidation mechanism of the coating was also discussed. The sealing layer is composed of the borosilicate glass phase with the dispersion of MoSi_2 particles. The weight loss of theβ-SiC/glass coated specimens is only 1.07% after oxidation for 150 hours at 1300℃and thermal cycles between 1300℃and room temperature for 20 times. The oxidation of the coated specimens mainly results from the cracks in the coating and the debonding of some glass coating.
     Using SiO_2, B_2O_3 and Al_2O_3 as the original materials, the glass coating for application at 1500℃was prepared on the surface of the SiC coated C/C composites by slurry. The microstructure and oxidation resistance of the coating was investigated. The oxidation mechanism of the coated specimens was also discussed. The coating can effectively protect C/C composites at 1500℃for 140 hours and the corresponding weight loss was only 0.98%. The weight loss of the coated specimens is mainly attributed to the crazing of the glass coating and the formation of holes on the coating surface.
     The oxidation behaviors of C/C composites with SiCw-Si-SiC/glass coating and SiCw-MoSi_2-SiC-Si/SiC/glass coating in combustion gas environment at 1512℃were studied respectively. The oxidation mechanism of the coated specimens was also nalyzed. The SiCw-Si-SiC/glass coating and SiCw-MoSi_2-SiC-Si/SiC/glass coating can protect C/C composites in wind tunnel environment at 1500℃for 16h and 53h respectively. The cracking of the coating under thermal impact and airflow impact environment is the main reason for the anti-oxidation failure of the coating.
引文
1 贺福,王茂章.碳纤维及其复合材料.科学出版社,1995
    2 颜鸣皋,吴学仁,朱知寿.航空材料技术的发展现状与展望.航空制造技术.2003,(12):19~25
    3 陈亚莉.波音777及其候选动力装置的选材.航空制造工程.1995,(2):27~29
    4 李贺军,曾燮榕,李克智.炭/炭复合材料研究应用现状及思考.炭素技术.2001,(5):5~17
    5 傅恒志.未来航空发动机材料面临的挑战与发展趋向.航空材料学报.1998,18(4):52~61
    6 朱良杰,廖东娟.C/C复合材料在美国导弹上的应用.宇航材料工艺.1993(4):12~14
    7 J.C. Withers, D.W. Kowbel, R.O. Loutfy. Carbon-carbon composites in advanced aerospace applications. Carbon 2006 International Conference, Aberdeen, Scotland, July 16-21, 2006
    8 C.P. Leonard, R.M. Amundsen, W. E. Bruce. Hyper X hot structures design and comparison with flight data. AIAA/CIRA International Space Planes and Hypersonics Systems and Technologies Conference, AIAA-2005-3438, 13th.
    9 Torsten Windhors, Gordon Blount. Carbon-carbon Composites: A Summary of Recent Developments and Applications. Materials & Design. 1997, 18(1): 11~15
    10 G. Howard, A. Maahs. Carbon-Carbon Composites: Emerging Materials for Hypersonic Flight. NASA TM. 1996, (103472): 114
    11 J. E. Sheehan. Carbon-Carbon Composites. Annu Rev Mater Sci. 1994, 24: 19~44
    12 J. D. Buckley. Carbon-Carbon, an Overview. Am Ceramic Bulletin. 1988, 67(2): 364~368
    13 J. D. Buckley, D. D. Edie. Carbon-Carbon Materials and Composites. USA. 1993, 121
    14 V. Z. Shemet, A. D. Pomytldn, V. S. Neshpor. High-Temperature Oxidation Behavior of Carbon Materials in Air. Carbon. 1993, 31(1): 1~6
    15 T.M. Wu. On the Oxidation Kinetics and Mechanisms of Various SiC-Coated Composites. Carbon. 1991, 29(8): 1257~1264
    16 H. W. Chang, R. M. Rusnak. Oxidation Behavior of Carbon/Carbon Composites. Carbon. 1979, 17(5): 407~410
    17 朱小旗.抗氧化碳/碳复合材料的制备及性能机理研究.西北工业大学博士学位论文,1995
    18 李贺军,曾燮榕,朱小旗,徐志淮.炭/炭复合材料抗氧化研究.炭素.1999,(3):2~7
    19 王世驹.碳/碳复合材料氧化行为的研究.兵器材料科学与工程.1999,22(4):36~40
    20 陈华辉,邓海金,李明,林小松.现代复合材料.中国物资出版社,1998
    21 成来飞,张立同,韩金探.碳-碳防氧化涂层发展概况.高技术通讯.1992,2(9):30~33
    22 龚榆.复合材料用纤维的CVD涂层.国外稀有金属动态.1991,(7):2~4
    23 曹峰,彭平,李效东.氧化铝/氧化硅溶胶对碳纤维表面的处理及应用.复合材料学报.1999,16(1):22~29
    24 S. Labruquere, H. Blanchard, R. Pailler, R. Naslain. Enhancement of the Oxidation Resistance of Interfacial Area in C/C Composites. Part Ⅰ: Oxidation Resistance of B-C, Si-B-C and Si-C Coated Carbon Fibers. Journal of the European Ceramic Society. 2002, (22): 1001~1009
    25 N. E. Loboiondo, L. E. Jones, A. G. Clare. Halogenated Glass System for the Protection of Structural Carbon/Carbon Composites. Carbon. 1995, 33(4): 499~508
    26 杨尊社,卢刚认,曲德全.C/C复合材料的磷酸盐与硼系涂料的防氧化研究.材料保护.2001,34(3):12~13
    27 崔红,苏君明,李瑞珍,李贺军,康沫狂.添加难熔金属碳化物提高C/C复合材料抗烧蚀性能的研究.西北工业大学学报.2000,18(4):669~673
    28 朱小旗,杨峥,康沫狂,张海涛.基体改性碳/碳复合材料抗氧化影响规律探析.复合材料学报.1994,11(2):107~111
    29 G. Savage. Carbon-Carbon Composites. London: Chapman & Hall, 1993: 198~ 209
    30 J. E. Sheehan. Oxidation Protection for Carbon Fiber Composites. Carbon. 1989, 27(5): 709~715
    31 A. Napolitano, P. B. Mucedo, E. G. Hawldns. Viscosity and Density of Boron Trioxide. J Am Ceram Soc, 1965, 48:613
    32 宋永忠,翟更太,宋进仁.B N改性碳基复合材料氧化行为的研究.宇航材 料工艺,2001,6:31~33
    33 闫桂沈,王俊,苏君明.难熔金属碳化物改性基体炭/炭复合材料抗氧化性能的影响.炭素.2002,(2):3~6
    34 李贺军,陈强,张守阳,李克智.抗烧蚀碳/碳复合材料的制备方法.国防发明专利.专利号:200510000794.2
    35 李翠艳,李克智,欧阳海波,李贺军.HfC改性炭/炭复合材料的烧蚀性能.稀有金属材料与工程.2006,(增刊2):365~368
    36 刘文川,邓景屹,杜海峰,魏永良.C/C-SiC梯度基、纳米基、双元基复合材料微观结构特征.中国科学(B辑).1998,28(5):471~476
    37 W.C. Liu, Y. L. Wei, J. Y. Deng. Carbon Fiber Rreinforced C-SiC Binary Matrix Composites. Carbon. 1995, 33(4): 441~447
    38 邓景屹,刘文川,杜海峰.C/C-SiC梯度基复合材料氧化行为的研究.硅酸盐学报.1999,27(3):357~361
    39 李瑞珍,郝志彪,李贺军,崔红.CVR法抗氧化处理对炭/炭复合材料抗氧化行为的影响.复合材料学报.2005,22(5):125~129
    40 郭海明.C/C复合材料防氧化复合涂层的制备及其性能.宇航材料工艺.1998,(5):31~40
    41 简科,胡海峰,陈朝辉.碳/碳复合材料高温抗氧化涂层研究进展.材料保护.2003,36(1):22~24
    42 P. Ehrburger. Inhibition of the Oxidation of Carbon-Carbon Composites by Boron Oxide. Carbon. 1986, 24(4): 495~499
    43 F. J. Buchanan. Particulate-containing Glass Sealants for Carbon-carbon Composites. Carbon. 1996, 31: 649~654
    44 R. W. Lynch and B. Morosin. Thermal Expansion, Compressibility, and Polymorphism inHfnium and Zirconium Titanates, L. Am Ceram Soc. 1972, 55(8): 409~413
    45 J.R. Strife. Ceramic coating for carbon-carbon composites. Ceramic Bulletin. 1988, 2:369~374
    46 T. Jacques. Kinetics and Mechanisms of Oxidation of 2D woven C/SiC Composites. J Am Ceram Soc. 1994, 8:2049~2057
    47 徐志淮,李贺军.CVD生长SiC涂层工艺过程的正交分析研究.兵器材料科学与工程.2000,23(5):35~40
    48 成来飞,张立同.碳.碳复合材料防氧化涂层制备新工艺—液相反应生成法.高技术通讯.1992,2(9):4~7
    49 Debruuner, E. R. Clements and C. Patricia. Method of Protection Carbonaceous Material from Oxidation at High Temperature. US Patent 3, 713, 882, Jan, 30,1973
    50 Wilson, F. Wilson. Oxidation Retardant for Graphite. US Patent 4, 439, 491, May, 27,1974
    51 D. W. McRee. Borate Treatment of Carbon Fibers and Carbon/carbon Composites for Improved Oxidation Resistance. Carbon. 1986, 24(6): 737~741
    52 成来飞,张立同.液相法制备C/C复合材料防氧化涂层的液相铺展研究.航空学报.1996,17(4):508~510
    53 成来飞,张立同,韩金探.液相法制备碳.碳Si-Mo防氧化涂层.高技术通讯.1996,6(4):17~20
    54 J. F. Huang, H. J. Li, X. R. Zeng, K.. Z. Li, et.al. A New SiC/yttrium Silicate/glass Multi-layer Oxidation Protective Coating for Carbon/carbon Composites. Carbon. 2004, 42(11): 2356~2359
    55 J. F. Huang, H. J. Li, X. R. Zeng, K. Z. Li. Yttrium Silicate Oxidation Protection Coating for SiC Coated Carbon/carbon Composites. Ceramics International. 2006, 32(4): 417~421
    56 J. N. Stuecker, D. A. Hirschfeld, D. S. Martin. Oxidation Protection of Carbon-Carbon Composites by Sol-Gel Ceramic Coatings. Journal of Materials Science. 1999, 34(22): 5443~5447
    57 Skowronski, P. Raymund, Kramer, David. Coating for Carbon-Carbon Composites and Method for Producing Same. 1999, US Patent: 5955197
    58 J.F. Huang, X. R. Zeng, H. J. Li, X. B. Xiong, G. L. Sun. ZrO_2-SiO_2 Gradient Multilayer Oxidation Protective Coating for SiC Coated Carbon/carbon Composites. Surface & Coatings Technology, 2005, 190(2-3): 255~259
    59 黄剑锋,李贺军,曾燮榕,李克智,熊信柏,付业伟.碳/碳复合材料抗氧化SiC/Zr02-SiO_2涂层的制备及其氧化动力学.稀有金属材料与工程.2005,34(增刊2):324~328
    60 Bemeburg, L. Philip, Krukonis, et al. Processing of Carbon-Carbon Composites Using Supercritical Fluid Technology. 2000, US Patent: 5035921
    61 H.T. Fang, J. C. Zhu, Z. D. Yin, et al. A Si-Mo Fused Sslurry Coating for Oxidation Protection of Carbon-Carbon Composites. Journal of Materials Science Letters. 2001, 20(2): 175~177
    62 A. Joshi, J. S. Lee. Coating with Particulate Dispersions for High Temperature Oxidation Protection of Carbon and C/C composites. Composites(Part A). 1997, 28A(2): 181~189
    63 S. Federico, F. Monica, S. Milena. Multilayer Coating with Self-sealing Properties for Carbon-carbon Composites. Carbon. 2003, 41: 2105~2111
    64 J. Santon. Laser Coating Extends Applicability of C/C composites. Materials Performance. 2000, 39(7): 47~49
    65 付前刚,李贺军,黄剑锋,等.炭/炭复合材料磷酸盐涂层的抗氧化性能研究.材料保护.2005,38(3):52~54
    66 刘槟,易茂中,熊翔,蒋建纯,黄伯云.C/C复合材料航空刹车副表面防氧化涂料的研制.中国有色金属学报.2000,10(6):864~867
    67 S. Hideaki. Effects of Lanthanum Boride on Oxidation of C/C Composites. Carbon. 1997, 35 (7): 1035
    68 Y. C. Zhu, S. Ohtani, Y. Sato, N. Iwamoto. Formation of a Functionally Gradient (Si_3N_4+SiC)/C Layer for the Oxidation Protection of Carbon-carbon Composites. Carbon. 1999, 37:1417~1423
    69 T. Morimoto, Y. Ogura, M. Kondo, T. Ueda. Multi-layer Coating for Carbon-carbon Composites. Carbon. 1995, 33(4): 351~357
    70 A. Mario, D. Alicia. Yttrium Silicate Coatings for Oxidation Protection of Carbon-silicon Carbide Composites. J Am Ceram Soc. 2000, 83:1351~1355
    71 厄特塞考-阿可克希科,等.采用在SiC毡上CVD-SiC涂层提高C/C复合材料抗氧化性能.电碳.2002(2):17~22
    72 J. F. Huang, X. R. Zeng, H. J. Li, X. B. Xiong, M. Huang. Mullite-Al_2O_3-SiC Oxidation Protective Coating for Carbon/carbon Composites. Carbon. 2003, 41: 2825~2829
    73 曾燮榕,郑长卿,李贺军,杨峥.碳/碳复合材料MoSi_2涂层的防氧化研究.复合材料学报.1997,114(3):37~40
    74 曾燮榕,李贺军,等.MoSi_2-SiC抗氧化涂层对碳/碳复合材料弯曲性能的影响.复合材料学报.2000,17(2):46~49
    75 曾燮榕,李贺军,等.碳/碳复合材料防护涂层的抗氧化行为研究.复合材料学报.2000,17(2):42~45
    76 曾燮榕,李贺军,等.碳/碳复合材料表面MoSi_2-SiC复相陶瓷涂层及其抗氧化机制.硅酸盐学报.1999,27(1):8~15
    77 曾燮榕,李贺军,等.碳-碳复合材料Si-MoSi_2涂层的抗氧化性能.航空制造工程.1997,(4):25~26
    78 曾燮榕,郑长青,李贺军,等.防止C/C复合材料氧化的MoSi_2/SiC双相涂层系统的研究.航空学报.1997,18(4):427~432
    79 郭海明,舒武炳,乔生儒,白世鸿,孟国文.C/C复合材料防氧化复合涂层 的制备及其性能.宇航材料工艺.1998,28(5):37~40
    80 C. H. Ruscher, H. Fritze. G. Borchardt, et al. Mullite Coatings on SiC and C/C-Si-SiC Substrates Characterized by Infrared Spectroscopy. American Ceramic Society. 1997, 80(12): 3225~3232
    81 R. Wang, H. Sano, Y. Uchiyama, K. Kobayashi. Oxidation Behaviours of Carbon/Carbon Composite with Multi-Coatings of LaB6-Si/polycarbosilane /SiO_2. Journal of Materials Science. 1996, 31 (23): 6163~6169
    82 Y. Hiroshi, K. Katsuaki, K. Katsuhiro, et al. Study of Anti-oxidation Coating System for Advanced C/C Composites. The 8th Symposium on High Preformance Materials for Severe Enviroments. Tokyo, 1997:283~294
    83 T. Sekigawa, F. Takeda, M. Taguchital. High Temperature Oxidation Protection Coating for C/C Composites. The 8th Symposium on High Preformance Materials for Severe Enviroments. Tokyo, 1997:307~315
    84 N. Sugahara, T. Kamiyama, O. M. Yamamoto, et al. Stabilized HfO2/Ir/HfC Oxidation Resistant Coating System for C/C Composites. The 8th Symposium on High Preformance Materials for Severe Enviroments. Tokyo, 1997:397~408
    85 成来飞,张立同.液相法制备碳.碳Si-Mo 防氧化涂层.高技术通讯.1996,6(4):17~20
    86 S.E. Hsu, H. D. Wu, T. M. Wu, S. T. Chou, K. L. Wang, C. I. Chen. Oxidation protection for 3D carbon/carbon composites. Acta Astronautica. 1995, 35(1): 34~41
    87 J.F. Huang, H. J. Li, X. R. Zeng, K. Z. Li. Preparation and Oxidation Kinetics Mechanism of Three-layer Multi-layer-coatings-coated carbon/carbon composites. Surface & Coatings Technology. 2006, 200(18-19): 5379~5385
    88 邱惠中,吴志红.国外航天材料的进展.宇航材料工艺.1997,4:5~16
    89 周玉.陶瓷材料学.哈尔滨工业大学出版社,1995:299~306
    90 C.A.A. Cairo, M. L. A. Grasa, C. R. M. Silva, J. C. Bressiani. Functionally Gradient Ceramic Coating for Carbon-carbon Antioxidation Protection. Journal of European Ceramic Society. 2001, 21:325~329
    91 郝万立.SiC-CVD制备工艺研究及涂层的均匀性.西北工业大学毕业论文.1999
    92 郭全贵.碳材料高温氧化防护陶瓷涂层体系研究进展.宇航材料工艺.1998,2:11~16
    93 缪世群,葛存旺.SiC晶须的含量对ZTA陶瓷基复合材料抗热震性能的影响.扬州大学学报.2002,5(1):40~43
    94 朱其芳,姚伟,等.SiC晶须有序添加角度对Si_3N_4基体陶瓷的增韧效应.中国有色金属学报.2000,10(6):872~874
    95 L. Sun, J. S. Pan, Y. J. Liu. An Improvement in Processing and Fabrication of SiC-whisker-reinforced MoSi2 Composites. Journal of Material Science Letters. 2001, 20:1421~1423
    96 F. Ye, Y. Zhou, T. C. Lei. Microstructure and Mechanical Properties of Barium Aluminosilicate Glass-ceramic Matrix Composites Reinforced with SiC Whiskers. Journal of Material Science. 2001,36:2575~2580
    97 I.C. Leu, M. H. Hon. Nucleation Behavior of Silicon Carbide Whiskers Grown by Chemical Vapor Deposition. Journal of Crystal Growth. 2002, 236: 171~175
    98 S. A. Baldacim, C. Santos, O. M. M. Silva, C. R. M. Silva. Ceramics composites Si_3N_4-SiC(w) containing rare earth concentrate (CRE) as sintering aids. Materials Science and Engineering A. 2004, 367:312~316
    99 W.D. Fei, M. Hu, C. K. Yao. Thermal expansion and thermal mismatch stress relaxation behaviors of SiC whisker reinforced aluminum composite. Materials chemistry and physics. 2002, 77:882~888
    100 J. F. Huang, X. R. Zeng, H. J. Li, X. B. Xiong, Y. W. Fu. Influence of the Preparation Temperature on the Phase, Microstructure and Anti-oxidation Property of a SiC Coating for C/C Composites. Carbon. 2004, 42:1517~1521
    101 L. F. Cheng, Y.D. Xu, L.T. Zhang. Preparation of an Oxidation Protection Coating for C/C Composites by Low Pressure Chemical Vapor Deposition. Carbon. 2000, 38:1493~1498
    102 曾燮榕,李贺军,杨峥.表面硅化对C/C复合材料组织结构的影响.金属热处理学报.2000,21(2):64~67
    103 曾燮榕,李贺军,李龙,李爱兰.碳/碳复合材料MoSi2/SiC涂层在动态氧化环境下的性能研究.复合材料学报.2002,19(6):43~46
    104 J. F. Huang, X. R. Zeng, H. J. Li; K. Z. Li, X. B. Xiong. Oxidation Behavior of SiC-Al_2O_3-mullite Multi-coating Coated Carbon/carbon Composites at High Temperature. Carbon. 2005, 43(7): 1580~1583
    105 J. F. Huang, X. R. Zeng, H. J. Li, X. B. Xiong, K. Z. Li. Influence of Preparation Technology on the Microstructure and Anti-oxidation Property of SiC-Al_2O_3-Mullite Multi-coatings for Carbon/carbon Composites. Applied Surface Science. 2006, 252(12): 4244~4249
    106 J. F. Huang, X. R. Zeng, H. J. Li, X. B. Xiong, Y. W. Fu, M. Huang. SiC/yttrium Silicate Multi-layer Coating for Oxidation Protection of Carbon/carbon Composites. Journal of Materials Science. 2004, 39:7383~7385
    107 F. Smeacetto, M. Salvo, M. Ferraris. Oxidation Protective Multiplayer Coatings for Carbon-carbon Composites. Carbon. 2002, (40): 583~587
    108 S. V. Raj, J. D. Whittenberger, B. Zeumer, G. Sauthoff. Elevated Temperature Deformation of Cr3 Si Alloyed with Mo. Intermetallics. 1999,7(7): 743~755
    109 G. Duan, H. M. Wang. High-temperature Wear Resistance of a Laser-cladγ/Cr_3Si Metal Silicide Composite Coating. Scripta Materialia. 2002, 46: 107~111
    110 X. W. Yin, L. F. Cheng, L. T. Zhang, Y. D. Xu, C. You. Microstructure and Oxidation Resistance of Carbon/silicon Carbide Composites Infiltrated with Chromium Silicide. Materials Science and Engineering A. 2000, 290:89~94
    111 P. M. James, E. F. Thomas, P. W. Wstham, Am. Ceram. Soc. Bull. 1986 65(20): 1255.
    112 X. H. Shi, H. J. Li, Q. G.. Fu, K. Z. Li, X. L. Zhang. Effect of SiC Whiskers on Oxidation Protective Property of SiC Coating for Carbon/carbon Composites. Rare Metals. 2006, 25(1): 58~62
    113 金志浩,高积强,乔冠军.工程陶瓷材料.西安交通大学出版社,2000:162~163
    114 于澍,刘根山,李溪滨.热处理温度对炭/炭复合材料性能的影响.硅酸盐学报.2003,31(9):842~847
    115 孙万昌,李贺军,白瑞成.微观组织结构对C/C复合材料力学行为的影响.无机材料学报.2005,20(3):671~676
    116 孙万昌,李贺军,张秀莲.高温处理对液其相沉积碳/碳复合材料微观组织结构及力学性能的影响.航空学报.2002,23(3):276~278
    117 廖晓玲,李贺军,李新涛,侯党社.3DC/C复合材料的弯曲行为.材料工程.2006,(6):54~57
    118 赵建国,李克智,李贺军.纤维含量和热处理对炭/炭复合材料性能的影响.材料研究学报.2005,19(3):293~298

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700