ZrC涂层及其复合涂层的制备和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了进一步提高炭/炭(C/C)复合材料的抗冲刷耐烧蚀性能,本研究在C/C复合材料表面制备了ZrC或者ZrC/SiC复合涂层作为防护涂层。采用ZrCl4-CH4-H2-Ar反应体系,冷态输送ZrCl4粉末化学气相沉积(CVD)制备ZrC涂层。通过热力学计算,结合实验结果,分析了低压冷态输送ZrCl4化学气相沉积ZrC涂层的特点,选用X射线衍射(XRD)、能谱分析(EDS)和扫描电镜(SEM)等现代测试手段研究了工艺参数(温度、氢气流量、碳锆比、沉积压力、沉积位置等因素)对ZrC涂层的物相组成、表面形貌和断面结构的影响,从而优化了制备工艺。利用纳米压痕和DR6130氧乙炔焰烧蚀实验分别研究了不同结构涂层的力学性能和烧蚀性能。利用SiC过渡涂层缓解ZrC涂层和C/C复合材料之间的热匹配问题。
     研究结果表明:冷态输送ZrCl4粉末大幅度降低了ZrC的化学气相沉积温度,且容易获得大面积、结构均匀的ZrC涂层。随着温度的升高、氢气流量的增加、C/Zr比和压力的减小,炭含量减少,涂层(200)晶面择优生长增强,致密度增加,硬度和弹性模量分别增加了11.67和6.32倍,线烧蚀率和质量烧蚀率大幅度减低。而沉积速率则随着温度的升高、C/Zr比的增加而增大,随着氢气流量的逐渐增加先变大后变小。初步认定制备ZrC涂层最佳工艺参数为:温度为1450~1600℃;C/Zr为1:1;C/H≤1/15;压力为3-5KPa。复合涂层的线烧蚀率相对于单一ZrC涂层的没有太大变化,但质量烧蚀率却减小了73%,并且,烧蚀裂纹变小。可知,SiC过渡层在一定程度上缓解了ZrC涂层与C/C复合材料的界面处的内应力。
To improve anti-ablation behavior of the C/C composite, this reaserch deposited the ZrC or ZrC/SiC film for the protect film on the C/C composition. ZrC film was deposited by chemical vapor deposition with ZrCl4-CH4-Ar system, and ZrCl4 was transported in solid. The characters of the so-prepared ZrC film were analyzed by chemical thermodynamics calculating and experimenting. The effects of preparation parameters on the composition, surface morphology and microstructure of ZrC coating were studied by X-ray diffractometry, energy dispersive spectroscopy and scanning electron microscopy and so on, such as deposition temperature, H2 gas flux, C/Zr ratio, deposition press and deposition position, and set down the perfact preparation technics. The mechanical behavior and the ablation behavior of the different microstructures were studied respectively by nano-indetation test and DR6130 oxyacetylene torch. The SiC film was regard as the transition flim to decrease the endogenetic force.
     The reasurch find as followed:the preparation method in this reasurch falls down the chemical vapor deposition temperature. And it is easy to get widespread、homogeneous ZrC film in structure. With the tempreture going up, H2 gas flux increasing, C/Zr ratio decreasing and deposition press decreasing, C content decreases, the crystal plane (200) of ZrC film grows preferentially, the density increases, the rigidity and elasticity simulation increases respectively 11.67 and 6.32 times, ablation ratio in line and mass decreases respectively by a large margin than the worse. The deposition ratio goes up with the tempreture and the C/Zr ratio increasing. However, the deposition ratio increases firstly, and then decreases with the H2 gas flux increasing. The results show that the perfact preparation technics in preparating ZrC film:the tempreture: 1450~1600℃; C/Zr=1; C/H≤1/15; The deposition press:3-5KPa. Relative to the single ZrC film, the composite film changes unconspicuous in ablation ratio in line, but decreases 73% in ablation ratio in mass, and diminish in ablation crack. As a result, the SiC film regards as the transition flim decrease the endogenetic force between the ZrC film and the C/C composition.
引文
[1]熊炳昆,郭靖茂.锆英石碳化工厂化研究[M],北京有色金属研究总院,1965.
    [2]熊炳昆,温旺光,杨新民,李蕙媛,罗方承,张伟,郭靖茂.锆铪冶金[M],冶金工业出版社,2002.
    [3]Pierson H O. Handbook of refractory carbides and nitrides:Properties, characteris-tics, processing, and applications[M].New Jersey:Noyes Publications,1996:256.
    [4]Upadhya K,Yang J M,Hoffmann W P.Materials for ultrahigh temperature structural applications[J].Am Ceram Soc Bull,1997,76(12):51.
    [5]刘宁,田春艳,舒士明,徐根应,张瑞林.ZrC和HfC的价电子结构及其性能研究[J].硅酸盐学报.1998,26(2):1-7.
    [6]宋瑞颖,刘宁,张红芹,刘忠伟,蔡威.ZrC陶瓷的性能、制备及应用[J].硬质合金,2009,26(2):134-140.
    [7]章晓波,荣春兰,刘宁.ZrC含量对TiC基金属陶瓷组织和性能的影响[J].硬质合金,2007,24(2):65-69.
    [8]Ozaki Y, Zee Ralph H. Investigation of thermal and hydrogen effects on emissivity of refractory metals and carbides [J]. Materials Science and Engineering A,1995,202: 134-141.
    [9]吴胜琴,朱心昆,罗毅,等.机械合金化合成(ZrC+TiC)/Cu复合材料的研究[J].材料科学与工程学报,2004,22(2):274-275.
    [10]周玉,王玉金,宋桂明.TiCp/W及ZrCP/W复合材料的组织结构与性能[J].材料导报,2004,18(8):97-101.
    [11]Takida T, Mahuchi M, Nakamura M, et al. Mechanical properties of a ZrC-dispersed Mo alloy processed by mechanical alloying and spark plasma sintering [J],Material Science & Engineering A.2000,276:269-272.
    [12]石海峰.光热转换蓄热调温纤维的研制[D].天津,天津工业大学,2002.
    [13]陈招科.化学气相渗透法制备含TaC相C/C复合材料及其氧化烧蚀性能[D].长沙.中南大学.2007.
    [14]熊翔.炭/炭复合材料制动性能研究[D].长沙,中南大学(博士学位论文),2004.6.
    [15]赵稼祥,邓禄普(Dunlop)航空部的碳复合材料[J].新型碳材料,1989,2:6-13.
    [16]Dnoald L, Schmidt,Kenneth E.Uniuqe Applications of Carbon-Carbon composites Materials(Part One).SAMPE Journal,1999,35(3):27-39.
    [17]黄伯云,肖鹏,陈康华.复合材料研究新进展(上)[J].材料天地.2007(2):46-48.
    [18]郭正,赵嫁祥.碳/碳复合材料的研究与发展[J].宇航材料工艺.1995(5):1-7.
    [19]李贺军,曾燮榕,李克智.炭/炭复合材料研究应用现状及思考[J].炭素技术,2001(5):24-27.
    [20]宋桂明,周玉,王玉金,等.固体火箭发动机喉衬材料[J].固体火箭技术.1998,21(2):51-61.
    [21]霍肖旭,曾晓梅,刘红林.炭/炭复合材料及炭纤维在增强塑料在固体火箭喷管上的应用[J].炭素技术,2001(3):23-26.
    [22]苏君明.高效高冲质比C/C喷管的应用与进展[J].新型碳料.1996,11(3):18-23.
    [23]Choury J J. Carbon-Carbon Materials for Nozzles of Solid Propellant Rocket Motors[R]. AIAA Paper, No.76-609,1976:76.
    [24]李翠艳,李克智,欧阳海波,等.HfC改性炭/炭复合材料的烧蚀性能[J].稀有金属材料与工程,2006,35(S2):365-368.
    [25]Shen Xuetao, Li Kezhi, Li Hejun, et al. Microstructure and ablation properties of zirconium carbide doped carbon/carbon composites [J]. Carbon,2010,48: 344-351.
    [26]Chen Zhao-ke, Xiong Xiang, Li Guo-dong, et al. Ablation behaviors of carbon/carbon composites with C-SiC-TaC multi-interlayers [J]. Applied Surface Science,2009,255:9217-9223.
    [27]闫志巧,熊翔,肖鹏.液相浸渍C/C复合材料反应生成TaC形貌及其形成机制[J].无机材料学报,2005,20(5):1195-1200.
    [28]李江鸿,张红波,熊翔,等.含钽树脂先驱体转变生成TaC的过程研究[J].无机材料学报,2007,22(5):973-978.
    [29]崔红,苏君明,李瑞珍.等.添加难熔金属碳化物提高C/C复合材料抗烧蚀性能的研究[J].西北工业大学学报,2000,18(4):669-673.
    [30]李贺军,曾燮榕,朱小旗,等.炭/炭复合材料抗氧化研究[J],炭素,1999(3):2-7.
    [31]程基伟,罗瑞盈,王天民.炭/炭复合材料高温抗氧化研究的现状[J].炭素技术,2001(5).
    [32]崔红,苏君明,李瑞珍,李贺军,康沫狂.添加难熔金属碳化物提高C/C复合材料抗烧蚀性能的研究[J].西北工业大学学报,2008,18(4):669-673.
    [33]崔红,李瑞珍,苏君明.多元基体抗烧蚀炭/炭复合材料的微观结构分析[J].固体火箭技术.2001,24(3):63-67.
    [34]沈学涛,李克智,李贺军,兰逢涛,冯涛.烧蚀产物ZrO2对ZrC改性C/C复合材料烧蚀的影响[J].无机材料学报.2009,24(5):943-947.
    [35]Xue-Tao Shen, Ke-Zhi Li, He-Jun Li, Qian-Gang Fu, Shu-Ping Li, Fei Deng. The effect of zirconium carbide on ablation of carbon/carbon composites under an oxyacetylene flame[J]. Corrosion Science,2011,53:105-112.
    [36]JONG Hoon Park, CHOONG Hwan Jung, DO Jin Kim, JI Yeon Park. Effect of H2 dilution gas on the growth of ZrC during low pressure chemical vapor deposition in the ZrCl4-CH4-Ar system[J], Surface & Coatings Technology,2008,203:87-90.
    [37]JONG Hoon Park, CHOONG Hwan Jung, DO Jin Kim, JI Yeon Park. Temperature dependency of the LPCVD growth of ZrC with the ZrCl4-CH4-H2 system[J]. Surface & Coatings Technology,2008,203:324-328.
    [38]LIU Qiao mu, ZHANG Li tong, CHENG Lai fei, WANG Yi guang. Morphologies and growth mechanisms of zirconium carbide films by chemical vapor deposition [J]. J Coat Techn Res,2009,6(2):269.
    [39]WANG Yi-guang, LIU Qiao-mu, LIU Jin-ling, ZHANG Li-tong, CHENG Lai-fei. Deposition mechanism for chemical vapor deposition of zirconium carbide coatings[J]. J Am Ceram S,2008,91(4):1249.
    [40]SUN Wei, XIONG Xiang, HUANG Bai-yun, LI Guo-dong, ZHANG Hong-bo, XIAO Peng, CHEN Zhao-ke, ZHENG Xiang-lin. Preparation of ZrC nano-particles reinforced amorphous carbon composite, coating by atmospheric pressure chemical vapor deposition[J]. Applied Surface Science,2009,255:7142-7146.
    [41]李国栋,郑湘林,熊翔,孙威.氢气浓度对常压化学气相沉积ZrC涂层的影响[J].中国有色金属学报,2010,20:1795-1801.
    [42]Sun Wei, Xiong Xiang, Huang Bai-yun, Li Guo-dong, Zhang Hong-bo, Chen Zhao-ke,Zheng Xiang-Lin.ZrC ablation protective coating for carbon/carbon composites[J].Carbon.2009(47):3368-3371.
    [43]Twssner T C, Preparation and characterization of crystalline ZrC films[J]. 1.1993,11(1):1-5.
    [44]Balaceanu M, Braic M, Braic V,et al. Surface chemistry of plasma deposited ZrC hard coatings[J]. Journal of Optoelectronics and Advanced Materials.2005.7(5): 2557-2560.
    [45]He X M, Li S, Li H B, et al. High corrosion resistant ZrC films synthesized by ion-beam-assisted deposition[J]. Journal of Materials Research.1999,14(2):615-618.
    [46]Woo A J, Bourne G, Craciun V, et al. Mechanical propertied of ZrC thin films grown by plused laser deposition[J]. Journal of Optoelectronics and Advanced Materials.2006,8(1):20-23.
    [47]吴峰,揭晓华,陈玉明.液中脉冲放电沉积ZrC陶瓷涂层的强化工艺及涂层性能的研究[J].材料研究与应用,2007,1(1):15-18.
    [48]Ogawa T. Ikawa K, Iwamoto K. Effect of gas composition on the deposition of ZrC-C mixtures:The bromide process[J]. Journal of Materials Science.1979, 14:125-132.
    [49]Ogawa T. Ikawa K, Iwamoto K. Chemical vapor deposition of ZrC whitin a apouted bed by bromide process[J]. Journal of Nuclear Materials.1981,97:104-112.
    [50]Liu C, Liu B, Shao Y L, Preparation and characterization of zirounium carbide coations on coated fuel partical[J]. J. Am. Ceram. Soc.2007,90(11):3690-3693.
    [51]Won Y S, Kim Y S, Varanasi V G. Growth of ZrC films by aerosol-assisted MOCVD[J]. Journal of Grystal Growth,2007,304:324-332.
    [52]李国栋,熊翔,刘岗,郑湘林,王雅雷,陈招科,孙威.均匀可调送粉装置[P]:中国,201010538190.4.2010.
    [53]徐永东.高温结构陶瓷材料的设计准则[J].硅酸盐通报,1997(3):55-58
    [54]郭全贵.碳材料高温氧化防护陶瓷涂层体系研究进展[J].宇航材料工艺,1998(2):11-16.
    [55]郭海明.C/C复合材料防氧化复合涂层的制备及其性能[J].宇航材料工艺,1998(5):37-40.
    [56]Sheehan J E, Buesking K, Sullivan B J.Carbon ComPosites[J]. Annu.Rev.Mater. Sei.,1994,24:19-44.
    [57]希特斯洛尼.盖德.多相流动和传热手册[M].鲁钟琪等译.北京:机械工业出版社,1993.
    [58]HUANG Jianfeng, ZENG Xierrong, LI Hejun, Xiong Xin-Bo, Fu Ye-wei. Influence of the preparation temperature on the phase, microstructure and anti-oxidation property of a SiC coating for carbon/carbon composites[J]. Carbon, 2004,42:1517-1521.
    [59]Carlos F.M. Borges, Louis St-Onge, Michel Moisan, Alix Gicquel. Influence of process parameters on diamond film CVD in a surface-wave driven microwave plasma reactor[J]. Thin Solid Films,1996,274:13-17.
    [60]J. Wagner a, C. Mitterer, M. Penoy, C. Michotte, W. Wallgram, M. Kathrein.The effect of deposition temperature on microstructure and properties of thermal CVD TiN coatings[J]. International Journal of Refractory Metals & Hard Materials,2008, 26:120-126.
    [61]李国栋,熊翔,黄伯云.温度对CVD-TaC涂层组成、形貌与结构的影响[J]. 中国有色金属学报,2005,15(4):565-571.
    [62]Zhou D, Gruen D M et al. Control of diamond film microstructure by Ar additions to CH4/H2 microwave p lasmas[J]. Journal of App lied Physics,1998,84: 1981-1989.
    [63]Yang T S, Lai J Y, Cheng C L, WongM S. Growth offaceted, ballas-like and nanocrystalline diamond filmsdeposited in CH4-H2-Ar MPCVD [J]. Diamond and Related Materials,2001,10:2161-2166.
    [64]黄浩,陈大明,仝建峰,等.石墨表面CVD SiC涂层微观结构研究[J].航空材料学报,2008,28(2):50-54.
    [65]王辉,宋航,金亿鑫,等.H2稀释度对HFCVD法沉积SiC薄膜结晶度的影响[J].长春理工大学学报,2005,28(1):90-92.
    [66]朱钧国,杜春飙,张秉忠,杨冰,彭新立.碳化锆镀层的化学气相沉积[J].清华大学学报,2000,40(12):59-62.
    [67]H. Fujiwara, K. Dannoa, T. Kimoto, T. Tojo, H. Matsunami.Effects of C/Si ratio in fast epitaxial growth of 4H-SiC(0001) by vertical hot-wall chemical vapor deposition[J]. Journal of Crystal Growth,281 (2005) 370-376.
    [68]刘忠良,任鹏,刘金锋,徐彭寿.硅碳比对Si(111)表面SSMBE异质外延SiC薄膜的影响[J].无机材料学报.2008,(23):231-239.
    [69]李哲洋,李赞,董逊,柏松,陈刚,陈辰.水平热壁式CVD-SiC外延均匀性研究[J].第五届全国化合物半导体、微波器件和光电器件学术会议.2008,广州,P070
    [70]王标.化学气相沉积制备炭/炭复合材料防氧化涂层[D].西北工业大学,工学硕士学位论文,2007.
    [71]A. Tabata, T. Nakajima, T. Mizutani, Y. Suzuoki. Preparation of Wide-Gap Hydrogenated Amorphous Silicon Carbide Thin Films by Hot-Wire Chemical Vapor Deposition at a Low Tungsten Temperature [J], Jpn. J. Appl. Phys.2003, (42):10.
    [72]A. Matsuda, J. Non-Cryst. Solids,2004,(1):338-340.
    [73]Yusuke Komura a, Akimori Tabata a, Tomoki Narita b, Akihiro Kondo. Influence of gas pressure on low-temperature preparation and film properties of nanocrystalline 3C-SiC thin films by HW-CVD using SiH4/CH4/H2 system[J].Thin Solid Films,2008, (516):633-636.
    [74]B.P. Swain. Influence of process pressure on HW-CVD deposited a-SiC:H films [J]. Surface & Coatings Technology,2006, (201):1132-1137.
    [75]周建新,徐宏,马秋林,戴玉林,张莉.工艺参数对SiO2/S涂层形貌与结构的影 响[J].真空科学与技术学报,2009,(29):256-263.
    [76]唐伟忠.薄膜材料制备原理、技术及应用[M].北京:冶金工业出版社,1998:44-61.
    [77]王俊山,李仲平,敖明,许正辉,刘朗,胡子君,彭维周.掺杂难熔金属碳化物对炭/炭复合材料烧蚀机理的影响[J].新型炭材料,2006,21(1):9-13.
    [78]Chen Zhao-ke, Xiong Xiang, Li Guo-dong, Wang Ya-lei. Ablation behaviors of carbon/carbon composites with C-SiC-TaC multi-interlayers[J]. Applied Surface Science,2009,255:9217-9223.
    [79]王毅,徐永东,谢翀博,张立同,成来飞.三维针刺C/(SiC-TaC)复合材料的烧蚀性能及烧蚀机理[J].硅酸盐学报,2009,37:1718-1723.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700