常压烧结制备TaC陶瓷及其氧化烧蚀行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化烧蚀性能是超高温材料研究领域的重点。本文采用模压烧结法制备了TaC陶瓷材料,研究了TaC试样的高温氧化及超高温烧蚀行为,结合X-ray、SEM、Tg-DSC等分析手段对组织结构特点、氧化动力学及氧化烧蚀机理进行了研究。
     通过实验确定了TaC陶瓷材料的制备方法和工艺。以单质C、Ta粉末为原料压制成型常压烧结TaC时,由于发生自蔓延反应,产物疏松多孔,不能制备致密的TaC陶瓷。以少量(3%)单质Ta、C粉末为烧结助剂活化烧结TaC陶瓷,能够在2100℃烧结制备相对密度达91%的无裂纹TaC材料;提高单质粉末添加量到6%,或将烧结温度提高到2300℃,TaC的密度均有一定的提高,同时TaC晶粒的尺寸增加。
     TaC陶瓷在1000℃~1600℃范围氧化产物都为多孔结构的Ta_2O_5,并且孔隙尺寸随温度的升高而增大;1000℃~1400~C单位面积的氧化增重小于0.3g/cm~2,TaC的氧化为反应控制阶段,增重随氧化时间的延长而增加;增重大于0.3g/cm~2,氧化为扩散控制阶段,增重随氧化时间按抛物线关系增长;1500℃~1600℃时整个氧化过程都为反应控制过程,氧化增重随时间正比例增加。计算了各温度TaC陶瓷氧化的反应活化能:1000℃~1400~C活化能为28.82kJ/mol,而1500℃~1600℃高温区为109.36kJ/mol。XRD分析发现,在1500℃产物Ta_2O_5的晶型发生了转变。
     采用Tg-DSC、SEM等分析了TaC的氧化机制。TaC粉末在Tg氧化过程中的增重最大值超过了理论增重,出现了碳的滞留。TaC块体试样高温氧化后观察到反应界面处的存在无定形状物质,能谱分析为C。在有残留C条件下反应界面处的气体产物只能为CO,因此氧化层中存在向外扩散的CO与向内扩散的O_2发生反应的反应区,并以此初步建立了气体分布与扩散模型。排出副产物CO导致氧化后试样形成疏松多孔结构,结合烧结原理,推测了多孔氧化物的形成机制。
     采用氧-炔焰烧蚀方法考察了TaC陶瓷的烧蚀行为。在烧蚀过程中TaC烧蚀中心区主要为高温氧化和高速气流的机械冲刷作用,边缘区烧蚀主要为高温氧化作用,过渡区主要为氧化和热蒸发作用;烧蚀开始阶段(少于30s)为加热及热氧化过程,氧化层随烧蚀时间的增加增厚,试样烧蚀后增重;烧蚀30s后,气流冲刷作用才起主导作用,氧化层厚度稳定,试样表现为不断失重。
The anti-oxidation and anti-ablation are key performances oftantalum carbide (TaC) ceramic-the ultra-high temperature materials. Inthis paper, TaC ceramic was prepared by the process of pressing andsintering under ordinary pressure; X-ray、SEM、EDS and Tg-DSCanalysis instrument were used to characterized the microstructure and theproperties of oxidation and ablation of TaC ceramic; Finally, theoxidation kinetic and the mechanism were also dicussed in this paper.
     The optimizing preparation method and process parameter wereobtained on the basis of the experimental investigation. TaC ceramicsintered from C and Ta powder at high temperature was porous becauseof fierce self-propagation reaction at high-temperature. Crack-free TaCceramic with relative density more than 91% could be prepared bypressing and active sintering at 2100℃, with raw powder of 97% TaCgreen powder and 3% C, Ta powder. When increased sinteringtemperature to 2300℃and the content of Ta,C additive to 6%, thedensity and the granularity of TaC ceramic increased.
     After oxidized at 1000~1600℃, the ceramic changed to Ta_2O_5; andthe microstructure of Ta_2O_5 was porous, with the size of the poreincreased with the oxidation temperature. In 1000~1400℃, the oxidationof TaC was controlled by oxidation reaction when weight gain of samplewas low than 0.3g/cm~2, with a line relationship between weight gain andthe oxidation temperature; and by oxygen diffusion through the porousoxide when weight gain exceeded to 0.3g/cm~2 with a parabolicrelationship. The activation energy of reaction was caculated,28.82kJ/mol between 1000℃and 1400℃,and 109.36 kJ/mol between1500℃and 1600℃. Correspondingly, the crystal structure of Ta_2O_5changed fromβ-Ta_2O_5 toα-Ta_2O_5 at 1500℃.
     Oxidation mechanism of TaC was analyzed through Tg-DSC andSEM techniques. The maxium weight gain of TaC powder was exceed thetheory calculation value, which indicated carbon was retained in powders.The reaction interface of TaC after oxided was observed, Because of Celement existed in TaC/Ta_2O_5 interface, the byproduct of oxidation at interface should be CO. There was a reaction area of CO and O_2 insample. The concentration distribution of CO, O_2 and diffusion modelhad been built on this basis. CO gas was the basic drive to form theporous oxide. The formation mechanism of the porous oxide was alsocombined with the effect of sintering and volume expand after theeconversion of TaC to Ta_2O_5.
     The ablation performance of TaC ceramic was studied byoxygen-acetylene flame ablation. During the ablation process, the mainablation mechanisms were the oxidation reaction at ultrahigh temperatureand the erosion of high speed airflow in the ablation center area. However,the main effect was the oxidation of ultrahigh temperature in the ablationfringe area, and themal oxidation and evaporation in the transition area.When ablation time was less than 30s, the ablation was mainly controlledby calefaction and themal oxidation process, with the thickness of oxideincreased with ablation time. When ablation time exceeded 30s theablation process was mainly effected by the erosion of high speed airflow,with a constant oxide thickness and weight loss with increasing time.
引文
[1] 余方新,谢佑卿,李小波,等.金属钒,铌,钽的电子结构和物理性质[J].稀有金属,2004,28(5):921-925.
    [2] 化学百科全书编委会.化工百科全书[M].北京:化学工业出版社,1998:560-591.
    [3] 张培善,杨主明,陶克捷,等.我国铌钽稀土矿物学及工业利用[J].稀有金属,2005,29(2):206-210.
    [4] Lopez-de-la-torre L, Winkler B, Schreuer J, et al. Elastic properties of tantalum carbide (TaC)[J]. Solid State Communications, 2005, 134(4): 245-250.
    [5] 李俊,章永凡.难熔固体MX电子结构和力学性质的密度泛函研究[J].高等学校化学学报,2001,22(3):460-464.
    [6] Amaral P M, Femandes J C, Rosa L G, et al. Carbide formation of Va-group metals (V, Nb and Ta) in a solar furnace[J]. International Journal of Refractory Metals and Hard Materials, 2000, 18(1): 47-53.
    [7] Anazawa T, Tokumitsu S, Sekine R, et al. Angle-resolved photoemission study of the surface electronic structure of TaC(111)[J]. Surface Science, 1995, 328(3): 263-268.
    [8] 刘寿荣,周金亭,马岚.TaC、Cr_3C_2对WC-Co硬质合金组织和性能的影响[J].硬质合金,1997,14(1):22-27.
    [9] 刘寿荣.WC-Co硬质合金中TaC,Cr_3C_2添加剂的作用机理[J].稀有金属材料与工程,1997,26(6):31-35.
    [10] 罗序明,母育锋,陈一鸣,等.添加TaC对燃烧合成金属陶瓷的影响[J].上海有色金属,1995,15(5):260-269
    [11] Bhatt H D, Vedula R, Desu S B, et al. Thin film TiC/TaC thermocouples [J]. Thin Solid Films, 1999, 342(1-2): 214-220.
    [12] 周菊秋,黄列如,谭日善,等.中国钽、铌碳化物的生产和应用[J].稀有金属材料与工程,1998,27(1):26-31.
    [13] Bruno J. Net mold tantalum carbide rocket nozzle throat: U. S [P].
    [14] 刘宁,田春艳,舒士明,等.VC、NbC、TaC的价电子结构及其本质硬度[J].合肥工业大学学报,1998,21(1):15-19.
    [15] 刘宁,田春艳,舒士明,等.ZrC和HfC的价电子结构及其性能研究[J].硅酸盐学报,1998,26(2):210-216.
    [16] 章永凡,李俊,丁开宁,等.过渡金属碳化物(111)面电子结构的理论研究[J].物理化学学报,2003,19(1):40-45.
    [17] 章永凡,丁开宁,林伟,等.VC(001)弛豫表面构型与电子结构第一性原理研究[J].物理学报,2005,54(3):1352-1361.
    [18] Levine S R, Opila E J, Halbig M C, et al. Evaluation of ultra-high temperature ceramics foraeropropulsion use[J]. 2002, 22(14-15): 2757-2767.
    [19] Gordo E, Velasco F, Anton N, et al. Wear mechanisms in high speed steel reinforced with (NbC)p and (TaC)p MMCs[J]. Wear, 2000, 239(2): 251-259.
    [20] Wang X, Zhang M, Zou Z, et al. Wear properties of cemented carbides/Cu-based alloy coposite strengthening materials for milling shoes[J]. 2006, 260(7-8): 699-704.
    [21] Sen U. Kinetics of niobium carbide coating produced on AISI 1040 steel by thermo-reactive deposition technique[J]. Materials Chemistry and Physics, 2004, 86(1): 189-194.
    [22] Laurila T, Zeng K, Kivilahti J K, et al. Tantalum carbide and nitride diffusion barriers for Cu metallisation[J]. Microelectronic Engineering, 2002, 60(1-2): 71-80.
    [23] 朱全力,杨建,季生福,等.过渡金属碳化物的研究进展[J].化学进展,2004,16(3):382-385.
    [24] 路春娥.过渡金属碳化物、氮化物和硼化物在电子工业中的应用[J].电子器件,1999,22(3):216-223.
    [25] Laurila T, Molarius J, Kivilahti J K. Interfacial reactions in the Si/TaC/Cu system [J]. Microelectronic Engineering, 2004, 71(3-4): 301-309.
    [26] 王瑾.碳化钼和碳化钨的制备[J].稀有金属快报,1999(3):1-3.
    [27] 李远志,叶刚,周俊婷,等.碳化钼和氮化钼结构、催化加氢性能及制备[J].三峡大学学报,2004,26(5):470-474.
    [28] 刘武灿,何兴娇,卢春山.金属氮化物/碳化物催化剂加氢性能研究进展[J].工业催化,2005,13(3):1-5.
    [29] Durlu N. Titanium carbide based composites for high temperature applications[J]. Journal of the European Ceramic Society, 1999, 19(13-14): 2415-2419.
    [30] 邹武,张康助,张立同.陶瓷基复合材料在火箭发动机上的应用[J].固体火箭技术,2000,23(2):60-65.
    [31] j C J. Caron-carbon materials for nozzles of solid propellant rocket motors[J]. AIAA paper, 1976, 7,6:609-617.
    [32] Savage G. Carbon-carbon composites[M]. London: Champman Hall, 1993.
    [33] SAYIR A. Carbon fiber reinforced hafnium carbide composite[J]. Journal of materials science, 2004, 39: 5995-6003.
    [34] Patterson M C L, He S, Fehrenbache L L. Advanced HfC-TaC oxidation resistant composite rocket thruster[J]. Material Manufacture Process, 1996, 11(3): 367-379.
    [35] 相华,徐永东,张立同,等.液相先驱体转化法制备TaC抗烧蚀材料[J].无机材料学报,2006,21(4):893-898.
    [36] 何捍卫,周科朝,熊翔.C/C复合材料抗烧蚀TaC涂层的制备[J].稀有金属材料与工程,2004,33(5):490-493.
    [37] Hong C. The exploratory research of addition refractory matal carbide to improve the ablation property of C/C[J]. proceeding of fourth ukraing-russia-china symposium on space science and technology, 2000: 609.
    [38] 崔红,苏君明,李瑞珍,等.添加难熔金属碳化物提高C/C复合材料抗烧蚀性能的研究[J].西北工业大学学报,2000,18(4):669-673.
    [39] 李国栋,熊翔.C/C复合材料基TaC涂层低功率激光烧蚀特征[J].粉末冶金材料科学与工程,2005,10(03):155-159.
    [40] 黄海明,杜善义,施惠基.含钽(Ta)C/C复合材料烧蚀分析[J].复合材料学报,2003,20(3):13-16.
    [41] Gozzi D, Montozzi M, Cignini P L. Apparent oxygen solubility in refractory carbides[J]. Solid State Ionics, 1999, 123(1-4): 1-10.
    [42] Souda R, Aizawa T, Otani S, et al. Oxygen chemisorption on transition-metal carbide (100) surfaces studied by X-ray photoelectron spectroscopy and low-energy He+ scattering[J]. Surface Science, 1991, 256(1-2): 19-26.
    [43] Gozzi D, Montozzi M, Cignini P L. Oxidation kinetics of refractory carbides at low oxygen partial pressures[J]. Solid State Ionics, 1999, 123(1-4): 11-18.
    [44] Gozzi D, Guzzardi G, Montozzi M, et al. Kinetics of high temperature oxidation of refractory carbides[J]. Solid State Ionics, 1997, 103(Part 2): 1243-1250.
    [45] Bargeron C B, Benson R C, Jette A N, et al. Oxidation of hafnium carbide in the temperature range 1400 to 2060℃ [J]. J.Am.Ceram.Soc, 1993, 76(4): 1040-1046.
    [46] Bellucci A, Di P F, Gozzi D, et al. Structural characterization of TiO_2 films obtained by high temperature oxidation of TiC single crystals[J]. Thin Solid Films, 2002, 405(1-2): 1-10.
    [47] Onuma A, Kiyono H, Shimada S, et al. High temperature oxidation of sintered TiC in an H_2O-Containing atmosphere[J]. Solid State Ionics, 2004, 172(1-4):417-419.
    [48] Bellucci A, Gozzi D, Latini A. Overview of the TiC/TiO_2 (rutile) interface[J]. Solid State Ionics, 2004, 172(1-4): 369-375.
    [49] Shimada S, Nakajima K, Inagaki M. Oxidation of single crystal of hafnium carbide in a temperature range of 600 to 900℃[J]. J Am Ceram Soc, 1997, 80(7):51-56.
    [50] 郑树起,闵光辉,邹增大,等.非氧化物陶瓷材料的氧化性[J].陶瓷学报,2002,23(3):183-186.
    [51] Shimada S. A thermoanalytical study on the oxidation of ZrC and HfC powders with formation of carbon[J]. Solid State Ionics, 2002, 149(3-4): 319-326.
    [52] Shimada S. Interfacial reaction on oxidation of carbides with formation of carbon[J]. Solid State Ionics, 2001, 141-142: 99-104.
    [53] Shimada S, Yoshimatsu M, Inagaki M, et al. Formation and characterization of carbon at the ZrC/ZrO_2 interface by oxidation of ZrC single crystals[J]. Carbon, 1998, 36(7-8): 1125-1131.
    [54] Shimada S, Ishii T. Oxidation kinetics of Zirconium carbide at relatively low temperature[J]. J.Am.Ceram.Soc, 1990, 73(10): 2804-2808.
    [55] Miller C F, Simmons G.W, Wei R P. High temperature oxidation of Nb, NbC and Ni_3Nb and oxygen enhanced crack growth[J]. Scripta Materialia, 2000, 42(3): 227-232.
    [56] Shimada S, Inagaki M. A kinetic study on oxidation of niobium carbide[J]. Solid State Ionics, 1993, 63-65: 312-317.
    [57] Kojima I, Orita M, Miyazaki E, et al. Adsorption of O_2, Co and CH3OH on NbC (100) and (111) singlecrystal surfaces by ultraviolet photoelectron spectroscopy[J]. Surface Science, 1985, 160(1): 153-163.
    [58] Shi L, Gu Y, Chen L, et al. Synthesis and oxidation behavior of nanocrystalline niobium carbide[J]. Solid State Ionics, 2005, 176(7-8): 841-843.
    [59] Eckel A J H T P. Ceramic composites survive thermal shocks[J]. NASA Tech Briefs, 1993: 54.
    [60] Holcomb G R. The hige temperature oxidation of hafnium carbide[D]. PD.h, Ohio State: THe Ohio State University, 1988.
    [61] Courtright E L, Prater J T, Holcomb G R. Oxidation of hafnium carbide and hafnium carbide with additions of tantalum and prasedymium[J], oxidation of metals, 1991, 36(5/6): 423-437.
    [62] Holcomb G R, St Pierre G R. Application of a counter-current gaseous diffusion model to the oxidation of hafnium carbide at 1200to 1530℃[J]. oxidation of metals, 1993, 40(1/2): 109-118.
    [63] Desmaison-brut M, Alexandre N, Desmaison J. Comparison of the oxidation behaviour of two dense hot isostatically pressed tantalum carbide (TaC and Ta_2C) Materials[J]. Joumal of the European Ceramic Society, 1997, 17(11): 1325-1334.
    [64] Chaikovskii E F, Sotnikov V T, Vlasenko V A. Effect of oxidation of carbon on the work function of tantalum carbide[J]. Zhumal Tekhnicheskoi Fiziki, 1978, 48(3): 613-615.
    [65] 王海龙,黎寿山,张锐,等.热等静压在金属陶瓷制备中的应用研究进展[J].陶瓷学报,2005,26(3):197-200.
    [66] 王俊山,李仲平,许正辉,等.难熔金属及其化合物与C/C复合材料相互作用研究[J].宇航材料工艺,2006(2):50-56.
    [67] 王俊山,李仲平,敖明,等.掺杂难熔金属碳化物对C/C复合材料烧蚀微观结构的影响[J].新型炭材料,2005,20(2):97-102.
    [68] 王俊山,李仲平,敖明,等.掺杂难熔金属碳化物对C/C复合材料烧蚀机理的影响[J].新型炭材料,2006,21(1):9-13.
    [69] Yeh C L, Liu E W. Combustion synthesis of tantalum carbides TaC and Ta_2C[J]. Journal of Alloys and Compounds, 2006, 415(1-2): 66-72.
    [70] 叶大伦,胡建华.实用无机热力学数据手册[M].北京:冶金工业出版社,2002.
    [71] 贾光耀,郭志猛,王耀明.自蔓延高温合成技术的发展与应用[J].现代技术陶瓷,2003(2):16-20.
    [72] 邹正光,吴金平,傅正义.材料的自蔓延高温合成过程中燃烧波特征的数字模拟[J].材料科学与工程,2000,18(3):61-65.
    [73] 潘牧,南策文.碳化硅(SiC)基材料的高温氧化和腐蚀[J].腐蚀科学与防护技术,2000,12(2):109-113.
    [74] Kofstad P. High-Temperature oxidation of metal, John Wiley, New York, 1966: 63.
    [75] Donald L, Kenneth E. Unique applications of Carbon-Carbon composites materials(Part One)[J]. SAMPE Journal, 1999, 35(3): 27-29.
    [76] Donald L, Kenneth E. Unique applications of Carbon-Carbon composites materials(Part Two)[J]. SAMPE Journal, 1999, 35(4): 51-63.
    [77] Donald L, Kenneth E. Unique applications of Carbon-Carbon composites materials(Part Three)[J]. SAMPE Journal, 1999, 35(5): 47-55.
    [78] Choury J J. Carbon/Carbon materials for nozzles of solid propellant rocket motors[J]. AAIA: 576-609.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700