锆掺杂C/C复合材料的制备及微观结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为解决难熔金属氧化物、碳化物在C/C复合材料中的分布的问题,本文以不同原料和工艺制备出3种锆掺杂C/C复合材料。对锆在C/C复合材料中的存在形式、微观形貌、结晶状态、分布情况以及复合材料的抗氧化性能等进行了研究,主要工作如下:
     1、以氧氯化锆为原料合成了含锆液相先驱体,并以其为浸渍剂对不同初始密度的纯C/C复合材料进行锆掺杂处理,研究了其密度和ZrO2含量的变化规律,锆在复合材料中的存在形式及分布状态和抗氧化性能。结果表明:先驱体于1000℃和1600℃处理后完全转化为纳米ZrO2晶体和纳米ZrC晶体且均匀分布于材料的表面、基体中与碳纤维表面。ZrC是在高温处理过程中是以液相反应机制生成的。所制备的C/C-纳米ZrO2和C/C-纳米ZrC复合材料的抗氧化性能得到明显提升。
     2、以醋酸锆溶液和石油沥青为原料,制备出ZrO2含量高达70%的C/C-纳米ZrO2复合材料和C/ZrC复合材料,对其致密化规律、材料中锆的存在形式和分布状态、高温下的抗氧化性能进行了研究。结果表明:锆经1000℃和1600℃处理后完全转化为单斜纳米ZrO2晶体和立方纳米ZrC晶体且均匀分布于材料的基体中与碳纤维表面。ZrC是以液相反应机制生成的。纳米ZrO2不仅会与C/C复合材料中的基体碳相互作用,同时能和增强体碳纤维相互作用,使纤维表面产生缺陷和孔洞,降低部分纤维的增强作用。
     3、合成出苯甲酸氧锆,并以其为锆源制备出不同锆含量的改性沥青,研究了锆含量对改性沥青性能的影响。以锆含量为3%的改性沥青制备出锆掺杂C/C复合材料,研究了锆在C/C复合材料中的存在形式和分布状态以及抗氧化性能。结果表明:改沥青软化点和粘度随锆含量增加而增加。经1000℃和1600℃处理后完全转化为单斜纳米ZrO2晶体和立方纳米ZrC晶体且均匀分布于材料的基体中与碳纤维表面,抗氧化性能较纯C/C复合材料有所提升。
In order to solve the problems of refractory metal oxide and carbide inhomogeneous distribute in C/C composites. In this paper, three kinds of zirconium doped C/C composites were prepared by different materials and processes. The existing form、micro-morphology、crystalline state and distribution of zirconium in C/C composites were researched. The anti-oxidation behaviors of zirconium doped C/C composites were also studied.
     1、Taking zirconium oxchloride as the raw material, the liquid precursor solution containing zirconium was synthesized. The pure C/C composites with different densities were added with zirconium by vacuum impregnation method. The densities and contents of ZrO2 in the C/C composites were researched. The existence form and distribution of zirconium in the material were studied. The anti-oxidation performance of zirconium doped C/C composites was studied. The results showed that the liquid precursor containing zirconium was entirely converted into nano-ZrO2 and nano-ZrC, after treated at 1000℃and 1600℃. They distributed in surface of material, the inner matrix and the carbon fiber surface evenly. The ZrC was generated by liquid-phase reaction mechanism at high temperature.Compared with pure C/C composites, the anti-oxidation performance of C/C-nanoZrO2 and C/C-nanoZrC composites has improved significantly.
     2、Taking zirconium acetate solution and petroleum pitch as raw materials, the ZrO2 content up to 70% of the C/C-nanoZrO2 composites and C/ZrC composites was prepared by impregnation method. The densification law and anti-oxidation performance of the material was researched. The existence form and distribution of zirconium in the material were studied. The results showed that the doped zirconium was entirely converted into monoclinic crystal nano-ZrO2 and cubic crystal nano-ZrC after treated at 1000℃and 1600℃. They distributed in the inner matrix and the carbon fibers surface evenly. Compared with pure C/C composites, the anti-oxidation performance of zirconium doped C/C composites has improved significantly. The ZrC was generated by liquid-phase reaction mechanism at high temperature processing. In the process of generated ZrC, the nano-ZrO2 reacts with both the carbon fibers and matrix carbon, made the carbon fibers generate micro-holes and defects and lower the enhanced function of the carbon fibers.
     3、Zirconium oxybenzoate was synthesized. Taking it as raw materials, different content of zirconium modified pitch were preparation. The influences of zirconium content to the performance of modified pitch were studied. The zirconium doped C/C composites was prepared with zirconium content of 3% modified pitch. The existence form and distribution of zirconium in the material were studied. The anti-oxidation performance of zirconium doped C/C composites was studied.The results showed that the softening point and viscosity of zirconium-contenting pitch were added with the content of zirconium increases. The Zirconium oxybenzoate was entirely converted into nano-ZrO2 and nano-ZrC, after treated at 1000℃and 1600℃. They distributed in the inner matrix and the carbon fiber surface evenly. Compared with pure C/C composites, the anti-oxidation performance of zirconium doped C/C composites has improved.
引文
[1]Paulmier T, Balat-Pichelin M, Le Queau D. Structural modification of carbon-carbon composites under high temperature and ion irradiation[J]. Applied Surface Science,2005, 243(1-4):376-393
    [2]SAVAGE G. carbon-carbon composites[M].London:Chapman&Hall,1993,193
    [3]任富建,刘红娟,沈毅.C/C复合材料高温抗氧化的研究进展[J].中国陶瓷工业,2007,14(5):28-31
    [4]罗瑞盈.炭/炭复合材料制备工艺及研究现状[J].兵器材料科学与工程,1998,21(1):64-70
    [5]Sekigawa T, Oguri K, Kochiyama J, et al. Endurance test of oxidation-resistant CVD-SiC coating on C/C composites for space vehicle[J]. Materials Transactions,2001,42 (5) 825-828
    [6]Huang J F, Li H J, Zeng X R, et al. Oxidation resistant yttrium silicates coating for carbon/carbon composites prepared by a novel in-situ formation method[J]. Ceramics International,2007,33(5):887:890
    [7]李蕴新,张绍维,周端发.炭/炭复合材料[J].材料科学与工程,1996,14(2):6-14
    [8]王世驹,安宏艳,陈渝眉,等.炭/炭复合材料氧化行为的研究[J].兵器材料科学与工程,1999,22(4):36-40
    [9]李蕴欣,张绍维.碳碳复合材料[J].材料科学与工程,1996,14(2):6-14
    [10]Erich Fitzer. The future of carbon-carbon composites[J]. Carbon,1987,25(2):163-190
    [11]高技术新材料要览编辑委员会.高技术新材料要览[M].北京:中国科技出版社.1993.580-583
    [12]李铁虎,杨峥,郑修麟等.用改进的低压渍浸炭化法制备C/C复合材料的工艺研究[J].西北工业大学学报,1994,12(2):155-158
    [13]浦保健,浦继强.飞机炭刹车盘的快速气相沉积[J].新型碳材料,2000,15(4):27-29
    [14]贺福,王茂章等.碳纤维的制造、性质及其应用[M].北京:科学出版社,1984.467-468
    [15]肖鹏,徐永东,张立同等.旋转CVI快速沉积热解碳基体[J].硅酸盐学报,2000,28(2):181-183
    [16]Sundar, Lackey.W, Garth. B,et al Fabrication of carbon-carbon composites by forced Flow-thermal gradient chemical vapor infiltration[J]. Journal of Materials Research,1995, 10(6):1469-1477
    [17]Golecki L, Morris R.C, Narasimhan D, et al. Rapid densification of porous carbon-carbon composites by thermal gradientchemical vapor infiltration[J]. Applied Physics Letters, 1995,66(18):2334-2336
    [18]张守阳,李贺军,孙军.限域变温强制流动CVI工艺制备C/C复合材料的组织及力学性能特点研究[J].碳素技术,2001,(4):15-18
    [19]E.Bruneton, B. Narcy, A. Oberlin. Carbon-carbon composites prepared by a rapid densificationprocess II:Structural and textural characterizations[J]. Carbon,1997, 35(10-11):1593-1598
    [20]朱良杰,廖东娟.炭/炭复合材料在美国导弹上的应用[J].宇航材料工艺,1993,4(12):10-13
    [21]John M. Barton, Lan Hameton, et al. Mechanical properties of tough, high temperature carbon fiber composites from novel functionalized aryl cyanate ester polymers [J]. Polymer,1996,37(20):4519-4528
    [22]李翠云,李辅安.碳/碳复合材料的应用研究进展[J].化工新型材料,2006,34(3):18-20
    [23]贺福,王茂章.碳纤维及其复合材料[M].北京:科学出版杜,1995,251-257
    [24]侯向辉,陈强,喻春红,沈健.碳/碳复合材料的生物相容性及生物应用.功能材料,2000(4):460-465
    [25]薛宁娟,郝志彪,李瑞珍等.炭/炭复合材料抗氧化进展.材料导报,2003,69(17):229-232
    [26]韩立军,李铁虎,郭恩明等.碳/碳复合材料抗氧化方法及发展趋势.航空制造技术,2003,5(12):26-30
    [27]张勇,周声励,夏金童.炭/炭复合材料高温抗氧化研究进展.炭素技术,2004,23(4):20-25
    [28]Lobiondo N. E, Jones L E, Clare A G Halogenated glass system for the protection of structural Carbon-Carbon composites. Carbon,1995,33 (4):499-508
    [29]程基伟,罗瑞盈,王天民.炭/炭复合材料高温抗氧化研究的现状[J].炭素技术,2001(5):28-33
    [30]李石保,李银奎,龙永福,等.炭化硼涂覆碳纤维的抗热氧化性研究[J].国防科技大学学报,1998,20(6):115-118
    [3l]王玉庆,郑久红,周龙江,等.用溶胶-凝胶法在碳纤维表面涂覆Al2O3[J].复合材料学报,1995,12(3):311-315
    [32]周蔚虹,张红波,虞露彬.碳纤维毡体添加硼酸高温热处理对C/C复合材料氧化行为的影响[J].矿冶工程,2005,25(5):66-69
    [33]辛伟,张红波,尹健,左劲旅.预制体中添加碳化硼对C/C复合材料氧化特性的影响[J].材料导报,2007,21(7):150-152
    [34]孙建涛,崔红,李瑞珍.C/C复合材料抗氧化研究现状[J].碳素,2009(1):18-21
    [35]崔红,苏君明,李瑞珍,等.添加难熔金属碳化物提高C/C复合材料抗烧蚀性能的研究[J].西北工业大学学报,2000,18(4):669-673
    [36]YAMAMOTO O, SASAMOTO T and INGAKI M, Anti-oxidation of carbon-carbon composites by SiC concentration gradient and zircon over coating[J]. Carbon,1995,33(4): 359
    [37]Q.F.Tong, J.L.Shi, Y.Z. Song,et al.Resistance to ablation of pitch-derived ZrC/C composites.[J]. Carbon,2004,42 (12-13):2495-2500.
    [38]罗瑞盈,李东生.提高碳/碳复合材料抗氧化性能的一种新途径[J].宇航学报,1998,19(4):95-98
    [39]Huang Jianfeng, Zeng Xierong, Li Hejun, et al. Influence of the preparation temperature on the phase.microstructure and anti-Oxidation property of a SiC coating for C/C composites[J]. Carbon,2004,42(8-9):1517-1521
    [40]Fu Qiangang, Li hejun Shi Xiaohong, et al.Double-layer oxidation protective SiC/glass coatings for carbon/carbon composites.Surface and Coatings Technology,2006, 200(11-15):3473-3477
    [41]Huang Jianfeng, eng Xierong, Li Hejun, et al, Al2O3-mullite-SiC-Al4SiC4 multi-composition coating for carbon/carbon composites. materials letters[J].2004, 58(21):2627-2630
    [42]李贺军,曾燮榕,朱小旗,等.炭/炭复合材料抗氧化研究[J].炭素,1999,(3):2-7
    [43]李贺军.炭/炭复合材料[J].新型碳材料,2001,16(2):79-80
    [44]刘桂香.炭/炭复合材料的抗氧化研究[J].炭素,2004,(2):24-26
    [45]Wu TM et al. Methodology in exploring the oxidation behavior of coated-carbon/carbon composites.[J].Mater. Sci.,1994,29(6):1260-1264
    [46]Chen-Chi M Ma et al. Microstructure and oxidation resistance of SiC coated carbon-carbon composites via pressure less reaction sintering. J.Mater. Sci,1996; 31(3): 649-654
    [47]王标,李克智,李贺军,等.包埋浸渗/气相沉积二步法在C/C复合材料表面制备SiC涂层[J].无机材料学报,2007,22(4):737-782
    [48]侯根良,苏勋家,王延斌,等.C/C复合材料抗烧蚀HfC涂层的制备[J].航空材料学报,2009,29(1):77-80
    [49]何捍卫,周科朝,熊翔.C/C复合材料抗烧蚀TaC涂层的制备[J].稀有金属材料与工程,2004,33(5):490-493
    [50]付前刚,李贺军,李克智,等.C/C复合材料防氧化涂层SiC/SiC-MoSi2的制备与抗氧化性能[J].金属学报,2009,45(4):503-506
    [5l]黄敏,李克智,李贺军,等.碳/碳复合材料SiC/Al-Si涂层微观结构及抗氧化性能研究[J].材料工程,2007,43(4):43-47
    [52]仝珂,李贺军,史小红,等.C/C复合材料SiC/mullite-Si-Al2O3复合涂层微观结构及防氧化性能研究[J].固体火箭技术,2009,32(2):226-229
    [53]张中伟,王俊山,许正辉,等.不同制备工艺对MoSi2涂层抗氧化性能的影响[J].宇航材料与工艺,2007,58(1):58-61
    [54]黄剑锋,李贺军,熊信柏,等.碳/碳复合材料高温抗氧化涂层的研究进展[J].新型碳材料,2005,20(4):373-379
    [55]张中伟,王俊山,许正辉,等.C/C复合材料抗氧化研究进展.宇航材料工艺,2004,2(2):1-7
    [56]ZHU Y C, OHTANI S, SATO Y, N IWAMOTO. Formation of a functionally gradient (Si3N4+SiC)/C layer for the oxidation protection of carbon—carbon composites [J]. Carbon,1999,37(9):1417-1423
    [57]HUANG Jian-feng, ZENG Xie-rong, LI he-jun, et al. ZrO2-SiO2 gradient multilayer oxidation protective coating for SiC coated carbon/carbon composites[J]. Surface &Coatings Technology,2005(190):255-259
    [58]阐成友,焦书科,赵培真,等.具有核壳结构的聚合物粒子.合成橡胶工业,1999,22(2):65-69
    [59]黄馄,向明,周德惠,等.核壳式无机-高分子纳米复合粒子的制备与表征.化工新型材料,2002,30(10):8-11
    [60]邓世均.高性能陶瓷涂层制备技术[M].北京:机械工业出版社,2003.128-135
    [61]孙静,黄传真,刘含莲,等.稳定氧化锆陶瓷的研究现状[J].机械工程材料,2005,29(8):1-3
    [62]黄艳玲.ZrO2陶瓷超细粉末的性能与制备.矿冶[J].1999,8(4):58-64
    [63]徐跃萍,郭景坤,李包顺,等.Y-TZP超细粉料性能的研究.无机材料学报[J].1992,7(1):13-17
    [64]王修慧,田丁,翟玉春,等.醇盐水解溶胶凝胶法制备ZrO2纳米粉体的研究一合成工艺参数对一次粒子的影响[J].中国稀土学报,2002,20:342-344
    [65]戴健,温廷琏,吕之奕.醇盐水解法制备的纳米级稳定氧化锆细粉[J].无机材料学报,1993,8(1):51-56
    [66]李海滨,梁开明,顾守仁.溶胶-凝胶法制备定向排列的纳米结构二氧化锆薄膜[J].清华大学学报(自然科学版),2001,41(4-5):48-50
    [67]潘梅,刘久荣,孟凡青,等.由醋酸锆前驱体制备ZrO2连续纤维的过程及研究[J].无机材料学报,2001,16(4):729-733
    [68]温立哲,余忠民,黄慧民,等.纳米氧化锆的制备及其干燥技术[J].广东工业大学学报,2002,19(1):63-69
    [69]杨新春,许坷敬,王峰,等.高浓度的水热法合成四方晶的摩尔分数为3%的Y2O3-ZrO2微粉[J].现代技术陶瓷,2001,22(1):8-12
    [70]Tanaka T., Tamari N. and Kondoh I, Fabrication and evaluation of 3-dimensional Tyranno fiber reinforced SiC composites by repeated infiltration of polycarbosilane[J]. Ceram. Soc. Jpn.,1995,103 (1):1-5
    [71]陈朝辉等.先驱体结构陶瓷[M].湖南:国防科技大学出版社,2003,5-6
    [72]Popper D., Special Ceramics[M], New York:Academic press,1965
    [73]Yajima S., Hayashi J. and Omori M., Development of tensile strength silicon carbide fiber using organ silicone precursor[J], Nature,1976,261:525-528
    [74]唐云,王军,李效东,等.新型SiBNC陶瓷先驱体-聚硼硅氮烷的合成与表征[J].化学学报,2008,66(17):1371-1376
    [75]张晓东,温广武,全保刚,等.先驱体法制备纳米SiBON陶瓷粉体[J].稀有金属材料与工程.2008,37(z1):709-712
    [76]相华,徐永东,张立同,等.液相先驱体转化法制备TaC抗烧蚀材料[J].无机材料学报,2006,21(4):893-898
    [77]曹淑伟,谢征芳,王军,等.聚锆碳硅烷陶瓷先驱体的制备与表征[J].高分子学报,2008,(6):621-625
    [78]范真祥,程海峰,张长瑞,等.先驱体法聚硅氧烷制备SiCfSi-O-C复合材料的性能研究[J].材料工程,2005,(1):8-11
    [79]徐天恒,陈朝辉,马青松.首周期先驱体溶液浓度对PIP法制备3D-Cf/Si-O-C的影响[J].稀有金属材料与工程.2008,37(z1):600-603
    [80]王俊山,李仲平,敖明,等.掺杂难熔金属碳化物对炭/炭复合材料烧蚀机理的影响[J].新型炭材料,2006,21(1):9-13
    [81]王毅,徐永东,张立同,等.液相先驱体制备C/C-TaC复合材料[J].固体火箭技术,2007,30(6):541-543
    [82]梅冰,苏勋家,侯根良,等.液相先驱体转化法制备ZrC粉末及合成机理[J].固体火箭技术,2008,31(3):275-278
    [83]翟林峰,史铁钧,于少明.可纺性锆溶胶的制备与应用Ⅰ.氧化锆连续纤维的制备[J].用化学,2008,25(6):637-640
    [84]相华.硕士论文.化学液相浸渗法制C/C-TaC复合材料及其烧蚀性能研究.2004
    [85]翁诗甫.傅里叶红外变换光谱仪[M]北京:化学工业出版社,2005
    [86]翟林峰,史铁钧,王华林.低PH值条件下纤维状ZrO2水合物的制备及其形成机理研究[J].无机材料学报,2007,22(2):223-226
    [87]Preiss H, Schierhorn E, Brzezinka K-W. Synthesis of polymeric titanium and zirconium precursors and preparation of carbide fibers films [J]. Journal of Materials Science,1998, 33(19):4697-4706
    [88]张丽芳,宋进仁,要立中,等.吡啶硼烷改性对沥青性能及组成的影响[J].新型碳材料,2001,16(1):40-45
    [89]Schwendinger J, Zhang W G, Hiittinger KJ. Studies on the synthesis of silicon-substituted polyaromatic mesophase from coal tar soft pitch and phenylsilanes [J]. New Carbon Materials,2003,18(1):1-9
    [90]宋力,占丹,晏京,等.苯甲酸氧锆的流变相法合成及热分解机理[J].武汉大学学报(理学版),2004,50(2):161-164
    [91]宋力,宋玲,徐喜梅,等.纳米二氧化锆的制备及其对对硝基氯苯的降解[J].信阳师范学院学报(自然科学版),2006,19(2):206-209
    [92]宋力,贾漫珂,张克立.制备纳米二氧化锆的新方法[J].化学世界,2005,46(7):402-405
    [93]史景利,刘朗,张东卿,等.含锆沥青制备工艺条件和性能的研究[J].新型碳材料,2003,18(4):286-290

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700