Si/SiGe量子阱空穴子带跃迁及其在中远红外光发射/探测器中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Si微电子技术已取得巨大成功,然而由于体材料Si的间接带隙特性,发光效率比直接带隙的GaAs等化合物材料低五个量级,如何在硅基材料系实现高效率发光,已成为发展硅基光电子学的一个重要课题,突破Si间接带隙限制的一条有希望的道路,是利用能带工程,使用Si/SiGe量子阱中的子带跃迁代替体材料中的带间跃迁。近年来,基于子带跃迁机理的硅基高效中远红外光电器件成为国内外学术界和产业界的一个研究热点。由于硅基光电子技术重大的产业背景,硅基高效中远红外光电子器件将具有更广泛的应用前景,对我国科技、工业和国防的发展具有重要的意义。本论文就是在这种背景下开展基于价带空穴子带跃迁、Si/SiGe量子级联激光器和Si/SiGe量子阱远红外探测器的基础研究,主要工作和研究成果有:
     (1)使用六带的k·p方法系统地研究了应变Si/SiGe材料的价带能带结构和空穴有效质量,定量计算分析了P型高掺杂Si/SiGe量子阱中的载流子分布、空穴子带跃迁矩阵元和量子阱空穴子带跃迁光吸收特性。
     (2)进行基于空穴子带跃迁中远红外(含太赫兹)Si/SiGe量子级联激光器能带设计研究,使用Drude模型和FDTD方法计算了长波长Si/SiGe量子级联激光器波导的限制因子和损耗特性,得到同时具有高限制因子和低损耗系数的长波长Si/SiGe量子阱级联激光器结构。
     (3)研究了基于空穴束缚态和准束缚态跃迁模型、应变Si/SiGe量子阱红外探测器的能带结构和品质因子。在国际上首次提出并从理论上论证使用张应变Si/SiGe量子阱红外探测器结构具有更高的吸收系数、更好的载流子输运特性和高探测灵敏度。
     (4)探讨了使用UHV/CVD系统进行Si/SiGe量子阱红外探测器的材料结构生长的若干问题,在600℃生长温度下,得到高质量Si/SiGe量子阱红外探测器的材料结构。提出一种方法用于估算Si/SiGe量子阱各层生长速率和组分,实验证明这种方法可以方便、准确地估算各种生长条件下Si/SiGe量子阱各层的生长速率和Ge组分,还可以估算源气体进入生长室到稳定生长所需要的时间。
     (5)研究正入射型Si/SiGe量子阱红外探测器的制备工艺,进行Si/SiGe量子阱红外探测器FTIR红外吸收谱测试和分析,得到吸收峰处于大气传输窗口3~5微米波段的量子阱红外探测器结构。
People have won tremendous successes in silicon microelectronic technique,but, bulk silicon,with a indirect bandgap has a five order of magnitude lower light emission efficiency than direct bandgap materials such as GaAs.So,how to realize high light emission efficiency of silicon-based materials is one of the important topics concerning the development of silicon-based optoelectronics.Energy band engineering by using the intersubband transition in Si/SiGe quantum wells has been recognized as one of promising approaches to achievement of efficient light emission from silicon-based materials.In last few years,high-performance silicon-based mid-/far- infrared optoelectronic devices attracted more attention in academe and industry.It is therefore tremendously important to carry out such works for developing science,technology and industry for national defense in our country.Against this major background,a basic study has been carried out on Si/SiGe quantum cascade lasers and Si/SiGe quantum well infrared detectors based on hole intersubband transitions.The main work and results are summarized as follows:
     1.The valence band structures and hole effective masses of strained Si/SiGe materials are systematically studied by using the 6×6 k·p method.Holes occupation in the highly Boron doped quantum wells,the momentum matrix elements and optical absorption of intersubband transition between two hole states have been numerically calculated.
     2.The energy band design and operational mechanism of Si/SiGe quantum cascade lasers(QCLs) at mid-/far- infrared(terahertz) frequency are discussed.By using Drude model and FDTD method,high confinement factor of Si/SiGe QCLs work at THz frequency are obtained with low loss coefficients.
     3.Designs for strained p-type Si/SiGe quantum well infrared photodetectors(QWIPs) based on the bound-to-quasi-bound transitions are discussed,the figure-of-merit of this kind of Si/SiGe QWIPs have beed calcuated.We proposed on tensile strained p-type QWIPs for the first time,which are expected to retain the ability to couple normally incident infrared radiation without any grating couplers,with lower dark current than that of n-type QWIPs and larger absorption coefficient and better transport characteristics than those of normal unstrained or compressive strained p-type QWIPs.
     4.High quality Si/SiGe QWIP structures were expitaxially grown by using UHV/CVD system.A method was developed to evaluate the growth rates and Ge compositions of Si/SiGe quantum wells.The equilibration time for the source gases to deposit on Si substrate can also be evaluate by this method.
     5.Infrared absorption spectra of the Si/SiGe QWIP structures have been measured and the QWIP devices were fabricated.The FTIR measuremmts show that the Si/SiGe QWIP structure has a strong absorption at 3~5μm,this wavelength range is one of the Earth's atmosphere in the transparent spectral regions.
引文
[1]陈永甫.红外辐射红外器件与典型应用[M].北京:电子工业出版社,2004.
    [2]田符.碲镉汞材料与红外探测器技术的发展[J].舫空兵器,2003,1:38-41.
    [3]叶振华,吴俊,胡晓宁,巫艳,王建新,丁瑞军,何力.集成式HgCdTe红外双色探测器阵列[J].红外与毫米波学报,2004,3:35-38.
    [4]B.F.Levine,C.G.Bethea,G.Hasnain,J.Walker,R.J.Malik.High-detectivity D*=1.0×10~(10)cm Hz~(1/2)/W GaAs/AlGaAs multiquantum well λ=8.3 μm infrared detector[J].Appl.Phys.Lett.,1988,53:296-298.
    [5]J.Faist,F.Capssso,D.L.Sivco,C.Sirtori,A.L.Hutchinson,A.Y.Cho.Quantum Cascade Laser[J].Science,1994,264:553-556.
    [6]E.Kasper,Properties of strained and relaxed Silicon Germanium[M].INSPEC,1995.
    [7]B.F.Levine,C.G.Bethea,G.Hasnain,V.O.Shen,E.Pelve,R.R.Abbott,S.J.Hsieh.High sensitivity low dark current 10 μm GaAs quantum well infrared photodetectors[J].Appl.Phys.Lett.,1990,56:851-853.
    [8]B.F.Levine.Quantum well infrared photodetectors[J].J.Appl.Phys.,1993,74:R1-R81.
    [9]J.L.Pan,C.G.Fonstad Jr.Theory,fabrication and characterization of quantum well infrared photodectors[J].Materials Science and Engineering,2000,28:65-147.
    [10]R.Kazarinov,R.A.Suris.Possibility of the amplification electromagnetic waves in a semiconductor with superlattice[J].Sov.Phys.Semicond.,1971,5:707-711.
    [11]D.Z.-Y.Tinga.Multiband and multidimensional quantum transport[J].Microelectronics Journal,1999,30:985-1000
    [12]G.Klimeck,R.C.Bowen and T.B.Boykin.Strong wavevector dependence of hole transport in heterostructures[J].Superlattices and Microstructures,2001,29:187-216.
    [13]J.B.Xia.Theory of hole resonant tunneling in quantum-well structures[J].Phys.Rev,1988,B38:8365-8370.
    [14]S.K.Chun,D.S.Pan and K.L.Wang.Intersubband transition in a p-type δ -doped SiGe/Si quantum well[J].Phys.Rev.B,1993,47:15638-15647.
    [15]R.P.G.Karunasiri,J.S.Park,Y.J.Mii and K.L.Wang.Intersubband absorption in SiGe/Si multiple quantum wells[J].Appl.Phys.Lett.,1990,57:2585-2587.
    [16]J.S.Park,R.P.G.Karunasiri and K.L.Wang.Normal incidence infrared detector using p-type SiGe/Si multiple quantum wells[J].Appl.Phys.Lett.,1992,60:103-105.
    [17]R.People,J.C.Bean,C.G.Bethea,S.K.Sputz and L.J.Peticolasl.Broadband(8-14um),normal incidence,pseudomorphic GeSi/Si strained-layer infrared photodetector operating between 20and 77k[J].Appl.Phys.Lett.,1992,61:1122-1124.
    [18]J.S.Park,R.P.G.Karunasiri and K.L.Wang.Intervalence-subband transition in SiGe/Si multiple quantum wells-normal incident detection.Appl.Phys.Lett.,1992,61:681-683
    [19]R.T.Cadine,D.J.Robbins,M.B.Stanaway and W.Y.Leong.Long-wavelength SiGe/Si resonant cavity infrared detector using a bonded Silicon-on-oxide reflector[J].Appl.Phys.Lett.,1996,68:544-546.
    [20]D.Krapf,B.Adoram,J.Shappir and A.Saarl.Infrared multispectral detection using Si/SiGe quantum well infrared photodetectors[J].Appl.Phys.Lett.,2001,78:495-497.
    [21]T.Fromherz,M.Meduna and G.Bauer.Intersubband absorption of strain-compensated SiGe valence-band quantum wells with 0.7<x<0.85[J].J.Appl.Phys.,2005,98:044501-7
    [22]俞敏峰,杨宇,沈文忠,王迅等.p型GeSi/Si多量子阱的红外吸收及其分析[J].物理学报,1997,46:740-746.
    [23]Yang Yu,Mao Xu,Yang Hongwei et al.Optical absorption in SiGe/Si quantum well structures created by subband transitions[J].Chin.Phys.Lett.,2001,18:1655-1657.
    [24]M.Zhao,W.N.Ni,P.Townsend,S.A.Lynch,D.J.Paul,C.C.Hsu and M.N.Chang.Low-temperature molecular beam epitaxy growth of Si/SiGe THz quantumcascade structures on virtual substrates[J].Thin Solid Film,2006,508:24-28.
    [25]L.Diehl,G.Dehlinger,H.Sigg,U.Gennser,D.Grutzmacher,E.Muller,J.Faist,K.Ensslin,I.Sagnes,Y.Campidelli,O.Kernarrec,D.Bensahel.Intersubband quantum cascades in the Si/SiGe material system[J].Physica E,2002,13:829-834.
    [26]R.Bates,S.A Lynch,D.J.Paul,Z.Ikonic,R.W.Kelsall,P.Harrison,S.L.Liew,D.J.Norris, A.G.Cullis,W.R.Tribe,D.D.Amone.Interwell intersubband electroluminescence from Si/SiGe quantum cascade emitters[J].Appl.Phys.Lett,2003,83:4092-4094.
    [27]D.J.Paul,S.A.Lynch,R.Bates,Z.Ikonic,R.W.Kelsall,P.Harrison,D.J.Norris,S.L.Liew,A.G.Cullis,D.D.Arnone,C.R.Pidgeon,P.Murzyn,J.P.R.Wells and I.V.Bradley.Si/SiGe quantum-cascade emitters for terahertz applications[J].Physica E,2003,16:147-155.
    [1]J.M.Luttinger and W.Kohn.Motion of Electrons and Holes in Perturbed Periodic Fields[J].Phys.Rev.,1955,97:869-884.
    [2]J.M.Luttinger.Quantum Theory of Cyclotron Resonance in Semiconductors:General Theory[J].Phys.Rev.,1956,102:1030-1042.
    [3]R.People and S.K.Sputz.Band nonparabolicities in lattice-mismatch-strained bulk semiconductor layers[J].Phys.Rev.B,1990,41:8431-8450.
    [4]H.W.Su,Z.Alex.Predicted band-gap pressure coefficients of all diamond and zinc-blende semiconductors:Chemical trends[J].Phys.Rev.B,1999,60:5404-5411.
    [5]M.M.Rieger,P.Vogl.Electronic-band parameters in strained Sil-xGex alloys on Sil-yGey substrates[J].Phys.Rev.B,1993,48:14276-14287.
    [6]Madelung O.In Tables Numerical Data and Functional Relationships in Science and Technology[M].Springer,Heidelberg,1982.
    [7]T.Fromherz,E.Koppensteiner,M.Helm and G.Bauer.Hole energy levels and intersubband absorption in modulation-doped Si/SiGe multiple quantum wells[J].Phys.Rev.B,1994,50:15073-15085.
    [8]C.Y.P.Chao and S.L.Chuang.Spin-orbit-coupling effects on the valence-band structure of strained semiconductor quantum wells[J].Phys.Rev.B,1992,46:4110-4123.
    [9]R.B.James and D.L.Smith.Theory of nonlinear infrared absorption in p-type Germanium[J].Phys.Rev.Lett,1979,42:1945-1948.
    [10]S.K.Chun,D.S.Pan and K.L.Wang.Intersubband transition in a p-type δ -doped SiGe/Si quantum well[J].Phys.Rev.B,1993,47:15638-15647.
    [11]F.Szmulowicz.Derivation of a general expression for the momentum matrix elements within the envelope-funciton approximation[J].Phys.Rev.B,1995,51:1613-1623.
    [12]J.L.Pan and C.G.Fonstad Jr.Theory,fabrication and characterization of quantum well infrared photodetectors[J].Materials Science and Engineering,2000,28:65-147.
    [13]S.Ridene,K.Boujdaria,H.Bouchriha,and G.Fishman.Infrared absorption in Si/Si_(1-x)Ge_x/Si quantum wells[J].Phys.Rev.B,2001,64:085329-9.
    [14]Y.C Chang and R.B.James.Saturation of intersubband transitions in p-type semiconductor quantum wells[J].Phys.Rev.B,1989,39:12672-12682.
    [15]M.R.Gregg.Optical detection properties of Silicon-Germanium quantum well structures [D].USA:UMI,1996.
    [16]M.Zhao,W.N.Ni,P.Townsend,S.A.Lynch,D.J.Paul,C.C.Hsu and M.N.Chang.Low-temperature molecular beam epitaxy growth of Si/SiGe THz quantumcascade structures on virtual substrates[J].Thin Solid Film,2006,508:24-28.
    [1]R.Kazarinov and R.A.Suris.Possibility of the amplification of electromagnetic waves in a semiconductor with a super-lattice[J]Sov.Phys.Semicond.,1971,5:707-709.
    [2]J Faist,Capssso F and Sivco D L.Quantum Cascade Laser[J].Science,1994,264:553-556.
    [3]张希成.太赫兹科学与技术研究回顾[J].物理,2003,05:286-293.
    [4]L.Diehl,G.Dehlinger,H.Sigg,U.Gennser,D.Grutzmacher,E.Muller,J.Faist and K.Ensslin.Intersubband quantum cascades in Si/SiGe material system[J].Physica E,2002,13:829-834.
    [5]R.W.Kelsall,Z.Ikonic,P.Harrison and S.A.Lynch,P.Townsend.Silicon Germanium Quantum Cascade Heterostructures for Infra-red Emission[A].International Conference on Group Ⅳ Photonics.IEEE,HONG KONG,2004.
    [6]Z.Ikonic,P.Harrison and R.W.Kelsall.Simulation of Carrier Transport in p-Si/SiGe Quantum Cascade Emitters[J].Journal of Computational Electronics,2003,2:353-356.
    [7]G.Dehlinger,L.Diehl,U.Gennser,H.Sigg,J.Faist,K.Ensslin,D.Grützmacher,E.Müller.Intersubband Electroluminescence from Silicon-Based Quantum Cascade Structures[J].Science 2000,290:22772280.
    [8]J.S.Park.Optical properties of silicon(1-x) germanium(x)-silicon quantum wells and superlattices for device applications[D].USA:UMI,1992.
    [9]R.Kaindl,M.Wurm,K.Reimann,M.Woerner,T.Elsaesser,C.Miesner,K.Brunner,and G.Abstreiter.Ultrafast dynamics of intersubband excitations in a quasi-two-dimensional hole gas[J].Phys.Rev.Lett.,2001,86:1122-1125.
    [10]R.W.Kelsall,Z.Ikonic,P.Murzyn,C.R.Pidgeon,P.J.Phillips,D.Carder,P.Harrison,and S.A.Lynch.Intersubband lifetimes in p-Si/SiGe terahertz quantum cascade heterostructures [J].Phys.Rev.B,2005,71:115326-10.
    [11]B.S.Williams,S.Kohen,H.Callebaut and Q.Hu.Terahertz quantum-cascade laser at λ-100μm using metal waveguide for mode confinement[J].Appl Phys Lett,2003,83:2124-2126.
    [12]M.A.Ordal,R.J.Bell,R.W.Alexander,L.U Long and M.R.Querry.Optical properties of fourteen metals in the infrared and far infrared:Al,Co,Cu,Au,Fe,Pb,Mo,Ni,Pd,Pt,Ag,Ti,V,and W[J].Applied Optics.1985,24:4493-4499.
    [13]V.N.Antonov,VI.N.Antonov,O.Jepsen,O.K.Andersen,A.Borghesi,C.Bosio,F.Marabelli,A.Piaggi,G.Guizzetti and F.Nava.Ootical properties of WSi2[J].Phys.Rev.B,1991,44:8437-8445.
    [14]Z.C.Wu,E.T.Arakawa,J.R.Jimenez and L.J.Optical properties of epitaxial CoSi,/Si and CoSi,particles in Si from 0.062 to 2.76 eV Schowalter[J].J.Appl.Phys.1992,71:5601-5605
    [15]A.Borghesi,A.Piaggi,G.Guizzetti,F.Lévy,M.Tanaka and H.Fukutani.Optical properties of single-crystal titanium disilicide[J].Phys.Rev.B,1989,40:1611-1615.
    [16]M.Amiotti,A.Borghesi,G.Guizzetti and F.Nava.Optical properties of polycrystalline nickel silicides[J].Phys.Rev.B 1990,42:8939-8947.
    [17]W.Songprakob,R.Zallen,W.K.Liu and K.L.Bacher.Infrared studies of hole-plasmon excitations in heavily-doped p-type MBE-grown GaAs:C[J].Phys.Rev.B,2000,62:4501-.4510.
    [18]E.D.Palik.Handbook of Optical Constants of Solids[M].New York:Academic,1991.
    [1]B.F.Levine,C.G.Bethea,G.Hasnain,V.O.Shen,E.Pelve,R.R.Abbott,S.J.Hsieh.High sensitivity low dark current 10 μm GaAs quantum well infrared photodetectors[J].Appl.Phys.Lett.,1990,56:851-853.
    [2]B.F.Levine.Quantum well infrared photodetectors[J].J.Appl.Phys.,1993,74:R1-R81.
    [3]J.L.Pan,C.G.Fonstad Jr.Theory,fabrication and characterization of quantum well infrared photodectors[J].Materials Science and Engineering,2000,28:65-147.
    [4]K.K.Choi,The Physics of Quantum Well Infrared Photodetectors[M].Singapore,WorldScientific,1997.
    [5]B.F.Levine,A.Zussman,S.D.Gunapala,M.T.Asom,J.M.Kuo,and W.S.Hobson.Photoexcited escape probability,optical gain,and noise in quantum well infrared photodetectors[J].J.Appl.Phys.,1992,72:4429-4443.
    [6]L.Thibaudeau,P.Bois and J.Y.Duboz.A self-consistent model for quantum well infrared photodetectors[J].J.Appl.Phys.,1996,79:446-454.
    [7]M.A.Gadir,P.Harrison and R.A.Soref.Responsivity of quantum well infrared photodetectors at terahertz detection wavelengths[J].J.Appl.Phys.,2002,91:5820-5825.
    [8]P.Kruck,M.Helm,T.Fromherz,and G.Bauer.Medium-wavelength,normal-incidence,p-type Si/SiGe quantum well infrared photodetector with background limited performance up to 85 K[J].Appl.Phys.Lett.,1996,69:3372-3374.
    [9]B.F.Levine,C.G.Bethea,G.Hasnain,V.O.Shen,E.Pelve,R.R.Abbott,and S.J.Hsieh.High sensitivity low dark current 10 μm GaAs quantum well infrared photodetectors[J].Appl.Phys.Lett.,1990,56:851-853.
    [10]S.D.Gunapala,B.F.Levine,L.Pfeiffer,and K.West.Dependence of the performance of GaAs/AIGaAs quantum well infrared photodetectors on doping and bias[J].J.Appl.Phys.,1991,69:6517-65204.
    [11]M.A.Kinch and A.Yariv.Performance limitations of GaAs/AlGaAs infrared superlattices[J].Appl.Phys.Lett.,1989,55:2093-2095.
    [12] E.L. Demiak and D.G. Crowe. Optical radiation detectors[M]. New York, Wiley, 1984.
    [1]E.Kasper and H.J.Herzog.Elastic strain and misfit dislocation density in Si_(0.92)Ge_(0.08) films on silicon substrates[J].Thin Solid Films,1977,44:357-370.
    [2]H.M.Manasevit,I.S.Gergis and A.B.Jones.Electron mobility enhancement in epitaxial multilayer Si-Sil-xGex alloy films on(100) Si[J].Appl.Phys.Lett,1980,41:464-466.
    [3]F.Hirose and H.Sakamoto.Adsorption mechanisms of Si2H6 and GeH4 on Si(100)2 × 1surfaces[J].Appl.Surf.Sci.,1996,107:75-80.
    [4]S.M.Jang and R.Reif.Temperature dependence of Sil-xGex epitaxial growth using very low pressure chemical vapor deposition[J].Appl.Phys.Lett,1991,59:3162-3164.
    [5]R.Malik and E.Gulari.Modeling growth of Sil-xGex epitaxial films from disilane and germane[J].J.Appl.Phys.,1993,73:5193-5196.
    [6]厦门大学物理系半导体物理教研室编,半导体器件工艺原理[M],北京:人民教育出版社,1977年.
    [7]Q.Michael,S.Julian,韩郑生等译.半导体制造技术[M],北京:电子工业出版社,,2004年.
    [6]吴瑾光.近代傅立叶变换红外光谱技术及应用[M].北京:科学技术文献出版社,1994.
    [8]D.G.Mead.Low Temperature Evaluation of Carbon and Oxygen Contaminants in Silicon [J].Appl.Spectrosc.,1980,34:171 - 173.
    [9]许振嘉,陈玉璋,江德生,宋春英,李贺成,宋祥芳,叶亦英.硅、锗中氧的低温红外吸收[J].物理学报,1980,29:867-877.
    [10]R.K.Willardson and A.C.Beer.Semiconductors and Semimetals[M].Academic Press,1957.
    [11]H.Y.Fan and M.becker.Semiconductor Materials[M].Butterworth Scientific Publications Ltd.1951.
    [12]S.Visvanathan.Free Carrier Absorption Due to Polar Modes in the Ⅲ-Ⅴ Compound Semiconductors[J].Phy.Rev.1960,120:376-378.
    [13]H.Y.Fan,W.G.Spitzer and R.J.Collins.Infrared Absorption in n-Type GermaniumPhy[J].Rev.1960,101:566-572.
    [14]S.C.Jain,A.Nathan,D.R.Briglio,D.J.Roulston,C.R.Selvakumar and T.Yang.Band-to-band and free-carrier absorption coefficients in heavily doped silicon at 4 K and at room temperature[J].J.Appl.Phys.,1991,69:3687-3690.
    [15]S.K.Chun,D.S.Pan and K.L.Wang.Intersubband transition in a p-type δ -doped SiGe/Si quantum well[J].Phys.Rev.B,1993,47:15638-15647.
    [16]M.R.Gregg.Optical detection properties of Silicon-Germanium quantum well structures[D].USA:UMI,1996.
    [17]P.Kruck,M.Helm,T.Fromherz,and G.Bauer.Medium-wavelength,normal-incidence,p-type Si/SiGe quantum well infrared photodetector with background limited performance up to 85 K[J].Appl.Phys.Lett.,1996,69:3372-3374.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700