三种抗病毒药物在中国艾滋病患者的临床药效学和药动学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     高效抗逆转录病毒疗法(Highly active antiretroviral therapy, HAART)被认为是现今治疗HIV/AIDS行之有效的方法。奈韦拉平(nevirapine, NVP)是非核苷类逆转录酶抑制剂的一种,目前我国使用HAART方案治疗的患者中大部分仍以NVP作为初始治疗的首选药物。因此,优化NVP临床用药方案,观察NVP血药浓度与病毒学应答的关系,探讨NVP药物相关肝毒性和皮疹发生的影响因素及发生机制等具有重要的临床意义和价值。洛匹那韦(lopinavir, LPV)和利托那韦(ritonavir,RTV)均是蛋白酶抑制剂,替诺福韦(tenofovir, TNF)是核苷酸类逆转录酶抑制剂的一种,目前在我国主要应用于初治治疗失败的HIV/AIDS患者,研究这两种药物在中国HIV/AIDS患者体内的药代动力学特征对促进其临床安全有效应用具有重要价值。
     研究目的
     探讨NVP在中国HIV/AIDS人群中的临床药效学和药动学特点;
     建立高效液相色谱法测定人血浆中TNF浓度,观察TNF在中国HIV/AIDS人群中临床药代动力学特征;
     建立高效液相色谱法同时测定人血浆中LPV和RTV浓度,观察LPV在中国HIV/AIDS人群中的临床药动学特征。
     研究对象与方法
     筛选2005~2011年期间接受包含NVP治疗方案、规律随诊、自愿签署知情同意书的828例HIV/AIDS患者,于服药前或服药后2-4小时采集静脉血2mL并分离血浆,应用高效液相色谱-紫外检测法(HPLC-UV)测定人血浆中药物浓度,并详细记录治疗前及每次随诊时患者的一般情况、血尿常规、肝肾功能、淋巴细胞亚群计数及病毒载量等结果,进行NVP相关临床药动学和药效学分析。
     招募接受包含TNF和/或LPV抗病毒治疗方案的16位患者住院治疗,于服药前以及服药后0.5,1,1.5,2,2.5,3,4,6,8,10,12,16,24小时,采集静脉血并分离冻存血浆,应用本研究建立的HPLC-UV法分别测定人血浆中TNF和LPV药物浓度,采用WINONLIN软件计算TNF和LPV临床药动学参数。
     研究结果
     导入期末NVP血浆谷浓度(Ctrough)为4.26μg/mL(IQR3.05-5.61),峰浓度(Cmax)为5.07μg/mL (IQR3.92-6.44),均已达到国际公认有效治疗浓度下限(3.0μg/mL),但是显著低于稳态NVP-Ctrough (6.15μg/mL, IQR4.63-8.20, P=0.000)和NVP-Cmax (6.51μg/mL, IQR5.22-8.41, P=0.000)。分层分析发现,基线ALT≥1.5×ULN患者的导入期末NVP-Ctrough显著高于ALT<1.5×ULN患者(4.86v.s.4.25μg/mL,P=0.045):随着用药时间的延长,HIV合并HCV感染患者NVP-Ctrough逐渐升高,至随访第48周Ctrough显著高于未合并HCV感染患者(8.16v.s.6.15μg/mL,P=0.004)。
     发生病毒学失败(viralogocal failure, VF)的患者NVP-Ctrough均值显著低于完全病毒学抑制和部分病毒学抑制患者组(3.23μg/mL v.s.6.73和6.60μg/mL,P=0.000)。当NVP-Ctrough<3.9μg/mL时,发生VF的风险是NVP-Ctrough≥3.9μg/mL患者的6.15倍,预测VF发生的灵敏度和特异度分别为87.9%和90%。
     单因素分析提示合并HCV感染、ALT和AST≥1.25ULN、CD4计数>250/mm3与肝损发生相关,女性、体重<55Kg与CD4计数≥250/mm3与重度肝损发生相关,进一步分层分析发现男性合并HCV感染会增加肝损发生风险,女性合并HCV感染则未观察到这一现象;多因素logistic回归分析发现ALT和AST水平升高以及高CD4计数与肝损发生密切相关,低体重和高CD4计数与重度肝损发生密切相关。男性患者肝损当次NVP-Ctrough≥10μg/mL时发生重度肝损的比例是NVP-Ctrough<10μg/mL患者的3.77倍,女性患者则未观察到这一现象。当肝损前次NVP-Ctrough≥5μg/mL时,发生肝损的风险是NVP-Ctrough<5μg/mL患者的2.36倍,预测肝损发生的灵敏度和特异度分别为61.9%和59.3%。当导入期NVP-Ctrough≥6μg/mL时,发生肝损的风险是NVP-Ctrough<6μg/mL患者的2.21倍,预测肝损发生的灵敏度和特异度分别为60.0%和59.5%。
     女性NVP相关皮疹发生风险是男性患者的1.73倍,合并HBV/HCV感染或高CD4计数不会增加服药患者皮疹发生风险;皮疹患者皮疹发生前次、当次和后次MIG、IP-10和IFN-y因子水平均显著高于正常健康人群,皮疹患者其当次MIG和IP-10因子水平均显著高于皮疹发生前次和后次。
     建立同时测定人血浆中LPV和RTV浓度的高效液相色谱方法,LPV在0.5~20gg/mL范围内,RTV在0.05~5μg/mL范围内线性良好(r=0.9995和0.9997);建立测定人血浆中TNF浓度的高效液相色谱方法,TNF在20~2000ng/mL范围内线性良好(r=0.9997)。两种高效液相色谱检测方法灵敏度高,操作简便,精密度、准确度及稳定性结果考察良好。WinNonlin软件计算显示,替诺福韦符合二室模型,计算的药动参数分别为Tmax (1.20±0.47h)、Cmax (361.51±219.04ng/mL)、AUC(4077.50±1554.88ng*h/mL)、t1/2(29.53±14.12h)和CL/F(80.89±21.49L/h),统计学分析发现未合并LPV的患者其TNF血浆t1/2显著大于合并LPV的患者(38.04v.s.22.09h,P=0.023)。TNF的非房室模型药动参数分别为T1/2(21.84±7.64h)、Tmax (1.33±0.45h)、Cmax (447.09±217.39ng/mL)、Ctrough (98.66±36.66ng/m)、AUC(4074.7±1551.86ng*h/mL)和CL/F(45.77±13.05L/h)。LPV在中国服药人群具有达峰时间晚、个体差异大等特点
     结论
     NVP200mg一天一次的给药方式在中国HIV/AIDS人群中可能具有可行性;基线肝脏功能异常和合并HCV感染会对NVP药物代谢产生影响,临床应予以重视;NVP-Ctrough降低与病毒学失败的发生相关,与国际通用的NVP-Ctrough3.0μg/mL阈值相比,在中国人群中以3.9μg/mL作为预测病毒学失败发生的治疗浓度阈值具有较高灵敏度;NVP-Ctrough升高与肝毒性发生相关特别是在男性患者中,肝损前次NVP-Ctrough≥5μg/mL及导入期NVP-Ctrough≥6μg/mL预测肝损发生有一定的临床意义;女性患者易出现NVP相关皮疹,IP-10和MIG等炎症性趋化因子可能通过介导Thl型免疫应答反应促进组织损伤从而参与了NVP相关皮疹的发生发展;中国HIV/AIDS患者服用TNF的稳态血浆T1/2、Cmax、trough及AUC均显著高于国外研究水平,Tmax与国外研究报道类似,合并LPV用药可能会对TNF的药物消除产生影响,临床应予以重视;LPV在中国服药人群具有达峰时间晚、个体差异大等特点。
Background
     Highly active antiretroviral therapy (HAART) has been considered as the most effective way of treatment of HIV infection and/or AIDS diseases. Nevirapine is one of non-nucleoside reverse transcriptase inhibitors and was recommended as the first-line antiretroviral regimen by the guidelines of international AIDS society and USA panel. It is important and necessary to observe the relationship between nevirapine concentration and viralogical response and to evaluate the influence of patient characteristics on nevirapine concentrations and drug-related liver toxicity and skin rash. Due to the higher incidence of drug-related liver toxicity and skin rash in Chinese HIV-infected patients with the conventional dosage regimen, it is of interest to investigate the potential of nevirapine200mg once daily regimen. Lopinavir is one protease inhibitor and tenofovir is one of nucleotide reverse transcriptase inhibitors. As the major antiretrovials in salvage regimen, tenofovir and lopinavir have been proven valid in Chinese HIV-infected adults with first-line treatment failure. Thus it is important to investigate their pharmacokinetic features in Chinese HIV-infected patients for their effective and safe use.
     Objectives
     To investigate the potential of nevirapine200mg once daily regimen in clinical practice and evaluate the relationship between nevirapine concentration and viralogical response and drug-related adverse events; to develop two high performance liquid chromatography methods coupled with UV detection for quantitative determination of lopinavir and ritonavir and tenofovir in human plasma and to investigate the pharmacokinetic features of lopinavir and tenofovir in the Chinese patients with HIV infection.
     Methods
     This was a prospective, multicentre cohort study with828HIV-infected patients receiving nevirapine as a part of their initial antiretroviral therapy between Jan2005and Dec2011. The trial was approved by institutional review boards and carried out in accordance with the Declaration of Helsinki and the principles of Good Clinical Practice. Written informed consent was obtained from each patient and the study protocol was approved by independent ethics committee of participating hospitals. During the treatment period, patients were monitored at baseline, week2,4,12,24,36, and48for clinical features (particularly severe adverse events), plasma nevirapine concentrations and laboratory values including blood routine examination, hepatic and renal function, hepatitis B (HBV) or hepatitis C (HCV) serological state, CD4cell counts and plasma viral load. Nevirapine plasma concentrations during the lead-in (200mg once daily) and steady-state (200mg twice daily) periods were compared.
     A total of16patients receiving tenofovir as a part of antiretroviral regimen were enrolled into the pharmacokinetic study. Written informed consent was obtained from each patient and the study protocol was approved by the ethics committee of Peking Union Medical College Hospital. Blood samples were collected before and0.5,1,1.5,2,2.5,3,4,6,8,10,12,16and24h after administration. Plasma samples were analyzed for lopinavir and tenofovir concentrations by using the developed HPLC assays in present study. WINONLIN software was used to compute the pharmacokinetic parameters.
     Results
     The median nevirapine trough and peak concentration during the lead-in period were4.26μg/mL (IQR3.05-5.61) and5.07μg/mL (IQR3.92-6.44) respectively, which both exceeded the recommended thresholds of nevirapine plasma concentrations, e.g.3.0μg/mL and3.9μg/mL, even though significantly lower than the steady-state levels (6.15and6.51μg/mL, P=0.000). Baseline hepatic function had a moderate effect on median nevirapine trough concentrations at week2(4.25μg/mL vs.4.86μg/mL, for ALT<1.5×ULN and≥1.5×ULN, respectively, P=0.045). No significant difference was observed in median nevirapine trough concentration between lead-in and steady-state periods in patients with baseline ALT and AST level≥1.5×ULN, which was different from the patients with ALT/AST level<1.5ULN. The median trough concentrations were significantly higher in HIV/HCV co-infected patients than those without HCV at week48(8.16μg/mL vs.6.15μg/mL, P=0.004).
     The median nevirapine trough concentrations were3.23,6.60and6.73μg/mL in patients with viralogical failure, partial viralogical suppression and complete viralogical suppression respectively, however, the differences of nevirapine peak concentrations were not observed among the three groups. Compared to the patients with nevirapine trough concentration greater than3.0or3.9μg/mL, the patients with nevirapine trough concentration lower than3.0or3.9μg/mL had a higher risk of occurrence of viralogical failure. Compared with3.0ug/mL,3.9μg/mL was a better threshold of nevirapine trough concentration in Chinese population to predict viralogical failure with sensitivity of87.9%and specificity of90.0%.
     The univariate stratification analysis showed that HIV/HCV coinfection particularly in males, ALT and AST>1.25ULN, CD4>250/mm3were associated with liver toxicity, female, Wt<55Kg and CD4>250/mm were associated with severe liver toxicity. The multivariate logistic regression indicated that increased levels of ALT and AST and CD4cell counts were significantly associated with liver toxicity, increased CD4cell counts and low body weight were significantly associated with severe liver toxicity. The risk of liver toxicity was increased3.23times when NVP-Ctrough>H Hg/mL, particularly, the risk was increased3.77times when NVP-CtrOugh>10ug/mL in males. The risk of liver toxicity was increased2.36times when the last-time NVP-Ctrough was>5u.g/mL. ROC analysis showed that NVP-Ctrough threshold of>5ug/mL had high sensitivity and specificity to predict the occurrence of liver toxicity. The risk of liver toxicity was increased2.21times when the lead-in NVP-Ctrough was>6ug/mL. ROC analysis showed that NVP-Ctrough threshold of>6ug/mL had high sensitivity and specificity of predicting the occurrence of liver toxicity.
     The risk of skin rash was increased1.73times in females, however, HIV/HBV or HIV/HCV coinfection and elevated CD4cell counts were not associated with the drug related skin rash. The levels of MIG, IP-10and IFN-y in patients with rash were significantly higher than the healthy volunteers. Additionaly, the levels of MIG and IP-10at the time rash occurrence were significantly higher than the levels before and after the appearance of rash.
     The calibration curves were linear in the range of0.5-20ug/mL for LPV (r=0.9995) and0.05-5ug/mL for RTV (r=0.9999). The range of the calibration curve of tenofovir was20-2000ng/mL (r=0.9997). The precision, accuracy and stability of the assays were satisfactory. The pharmacokinetics of tenofovir in15Chinese HIV-infected patients complied with two-compartment model, and the steady pharmacokinetic parameters were as follows: Tm29.53±14.12h, Tmax1.20±0.47h, Cmax361.51±219.04ng/mL, AUC4077.50±1554.88ng*h/mL, CL/F80.89±21.49L/h respectively. Additionaly, the patients who were not coadministered with LPV showed longer T1/2compared to the patients with LPV coadministration. The non-compartment model PK parameters were as follows: T1/221.84±7.64h, Tmax1.33±0.45h, Cmax447.09±217.39ng/mL, Ctrough98.66±36.66ng/mL and AUC4074.7±1551.86ng*h/mL, CL/F45.77±13.05L/h respectively.
     Conclusions
     The200mg once daily regimen of nevirapine might be comparable to twice daily in plasma pharmacokinetics in Chinese patients with HIV infection. Hepatic function prior to nevirapine treatment and HIV/HCV coinfection were significantly associated with nevirapine concentrations.
     The incidence of viralogical failure was increased with the low nevirapine trough concentration;3.9μg/mL was a better threshold of nevirapine trough concentration in Chinese population to predict viralogical failure with sensitivity of87.9%and specificity of90.0%higher than the3.0μg/mL
     Patients with high NVP-Ctrough were at greater risk of liver toxicity, especially in males. The last-time NVP-Ctrough of≥5μg/mL or lead-in NVP-Ctrough of≥6μg/mL was a good target to predict the incidence of hepatotoxicity.
     The female patients were vulnerable to nevirapine related skin rash; the inflammatory cytokines of MIG and IP-10may play a main role in the immune pathogenesis of nevirapine related skin rash through the abnormality of immune response.
     Two simple, validated, sensitive and reproducible methods for quantifying the concentration of tenofovir, lopinavir and ritonavir in human plasma by high performance liquid chromatography coupled with UV detection have been reported. The pharmacokinetics of tenofovir in Chinese patients demonstrated longer half-life, increased Cmax, Ctrough and AUC compared with those in Caucasians. Coadministration with LPV would potentially affect the pharmacokinetics of TNF. The pharmacokinetic profiles of lopinavir in Chinese HIV-infected patients demonstrated delayed Tmax and significant individual differences.
引文
[1]中华医学会感染病学分会艾滋病学组.艾滋病诊疗指南(2011版).中华传染病杂志,2011,29(10):629-640.
    [2]中华人民共和国卫生部,联合国艾滋病规划署,世界卫生组织.2011年中国艾滋病疫情估计.中国艾滋病性病,2011,18(1):1-5.
    [3]李太生.奈韦拉平治疗相关不良反应的研究进展.中国病毒病杂志,2011,1(6):405-407.
    [4]Inc. BIP. Nevirapine product monography. Ridgefield, CT:Boehringer Ingelheim Pharmaceutical Inc.,2004,
    [5]Guo F, Wang L, Ye M, et al. Pharmacokinetics of Generic Nevirapine in Chinese Adult HIV-infected Patients. Chinese Medical Journal,2011,In press.
    [6]von Hentig N, Carlebach A, Gute P, et al. A comparison of the steady-state pharmacokinetics of nevirapine in men, nonpregnant women and women in late pregnancy. Br J Clin Pharmacol,2006,62(5):552-559.
    [7]DHHS. Guidelines for the Use of Antiretroviral Agents in HIV-1-Infected Adults and Adolescents. http://AIDSinfo.nih.gov.,2009,
    [8]Wang J, Kou H, Fu Q, et al. Nevirapine plasma concentrations are associated with virological response and hepatotoxicity in Chinese patients with HIV infection. PLoS ONE,2011,6(10):e26739
    [9]Stone SF, Lee S, Keane NM, et al. Association of increased hepatitis C virus (HCV)-specific IgG and soluble CD26 dipeptidyl peptidase IV enzyme activity with hepatotoxicity after highly active antiretroviral therapy in human immunodeficiency virus-HCV-coinfected patients. J Infect Dis,2002,186(10):1498-1502.
    [10]Pollard RB, Robinson P, Dransfield K. Safety profile of nevirapine, a nonnucleoside reverse transcriptase inhibitor for the treatment of human immunodeficiency virus infection. Clin Ther,1998,20(6):1071-1092.
    [11]Chen J, Mannargudi BM, Xu L, et al. Demonstration of the metabolic pathway responsible for nevirapine-induced skin rash. Chem Res Toxicol,2008,21(9): 1862-1870.
    [12]Shaw JP, Sueoko CM, Oliyai R, et al. Metabolism and pharmacokinetics of novel oral prodrugs of 9-[(R)-2-(phosphonomethoxy)propyl]adenine (PMPA) in dogs. Pharm. Res.,1997,14(12):1824-1829.
    [13]Lyseng-Williamson KA, Reynolds NA, Plosker GL. Tenofovir disoproxil fumarate: a review of its use in the management of HIV infection. Drugs,2005,65(3):413-432.
    [14]Kearney BP, Flaherty JF, Shah J. Tenofovir disoproxil fumarate:clinical pharmacology and pharmacokinetics. Clin. Pharmacokinet.,2004,43(9): 595-612.
    [15]Kearney BP, Mathias A, Mittan A, et al. Pharmacokinetics and safety of tenofovir disoproxil fumarate on coadministration with lopinavir/ritonavir. J. Acquir. Immune Defic. Syndr.,2006,43(3):278-283.
    [16]Tong L, Phan TK, Robinson KL, et al. Effects of human immunodeficiency virus protease inhibitors on the intestinal absorption of tenofovir disoproxil fumarate in vitro. Antimicrob. Agents Chemother.,2007,51(10):3498-3504.
    [17]Delahunty T, Bushman L, Fletcher CV. Sensitive assay for determining plasma tenofovir concentrations by LC/MS/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.,2006,830(1):6-12.
    [18]Sentenac S, Fernandez C, Thuillier A, et al. Sensitive determination of tenofovir in human plasma samples using reversed-phase liquid chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.,2003,793(2):317-324.
    [19]Rezk NL, Crutchley RD, Kashuba AD. Simultaneous quantification of emtricitabine and tenofovir in human plasma using high-performance liquid chromatography after solid phase extraction. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.,2005,822(1-2):201-208.
    [20]El Barkil M, Gagnieu MC, Guitton J. Relevance of a combined UV and single mass spectrometry detection for the determination of tenofovir in human plasma by HPLC in therapeutic drug monitoring. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.,2007,854(1-2):192-197.
    [21]Sparidans RW, Crommentuyn KM, Schellens JH, et al. Liquid chromatographic assay for the antiviral nucleotide analogue tenofovir in plasma using derivatization with chloroacetaldehyde. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.,2003,791(1-2):227-233.
    [22]Takahashi M, Kudaka Y, Okumura N, et al Determination of plasma tenofovir concentrations using a conventional LC-MS method. Biol. Pharm. Bull.,2007,30(9):1784-1786.
    [23]Guo J, Meng F, Li L, et al. Development and validation of an LC/MS/MS method for the determination of tenofovir in monkey plasma. Biol. Pharm. Bull.,2011,34(6):877-882.
    [24]Nirogi R, Bhyrapuneni G, Kandikere V, et al. Simultaneous quantification of a non-nucleoside reverse transcriptase inhibitor efavirenz, a nucleoside reverse transcriptase inhibitor emtricitabine and a nucleotide reverse transcriptase inhibitor tenofovir in plasma by liquid chromatography positive ion electrospray tandem mass spectrometry. Biomed. Chromatogr.,2009,23(4): 371-381.
    [25]Sham HL, Kempf DJ, Molla A, et al ABT-378, a highly potent inhibitor of the human immunodeficiency virus protease. Antimicrob. Agents Chemother.,1998,42(12):3218-3224.
    [26]Barragan P, Podzamczer D. Lopinavir/ritonavir: a protease inhibitor for HIV-1 treatment. Expert Opin. Pharmacother.,2008,9(13):2363-2375.
    [27]Cvetkovic RS GK. Lopinavir/ritonavir: a review of its use in the management of HIV infection. Drugs,2003,63(8):769-802.
    [28]Kaplan SS, Hicks CB. Lopinavir/ritonavir in the treatment of human immunodeficiency virus infection. Expert Opin. Pharmacother.,2005,6(9): 1573-1585.
    [29]Manosuthi W, Kiertiburanakul S, Amornnimit W, et al. Treatment outcomes and plasma level of ritonavir-boosted lopinavir monotherapy among HIV-infected patients who had NRTI and NNRTI failure. AIDS Res. Ther.,2009,6(30.
    [30]Wit FW, van Leeuwen R, Weverling GJ, et al. Outcome and predictors of failure of highly active antiretroviral therapy:one-year follow-up of a cohort of human immunodeficiency virus type 1-infected persons. J. Infect. Dis.,1999,179(4):790-798.
    [31]Josephson F, Andersson MCH, Flamholc L, et al. The relation between treatment outcome and efavirenz,atazanavir or lopinavir exposure in the NORTHIV trial of treatment-naive HIV-1 infected patients. Eur. J. Clin. Pharmacol.,2010,66(349-357.
    [32]Hsu A, Isaacson J, Brun S, et al. Pharmacokinetic-pharmacodynamic analysis of lopinavir-ritonavir in combination with efavirenz and two nucleoside reverse transcriptase inhibitors in extensively pretreated human immunodeficiency virus-infected patients. Antimicrob. Agents Chemother.,2003,47(1):350-359.
    [33]Breilh D, Pellegrin I, Rouzes A, et al. Virological, intracellular and plasma pharmacological parameters predicting response to lopinavir/ritonavir (KALEPHAR study). AIDS,2004,18(9):1305-1310.
    [34]Yadav M, Rao R, Kurani H, et al. Application of a rapid and selective method for the simultaneous determination of protease inhibitors, lopinavir and ritonavir in human plasma by UPLC-ESI-MS/MS for bioequivalence study in Indian subjects. J. Pharm. Biomed. Anal.,2009,49(4):1115-1122.
    [35]Takahashi M, Yoshida M, Oki T, et al Conventional HPLC method used for simultaneous determination of the seven HIV protease inhibitors and nonnucleoside reverse transcription inhibitor efavirenz in human plasma. Biol. Pharm. Bull.,2005,28(7):1286-1290.
    [36]C. Marzolini, A. Be'guin, A. Telenti, et al. Determination of lopinavir and nevirapine by high-performance liquid chromatography after solid-phase extraction:application for the assessment of their transplacental passage at delivery. J. Chromatogr.B,2002,774(127-140.
    [37]S. Colomboa, N. Guignarda, C. Marzolinia, et al. Determination of the new HIV-protease inhibitor atazanavir by liquid chromatography after solid-phase extraction. J. Chromatogr. B,2004,810(25-34.
    [38]Hirano A, Takahashi M, Kinoshita E, et al. High performance liquid chromatography using UV detection for the simultaneous quantification of the new non-nucleoside reverse transcriptase inhibitor etravirine (TMC-125), and 4 protease inhibitors in human plasma. Biol. Pharm. Bull.,2010,33(8): 1426-1429.
    [39]Antonio D'Avolio, Marco Siccardi, Mauro Sciandra, et al. HPLC-MS method for the simultaneous quantification of the new HIV protease inhibitor darunavir, and 11 other antiretroviral agents in plasma of HIV-infected patients. J. Chromatogr. B,2007,859(234-240.
    [40]Elens L, Veriter S, Di Fazio V, et al. Quantification of 8 HIV-protease inhibitors and 2 nonnucleoside reverse transcriptase inhibitors by ultra-performance liquid chromatography with diode array detection. Clin. Chem.,2009,55(1): 170-174.
    [41]Usami Y, Oki T, Nakai M, et al. A simple HPLC method for simultaneous determination of lopinavir, ritonavir and efavirenz. Chem. Pharm. Bull.,2003,51(6):715-718.
    [42]Barditch-Crovo P, Deeks SG, Collier A, et al Phase i/ii trial of the pharmacokinetics, safety, and antiretroviral activity of tenofovir disoproxil fumarate in human immunodeficiency virus-infected adults. Antimicrob Agents Chemother,2001,45(10):2733-2739.
    [43]Chittick GE, Zong J, Blum MR, et al. Pharmacokinetics of tenofovir disoproxil fumarate and ritonavir-boosted saquinavir mesylate administered alone or in combination at steady state. Antimicrob Agents Chemother,2006,50(4): 1304-1310.
    [44]Decloedt EH, Mcllleron H, Smith P, et al. Pharmacokinetics of lopinavir in HIV-infected adults receiving rifampin with adjusted doses of lopinavir-ritonavir tablets. Antimicrob Agents Chemother,2011,55(7): 3195-3200.
    [45]Droste JA, Verweij-van Wissen CP, Kearney BP, et al. Pharmacokinetic study of tenofovir disoproxil fumarate combined with rifampin in healthy volunteers. Antimicrob Agents Chemother,2005,49(2):680-684.
    [46]Hazra R, Balis FM, Tullio AN, et al. Single-dose and steady-state pharmacokinetics of tenofovir disoproxil fumarate in human immunodeficiency virus-infected children. Antimicrob Agents Chemother,2004,48(1):124-129.
    [47]Jackson A, Hill A, Puls R, et al. Pharmacokinetics of plasma lopinavir/ritonavir following the administration of 400/100 mg,200/150 mg and 200/50 mg twice daily in HIV-negative volunteers. J Antimicrob Chemother,2011,66(3): 635-640.
    [48]Jullien V, Treluyer JM, Rey E, et al. Population pharmacokinetics of tenofovir in human immunodeficiency virus-infected patients taking highly active antiretroviral therapy. Antimicrob Agents Chemother,2005,49(8):3361-3366.
    [49]Kearney BP, Mathias A, Mittan A, et al. Pharmacokinetics and safety of tenofovir disoproxil fumarate on coadministration with lopinavir/ritonavir. J Acquir Immune Defic Syndr,2006,43(3):278-283.
    [50]King JR, Acosta EP, Yogev R, et al. Steady-state pharmacokinetics of lopinavir/ritonavir in combination with efavirenz in human immunodeficiency virus-infected pediatric patients. Pediatr Infect Dis J,2009,28(2):159-161.
    [51]Kiser JJ, Fletcher CV, Flynn PM, et al Pharmacokinetics of antiretroviral regimens containing tenofovir disoproxil fumarate and atazanavir-ritonavir in adolescents and young adults with human immunodeficiency virus infection. Antimicrob Agents Chemother,2008,52(2):631-637.
    [52]文爱东,寅吴,杨春娥,et al富马酸替诺福韦酯胶囊与片剂的人体生物等效性研究.中国新药杂志,2007,16(4):324-327.
    [53]文爱东,王志睿,杨志福,et al.富马酸替诺福韦酯胶囊在健康人体内的药动学研究.药学服务与研究,2007,7(3):191-193.
    [54]Walensky RP, Paltiel AD, Losina E, et al. The survival benefits of AIDS treatment in the United States. J Infect Dis,2006,194(1):11-19.
    [55]Fletcher CV, Kawle SP, Kakuda TN, et al. Zidovudine triphosphate and lamivudine triphosphate concentration-response relationships in HIV-infected persons. Aids,2000,14(14):2137-2144.
    [56]Jourdain G, Ngo-Giang-Huong N, Le Coeur S, et al. Intrapartum exposure to nevirapine and subsequent maternal responses to nevirapine-based antiretroviral therapy. N Engl J Med,2004,351(3):229-240.
    [57]Back D, Khoo S, Maher B, et al. Current uses and future hopes for clinical pharmacology in the management of HIV infection. HIV Med,2000,1 SuppI 2(12-17.
    [58]周细根,徐戎,何平,et al.国产与进口奈韦拉平在健康人体的生物等效性.中国临床药理学杂志,2007,23(3):187-190.
    [59]张宏文,计成,王蔚青, et al.进口与国产齐多夫定胶囊在健康人体的生物等效性.中国临床药理学杂志,2007,23(2):109-112.
    [60]Aweeka FT, Rosenkranz SL, Segal Y, et al. The impact of sex and contraceptive therapy on the plasma and intracellular pharmacokinetics of zidovudine. Aids,2006,20(14):1833-1841.
    [61]Notari S, Bocedi A, Ippolito G, et al. Simultaneous determination of 16 anti-HIV drugs in human plasma by high-performance liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci,2006,831(1-2):258-266.
    [62]GAO Na, XIE Min, ZHANG Li-rong, et al. Pharmacokinetics of zidovudine in Chinese healthy volunteers. Chinese Journal of Hospital Pharmacy,2006,26(3):294-296.
    [63]de Vries-Sluijs TE, Dieleman JP, Arts D, et al. Low nevirapine plasma concentrations predict virological failure in an unselected HIV-1-infected population. Clin Pharmacokinet,2003,42(6):599-605.
    [64]Walensky RP, Paltiel AD, Losina E, et al. Three millions years of life saved:The survival benefits of AIDS therapy in the United States. J Infect Dis,2006,194(1):11-19.
    [65]王璐,李太生,付强等.高效液相色谱法同时测定人血浆中齐多夫定、奈韦拉平浓度.中国药学杂志,2009,44(4):310-313.
    [66]中华医学会感染病学分会艾滋病学组制订.艾滋病诊疗指南.中华传染病杂志,2006,24(2):133-144.
    [67]RL Murphy, Montaner J. Nevirapine: a review of its development, pharmacological profile and potential for clinical use. Expert Opin Investig Drugs,1996,5(1183-1199.
    [68]van Heeswijk RP, Veldkamp AI, Mulder JW, et al. The steady-state pharmacokinetics of nevirapine during once daily and twice daily dosing in HIV-1-infected individuals. AIDS,2000,14(8):F77-F82.
    [69]Cooper CL, van Heeswijk RP. Once-daily nevirapine dosing:a pharmacokinetics, efficacy and safety review. HIV Med,2007,8(1):1-7.
    [70]Molto J, Valle M, Miranda C, et al. Once-or twice-daily dosing of nevirapine in HIV-infected adults:a population pharmacokinetics approach. Journal of Antimicrobial Chemotherapy,2008,62(4):784-792.
    [71]Kappelhoff BS, Huitema AD, van Leth F, et al. Pharmacokinetics of Nevirapine:Once-Daily Versus Twice-Daily Dosing in the 2NN Study. HIV Clin Trials,2005,6(5):254-261.
    [72]Kappelhoff BS, van Leth F, Robinson PA, et al. Are adverse events of nevirapine and efavirenz related to plasma concentrations? Antiviral Therapy,2005,10(4):489-498.
    [73]van Leth F, Phanuphak P, Ruxrungtham K, et al. Comparison of first-line antiretroviral therapy with regimens including nevirapine, efavirenz, or both drugs, plus stavudine and lamivudine:a randomised open-label trial, the 2NN Study. Lancet,2004,363(9417):1253-1263.
    [74]Fuping Guo, Lu Wang, Min Ye, et al. Steady-state Pharmacokinetics and Pharmacodynamics of Generic Nevirapine in Chinese Adult HIV Infected. Submitted to AIDS Research and Human Retroviruses 2011,
    [75]Li T, Dai Y, Kuang J, et al. Three generic nevirapine-based antiretroviral treatments in Chinese HIV/AIDS patients:multicentric observation cohort. PLoS One,2008,3(12):e3918.
    [76]Fuping G, Wei L, Yang H, et al. Impact of hepatitis C virus coinfection on HAART in HIV-infected individuals:multicentric observation cohort. J Acquir Immune Defic Syndr,2010,54(2):137-142.
    [77]Murphy RL, Montaner J. Nevirapine: a review of its development, pharmacological profile and potential for clinical use. Exp Opin Invest Drugs,1996,5(1183-1199.
    [78]Riska P, Lamson M, MacGregor T, et al. Disposition and biotransformation of the antiretroviral drug nevirapine in humans. Drug Metab Dispos,1999,27(8): 895-901.
    [79]Chokephaibulkit K, Plipat N, Cresseyc TR, et al. Pharmacokinetics of nevirapine in HIV-infected children receiving an adult fixed-dose combination of stavudine, lamivudine and nevirapine. AIDS,2005,19(14): 1495-1499.
    [80]DHHS. Guidelines for the Use of Antiretroviral Agents in HIV-1-Infected Adults and Adolescents.http://AIDSinfo.nih.gov.,2009.
    [81]JP. Sabo, MJ. Lamson, al e. Pharmacokinetics of Nevirapine and Lamivudine in Patients with HIV-1 Infection. AAPS PharmSci,2002,2(1):article 1.
    [82]Havlir D, Cheeseman SH, McLaughlin M, et al. High-Dose Nevirapine:Safety, Pharmacokinetics, and Antiviral Effect in Patients with Human Immunodeficiency Virus Infection. The Journal of Infectious Diseases 1995,171(3):537-545.
    [83]Veldkamp Al, Weverling GJ, Lange JM, et al. High exposure to nevirapine in plasma is associated with an improved virological response in HIV-1-infected individuals. Aids,2001,15(9):1089-1095.
    [84]Raffi F, Reliquet V, Ferre V, et al. The VIRGO study:nevirapine, didanosine and stavudine combination therapy in antiretroviral-naive HIV-1-infected adults. Antivir Ther,2000,5(4):267-272.
    [85]Gonzalez de Requena D, Bonora S, Garazzino S, et al. Nevirapine plasma exposure affects both durability of viral suppression and selection of nevirapine primary resistance mutations in a clinical setting. Antimicrob Agents Chemother,2005,49(9):3966-3969.
    [86]Sulkowski MS, Thomas DL, Chaisson RE, et al. Hepatotoxicity associated with antiretroviral therapy in adults infected with human immunodeficiency virus and the role of hepatitis C or B virus infection. Jama,2000,283(1):74-80.
    [87]Wit FW, Weverling GJ, Weel J, et al. Incidence of and risk factors for severe hepatotoxicity associated with antiretroviral combination therapy. J Infect Dis,2002,186(l):23-31.
    [88]Chu KM, Boulle AM, Ford N, et al. Nevirapine-associated early hepatotoxicity: incidence, risk factors, and associated mortality in a primary care ART programme in South Africa. PLoS One,5(2):e9183.
    [89]Baylor MS, Johann-Liang R. Hepatotoxicity associated with nevirapine use. J Acquir Immune Defic Syndr,2004,35(5):538-539.
    [90]Gonzalez de Requena D, Nunez M, Jimenez-Nacher I, et al. Liver toxicity caused by nevirapine. Aids,2002,16(2):290-291.
    [91]Chu KM, Boulle AM, Ford N, et al. Nevirapine-associated early hepatotoxicity: incidence, risk factors, and associated mortality in a primary care ART programme in South Africa. PLoS One,2010,5(2):e9183.
    [92]Sanne I, Mommeja-Marin H, Hinkle J, et al. Severe hepatotoxicity associated with nevirapine use in HIV-infected subjects. J Infect Dis,2005,191(6): 825-829.
    [93]Sulkowski MS, Thomas DL, Mehta SH, et al. Hepatotoxicity associated with nevirapine or efavirenz-containing antiretroviral therapy:role of hepatitis C and B infections. Hepatology,2002,35(l):182-189.
    [94]Vogel M, Bertram N, Wasmuth JC, et al. Nevirapine pharmacokinetics in HIV-infected and HIV/HCV-coinfected individuals. J Antimicrob Chemother,2009,63(5):988-991.
    [95]Labarga P, Soriano V, Vispo ME, et al. Hepatotoxicity of antiretroviral drugs is reduced after successful treatment of chronic hepatitis C in HIV-infected patients. J Infect Dis,2007,196(5):670-676.
    [96]Maniar JK, Shah SR, Verma R, et al. Nevirapine-induced fulminant hepatitis. J Assoc Physicians India,2006,54(957-958.
    [97]de Maat MM, Huitema AD, Mulder JW, et al. Population pharmacokinetics of nevirapine in an unselected cohort of HIV-1-infected individuals. Br J Clin Pharmacol,2002,54(4):378-385.
    [98]Stern JO, Robinson PA, Love J, et al. A comprehensive hepatic safety analysis of nevirapine in different populations of HIV infected patients. J Acquir Immune Defic Syndr,2003,34 SuppI 1(S21-33.
    [99]Nunez M. Hepatotoxicity of antiretrovirals:incidence, mechanisms and management. J Hepatol,2006,44(1 SuppI):S132-139.
    [100]Shenton JM, Teranishi M, Abu-Asab MS, et al. Characterization of a potential animal model of an idiosyncratic drug reaction:nevirapine-induced skin rash in the rat. Chem Res Toxicol,2003,16(9):1078-1089.
    [101]Shenton JM, Popovic M, Chen J, et al. Evidence of an immune-mediated mechanism for an idiosyncratic nevirapine-induced reaction in the female Brown Norway rat. Chem Res Toxicol,2005,18(12):1799-1813.
    [102]Kappelhoff BS, van Leth F, Robinson PA, et al. Are adverse events of nevirapine and efavirenz related to plasma concentrations? Antivir Ther,2005,10(4):489-498.
    [103]Almond LM, Boffito M, Hoggard PG, et al. The relationship between nevirapine plasma concentrations and abnormal liver function tests. AIDS Res Hum Retroviruses,2004,20(7):716-722.
    [104]Dailly E, Billaud E, Reliquet V, et al. No relationship between high nevirapine plasma concentration and hepatotoxicity in HIV-1-infected patients naive of antiretroviral treatment or switched from protease inhibitors. Eur J Clin Pharmacol,2004,60(5):343-348.
    [105]Podzamczer D, Olmo M, Sanz J, et al. Safety of Switching Nevirapine Twice Daily to Nevirapine Once Daily in Virologically Suppressed Patients. J Acquir Immune Defic Syndr,2009,50(4):390-396.
    [106]de Maat MM, ter Heine R, Mulder JW, et al. Incidence and risk factors for nevirapine-associated rash. Eur J Clin Pharmacol,2003,59(5-6):457-462.
    [107]Kesselring AM, Wit FW, Sabin CA, et al. Risk factors for treatment-limiting toxicities in patients starting nevirapine-containing antiretroviral therapy. Aids,2009,23(13):1689-1699.
    [108]Montaner JS, Cahn P, Zala C, et al. Randomized, controlled study of the effects of a short course of prednisone on the incidence of rash associated with nevirapine in patients infected with HIV-1. J Acquir Immune Defic Syndr,2003,33(1):41-46.
    [109]邢艳玲,张玉环,许建.IP-10对变应性接触性皮炎小鼠Th1/Th2型细胞因子表达的影响.天津医科大学学报,2008,14(4):492-494.
    [110]冷红.趋化因子IP-10的研究进展.国际免疫学杂志,2006,29(4):241-244.
    [111]Namayanja GK, Nankya JM, Byamugisha JK, et al. Stevens-Johnson syndrome due to nevirapine. Afr Health Sci,2005,5(4):338-340.
    [112]Weng Y, Siciliano SJ, Waldburger KE, et al. Binding and functional properties of recombinant and endogenous CXCR3 chemokine receptors. J Biol Chem,1998,273(29):18288-18291.
    [113]Piali L, Weber C, LaRosa G, et al. The chemokine receptor CXCR3 mediates rapid and shear-resistant adhesion-induction of effector T lymphocytes by the chemokines IP10 and Mig. Eur J Immunol,1998,28(3):961-972.
    [114]李群,谭锦泉,黄保军等.γIP-10和mig通过趋化因子CXC受体3激活嗜酸性粒细胞的NFAT.中华微生物学和免疫学杂志,2001,21(5):510-515.
    [115]Wiley R, Palmer K, Gajewska B, et al. Expression of the Thl chemokine IFN-gamma-inducible protein 10 in the airway alters mucosal allergic sensitization in mice. J Immunol,2001,166(4):2750-2759.
    [116]Cundy KC, Sueoka C, Lynch GR, et al. Pharmacokinetics and bioavailability of the anti-human immunodeficiency virus nucleotide analog 9-[(R)-2-(phosphonomethoxy)propyl]adenine (PMPA) in dogs. Antimicrob. Agents Chemother.,1998,42(3):687-690.
    [117]King JR, Yogev R, Jean-Philippe P, et al. Steady-state pharmacokinetics of tenofovir-based regimens in HIV-infected pediatric patients. Antimicrob Agents Chemother,55(9):4290-4294.
    [118]Turriziani O, Di Marco P, Antonelli G, et al. May the drug transporter P glycoprotein affect the antiviral activity of human immunodeficiency virus type 1 proteinase inhibitors? Antimicrob Agents Chemother,2000,44(2): 473-474.
    [119]Vishnuvardhan D, Moltke LL, Richert C, et al. Lopinavir:acute exposure inhibits P-glycoprotein; extended exposure induces P-glycoprotein. Aids,2003,17(7):1092-1094.
    [120]Tong L, Phan TK, Robinson KL, et al. Effects of human immunodeficiency virus protease inhibitors on the intestinal absorption of tenofovir disoproxil fumarate in vitro. Antimicrob Agents Chemother,2007,51(10):3498-3504.
    [121]Ray J, Pang E, Carey D. Simultaneous determination of indinavir, ritonavir and lopinavir (ABT 378) in human plasma by high-performance liquid chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.,2002,775(2):225-230.
    [122]Droste JA, Verweij-Van Wissen CP, Burger DM. Simultaneous determination of the HIV drugs indinavir, amprenavir, saquinavir, ritonavir, lopinavir, nelfinavir, the nelfinavir hydroxymetabolite M8, and nevirapine in human plasma by reversed-phase high-performance liquid chromatography. Ther. Drug Monit.,2003,25(3):393-399.
    [123]Hugen PW, Verweij-van Wissen CP, Burger DM WE, et al. Simultaneous determination of the HIV-protease inhibitors indinavir, nelfinavir, saquinavir and ritonavir in human plasma by reversed-phase high-performance liquid chromatography. J. Chromatogr. B Biomed. Sci. Appl.,1999,727(1-2): 139-149.
    [124]Proust V, Toth K, Hulin A, et al. Simultaneous high-performance liquid chromatographic determination of the antiretroviral agents amprenavir, nelfinavir, ritonavir, saquinavir, delavirdine and efavirenz in human plasma. J. Chromatogr. B Biomed. Sci. Appl.,2000,742(2):453-458.
    [125]Remmel RP, Kawle SP, Weller D, et al. Simultaneous HPLC assay for quantification of indinavir, nelfinavir, ritonavir, and saquinavir in human plasma. Clin. Chem.,2000,46(1):73-81.
    [1]DHHS. Guidelines for the Use of Antiretroviral Agents in HIV-1-Infected Adults and Adolescents. http://AIDSinfo.nih.gov.,2009,
    [2]Inc. BIP. Nevirapine product monography. Ridgefield, CT: Boehringer Ingelheim Pharmaceutical Inc.,2004,
    [3]Guo F, Wang L, Ye M, et al. Pharmacokinetics of Generic Nevirapine in Chinese Adult HIV-infected Patients. Chinese Medical Journal,2011,In press.
    [4]von Hentig N, Carlebach A, Gute P, et al. A comparison of the steady-state pharmacokinetics of nevirapine in men, nonpregnant women and women in late pregnancy. Br J Clin Pharmacol,2006,62(5):552-559.
    [5]Chou M, Bertrand J, Segeral O, et al. Population pharmacokinetic-pharmacogenetic study of nevirapine in HIV-infected Cambodian patients. Antimicrob Agents Chemother,2010,54(10):4432-4439.
    [6]Mahungu T, Smith C, Turner F, et al Cytochrome P450 2B6 516G-->T is associated with plasma concentrations of nevirapine at both 200 mg twice daily and 400 mg once daily in an ethnically diverse population. HIV Med,2009,10(5):310-317.
    [7]Penzak SR, Kabuye G, Mugyenyi P, et al. Cytochrome P450 2B6 (CYP2B6) G516T influences nevirapine plasma concentrations in HIV-infected patients in Uganda. HIV Med,2007,8(2):86-91.
    [8]Rotger M, Colombo S, Furrer H, et al. Influence of CYP2B6 polymorphism on plasma and intracellular concentrations and toxicity of efavirenz and nevirapine in HIV-infected patients. Pharmacogenet Genomics,2005,15(1):1-5.
    [9]Wyen C, Hendra H, Vogel M, et al Impact of CYP2B6983T>C polymorphism on non-nucleoside reverse transcriptase inhibitor plasma concentrations in HIV-infected patients. J Antimicrob Chemother,2008,61(4):914-918.
    [10]Barreiro P, Rodriguez-Novoa S, Labarga P, et al. Influence of liver fibrosis stage on plasma levels of antiretroviral drugs in HIV-infected patients with chronic hepatitis C. J Infect Dis,2007,195(7):973-979.
    [11]de Maat MM, Huitema AD, Mulder JW, et al. Population pharmacokinetics of nevirapine in an unselected cohort of HIV-1-infected individuals. Br J Clin Pharmacol,2002,54(4):378-385.
    [12]Kishimoto W, Takano J, Senda C, et al. Quantitative prediction of in vivo drug interactions between nevirapine and antifungal agents from in vitro data in rats. Biol Pharm Bull,2000,23(9):1027-1032.
    [13]Erickson DA, Mather G, Trager WF, et al. Characterization of the in vitro biotransformation of the HIV-1 reverse transcriptase inhibitor nevirapine by human hepatic cytochromes P-450. Drug Metab Dispos,1999,27(12):1488-1495.
    [14]Murphy RL, Montaner J. Nevirapine:a review of its development, pharmacological profile and potential for clinical use. Exp Opin Invest Drugs,1996,5(1183-1199.
    [15]de Vries-Sluijs TE, Dieleman JP, Arts D, et al. Low nevirapine plasma concentrations predict virological failure in an unselected HIV-1-infected population. Clin Pharmacokinet,2003,42(6):599-605.
    [16]Duong M, Buisson M, Peytavin G, et al. Low trough plasma concentrations of nevirapine associated with virologic rebounds in HIV-infected patients who switched from protease inhibitors. Ann Pharmacother,2005,39(4):603-609.
    [17]Manosuthi W, Sungkanuparph S, Tantanathip P, et al. A randomized trial comparing plasma drug concentrations and efficacies between 2 nonnucleoside reverse-transcriptase inhibitor-based regimens in HIV-infected patients receiving rifampicin:the N2R Study. Clin Infect Dis,2009,48(12):1752-1759.
    [18]Wang J, Kou H, Fu Q, et al. Nevirapine plasma concentrations are associated with virological response and hepatotoxicity in Chinese patients with HIV infection. PLoS ONE,2011,6(10):e26739
    [19]谢静,李太生.HIV-1耐药性产生机制及检测方法.中国艾滋病性病,2005,11(2):150-152.
    [20]Gonzalez de Requena D, Bonora S, Garazzino S, et al. Nevirapine plasma exposure affects both durability of viral suppression and selection of nevirapine primary resistance mutations in a clinical setting. Antimicrob Agents Chemother,2005,49(9):3966-3969.
    [21]Soria A, Porten K, Fampou-Toundji JC, et al. Resistance profiles after different periods of exposure to a first-line antiretroviral regimen in a Cameroonian cohort of HIV type-1-infected patients. Antivir Ther,2009,14(3):339-347.
    [22]Stone SF, Lee S, Keane NM, et al. Association of increased hepatitis C virus (HCV)-specific IgG and soluble CD26 dipeptidyl peptidase IV enzyme activity with hepatotoxicity after highly active antiretroviral therapy in human immunodeficiency virus-HCV-coinfected patients. J Infect Dis,2002,186(10): 1498-1502.
    [23]Pollard RB, Robinson P, Dransfield K. Safety profile of nevirapine, a nonnucleoside reverse transcriptase inhibitor for the treatment of human immunodeficiency virus infection. Clin Ther,1998,20(6):1071-1092.
    [24]Baylor MS, Johann-Liang R. Hepatotoxicity associated with nevirapine use. J Acquir Immune Defic Syndr,2004,35(5):538-539.
    [25]van Leth F, Phanuphak P, Ruxrungtham K, et al. Comparison of first-line antiretroviral therapy with regimens including nevirapine, efavirenz, or both drugs, plus stavudine and lamivudine:a randomised open-label trial, the 2NN Study. Lancet,2004,363(9417):1253-1263.
    [26]Gonzalez de Requena D, Nunez M, Jimenez-Nacher I, et al. Liver toxicity caused by nevirapine. Aids,2002,16(2):290-291.
    [27]Fuping G, Wei L, Yang H, et al. Impact of hepatitis C virus coinfection on HAART in HIV-infected individuals:multicentric observation cohort. J Acquir Immune Defic Syndr,2010,54(2):137-142.
    [28]Li T, Dai Y, Kuang J, et al. Three generic nevirapine-based antiretroviral treatments in Chinese HIV/AIDS patients:multicentric observation cohort. PLoS One,2008,3(12):e3918.
    [29]Kappelhoff BS, van Leth F, Robinson PA, et al. Are adverse events of nevirapine and efavirenz related to plasma concentrations? Antivir Ther,2005,10(4): 489-498.
    [30]Almond LM, Boffito M, Hoggard PG, et al. The relationship between nevirapine plasma concentrations and abnormal liver function tests. AIDS Res Hum Retroviruses,2004,20(7):716-722.
    [31]Dailly E, Billaud E, Reliquet V, et al. No relationship between high nevirapine plasma concentration and hepatotoxicity in HIV-1-infected patients naive of antiretroviral treatment or switched from protease inhibitors. Eur J Clin Pharmacol,2004,60(5):343-348.
    [32]Podzamczer D, Olmo M, Sanz J, et al. Safety of Switching Nevirapine Twice Daily to Nevirapine Once Daily in Virologically Suppressed Patients. J Acquir Immune Defic Syndr,2009,50(4):390-396.
    [33]Martin AM, Nolan D, James I, et al. Predisposition to nevirapine hypersensitivity associated with HLA-DRBl*0101 and abrogated by low CD4 T-cell counts. Aids,2005,19(1):97-99.
    [34]Montaner JS, Cahn P, Zala C, et al. Randomized, controlled study of the effects of a short course of prednisone on the incidence of rash associated with nevirapine in patients infected with HIV-1. J Acquir Immune Defic Syndr,2003,33(1):41-46.
    [35]de Maat MM, ter Heine R, Mulder JW, et al. Incidence and risk factors for nevirapine-associated rash. Eur J Clin Pharmacol,2003,59(5-6):457-462.
    [36]Likanonsakul S, Rattanatham T, Feangvad S, et al. HLA-Cw*04 allele associated with nevirapine-induced rash in HIV-infected Thai patients. AIDS Res Ther,2009,6(22.
    [37]Littera R, Carcassi C, Masala A, et al. HLA-dependent hypersensitivity to nevirapine in Sardinian HIV patients. Aids,2006,20(12):1621-1626.
    [38]Chantarangsu S, Mushiroda T, Mahasirimongkol S, et al. HLA-B*3505 allele is a strong predictor for nevirapine-induced skin adverse drug reactions in HIV-infected Thai patients. Pharmacogenet Genomics,2009,19(2):139-146.
    [39]Namayanja GK, Nankya JM, Byamugisha JK, et al. Stevens-Johnson syndrome due to nevirapine. Afr Health Sci,2005,5(4):338-340.
    [40]Kiertiburanakul S, Malathum K, Watcharananan S, et al. Predicting factors for unsuccessful switching from nevirapine to efavirenz in HIV-infected patients who developed nevirapine-associated skin rash. Int J STD AIDS,2009,20(3):176-179.
    [41]Sulkowski MS, Thomas DL, Mehta SH, et al. Hepatotoxicity associated with nevirapine or efavirenz-containing antiretroviral therapy:role of hepatitis C and B infections. Hepatology,2002,35(1):182-189.
    [42]Vogel M, Bertram N, Wasmuth JC, et al. Nevirapine pharmacokinetics in HIV-infected and HIV/HCV-coinfected individuals. J Antimicrob Chemother,2009,63(5):988-991.
    [43]Labarga P, Soriano V, Vispo ME, et al. Hepatotoxicity of antiretroviral drugs is reduced after successful treatment of chronic hepatitis C in HIV-infected patients. J Infect Dis,2007,196(5):670-676.
    [44]Shipton LK, Wester CW, Stock S, et al. Safety and efficacy of nevirapine- and efavirenz-based antiretroviral treatment in adults treated for TB-HIV co-infection in Botswana. Int J Tuberc Lung Dis,2009,13(3):360-366.
    [45]Joy S, Poi M, Hughes L, et al. Third-trimester maternal toxicity with nevirapine use in pregnancy. Obstet Gynecol,2005,106(5 Pt 1):1032-1038.
    [46]Manfredi R, Calza L. Safety issues about nevirapine administration in HIV-infected pregnant women. J Acquir Immune Defic Syndr,2007,45(3):365-368.
    [47]Sanne I, Mommeja-Marin H, Hinkle J, et al. Severe hepatotoxicity associated with nevirapine use in HIV-infected subjects. J Infect Dis,2005,191(6):825-829.
    [48]Ho TT, Wong KH, Chan KC, et al. High incidence of nevirapine-associated rash in HIV-infected Chinese. Aids,1998,12(15):2082-2083.
    [49]Maniar JK, Shah SR, Verma R, et al. Nevirapine-induced fulminant hepatitis. J Assoc Physicians India,2006,54(957-958.
    [50]Buyse S, Vibert E, Sebagh M, et al. Liver transplantation for fulminant hepatitis related to nevirapine therapy. Liver Transpl,2006,12(12):1880-1882.
    [51]Shenton JM, Teranishi M, Abu-Asab MS, et al Characterization of a potential animal model of an idiosyncratic drug reaction: nevirapine-induced skin rash in the rat. Chem Res Toxicol,2003,16(9):1078-1089.
    [52]Popovic M, Caswell JL, Mannargudi B, et al. Study of the sequence of events involved in nevirapine-induced skin rash in Brown Norway rats. Chem Res Toxicol,2006,19(9):1205-1214.
    [53]Shenton JM, Popovic M, Chen J, et al. Evidence of an immune-mediated mechanism for an idiosyncratic nevirapine-induced reaction in the female Brown Norway rat. Chem Res Toxicol,2005,18(12):1799-1813.
    [54]郭业磊,陈钰.CD8+T调节细胞的研究进展.细胞与分子免疫学杂志,2009,25(8):762-763.
    [55]Chen J, Mannargudi BM, Xu L, et al. Demonstration of the metabolic pathway responsible for nevirapine-induced skin rash. Chem Res Toxicol,2008,21(9): 1862-1870.
    [56]Shegokar R, Singh KK. Nevirapine nanosuspensions for HIV reservoir targeting. Pharmazie,66(6):408-415.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700