血管造影—FPA血液动力学评估猪心外膜冠状动脉和微血管病变
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分使用血管造影图像评价猪心外膜冠状动脉狭窄生理学严重程度
     目的:在临床实践中,冠状动脉血流储备(coronary flow reserve, CFR)和冠状动脉血流储备分数(fractional flow reserve, FFR)都是评价冠状动脉疾病重要的生理学指标,对评价预后也有重要意义,但是其常规的测量方法需要使用侵入性的压力导丝穿过狭窄病灶来完成。一种基于“首过分布”分析技术(first-pass distribution analysis, FPA)和级联放大定律的定量测量方法可以利用冠状动脉血管造影图像数据测量CFR和FFR。本研究的目的是,在猪的动物模型验证基于血管造影图像测量CFR和FFR技术的可行性。对象和方法:本研究使用12只美国实验小型猪,开胸在冠状动脉左前降支(left anterior descending artery,LAD)近段放置超声流量探头,使用血管外封堵器来制造心外膜冠状动脉血管狭窄,向冠状动脉左主干注射对比剂并采集图像。实验中实时记录超声流量探头测定的冠状动脉血流量(Qq)、主动脉压力(Pa)、冠状动脉末端血压(Pd)及右心房血压(Pv)等生理学指标。在LAD血管造影图像的血管床上画兴趣区来绘制“时间—密度曲线”,并假设在注射对比剂时血液被对比剂暂时完全替代,利用“首过分布”分析技术来计算基于血管造影图像的冠状动脉血流量(Q。)。①绝对冠状动脉血流储备由最大充血状态与静息状态血流量的比值来计算,分别使用Qq和Qa计算基于超声流量探头测定的绝对冠状动脉血流储备(aCFRq)和基于血管造影的绝对冠状动脉血流储备(aCFRa)。②使用最大充血状态LAD与回旋支(LCx)的标准化Qa之比率来计算相对冠状动脉血流储备分数(rFFRa)。③基于血管造影的FFR (FFRa)通过使用最大充血状态下的狭窄冠状动脉血流量(Qs)除以理论上无血管狭窄时正常的血流量(QN)来计算。利用“首过分布”分析技术使用“时间—密度曲线”来计算Qs。根据级联放大定律并使用LAD血管总的管腔容量来评估QN。在最大充血状态下使用超声流量探头测量的狭窄冠状动脉血流量与无狭窄时该血管能达到的最大血流量之比作为基于超声流量探头测定的FFR(FFRq)。实验中实时监测压力衍生的FFR(FFRp)是通过使用(Pd-P,)除以(Pa-Pv)来计算。结果:aCFRa与作为金标准的aCFRq有很好的相关性(aCFRa=0.91aCFRq+0.30, r=0.90, p<0.0001), rFFRa也与FFRq线性相关(rFFRa=0.86FFRq+0.05, r=0.90, p<0.0001),FFRa与FFRq显示了很好的相关性(FFRa=0.97FFRq+0.06,r=0.86,p<0.001),而FFRp的值会较FFRq的值高(FFRp=0.686FFRq+0.271, r=0.87,p<0.0001),特别是在严重狭窄的情况下。另外Bland-Altman分析也显示出基于血管造影方法测量的血液动力学指标与基于超声流量探头的金标准指标有很好的一致性。结论:本研究在猪的动物模型验证了基于冠状动脉血管造影图像测定CFR和FFR技术的可行性。这种无需借助多普勒导丝的基于血管造影图像的定量测定CFR和FFR的方法,有潜力被应用于常规的诊断性心血管造影过程中,为冠状动脉狭窄病灶提供生理学评估。
     第二部分利用猪的动物模型评价冠状动脉微循环
     目的:冠状动脉微循环功能障碍对病人预后具有重要的指示意义。如绝对冠状动脉血流储备(absolute coronary flow reserve, aCFR)、冠状动脉微血管阻力(microvascular resistance, MR)及零血流状态冠状动脉压力(zero-flow pressure,Pzf)等一些血液动力学指标可以被应用于评价冠状动脉微循环状态。但是常规评价冠状动脉微循环状态的方法需要借助多普勒导丝来测定血流速度,对病人创伤大、风险高。许多研究证实了“首过分布”分析技术(first-pass distribution analysis, FPA)可利用血管造影图像来测量冠状动脉血流量。本研究拟通过动物实验验证血管造影方法定量测定MR技术的可行性,并比较上述三种血液动力学指标在评价冠状动脉微循环方面的优劣。对象和方法:本研究使用15只美国实验小型猪,开胸在冠状动脉左前降支(left anterior descending artery, LAD)近段放置超声流量探头以测量血流量,使用介入导管技术在LAD远端放置压力导丝以测量末端血压力。静脉滴注腺苷(400μg/kg/min)来诱导最大充血状态,使用微球体制作冠状动脉微血管障碍模型,并使用血管外封堵器来制造冠状动脉狭窄。在血管造影图像上,选取LAD动脉血管床作为兴趣区来绘制“时间—密度曲线”,并假设血管造影时血液被对比剂瞬时替代,使用“时间—密度曲线”来计算基于血管造影的冠状动脉血流量(Qa)。实验中实时记录超声流量探头测定的冠状动脉血流量(Qq)、主动脉压力(Pa)、冠状动脉末端血压(Pd)及右房血压(Pv)等生理学参数。分别使用Qq和Qa计算基于超声流量探头测定的aCFR (aCFRq)和基于血管造影的aCFR (aCFRa),基于超声流量探头测定的MR(NMRq)和基于血管造影的MR(NMRa)。利用实时测量的Qq和Pd来计算Pzf。结果:在258组冠状动脉血流量和微血管阻力的测量中,Qa与作为金标准的Qp有很好的相关性(Qa=0.90Qq+6.6ml/min, r=0.956, p<0.0001),NMR。也与NMRq线性相关(NMRa=0.90NMRq+0.02mmHg/ml/min, r=0.956,p<0.0001)。另外Bland-Altman分析也显示出NMRa与NMRq有很好的一致性。在两个冠状动脉微循环障碍模型中分别使用受试者工作特性(receiver operating characteristic, ROC)曲线来评价三种血液动力学指标:正常心外膜冠状动脉(N模型)和心外膜冠状动脉狭窄模型(S模型)。在N模型中,aCFR、aCFRa、NMRq、NMRa及Pzf的ROC曲线下面积分别为:0.855、0.836、0.976、0.956、及0.855;在S模型中,aCFRq、aCFRa、NMRq、NMRa及Pzf的ROC曲线下面积分别为:0.737、0.700、0.935、0.889及0.698。NMRq和NMRa在检测冠状动脉微循环病变方面的能力显著高于其他指标。结论:本研究在猪的动物模型验证了基于冠状动脉血管造影图像测定NMR技术的可行性。相比于CFR和Pzf,NMR可以为冠状动脉微循环提供更加准确的评价,特别是存在心外膜冠状动脉狭窄的情况下。本研究提供了一个无需多普勒导丝的测定NMR的方法,该方法测定的NMR有潜力成为一种微创的评价冠状动脉微循环的方法。
Part I Assessment of the physiological severity for coronary epicardial stenosis by using the angiography images data
     Object i ve:Coronary flow reserve (CFR) and fractional flow reserve (FFR) are important physiological determinants for coronary disease in the clinical settings. However, the measurements currently require a sensor wire advanced across the stenosis. While an angiographic technique based on first-pass distribution analysis (FPA) and scaling laws can be used to measure CFR and FFR using only image data. The purpose of this study was to validate the CFR and FFR measurement techniques using only angiographic image data. Materials and Methods:Twelve swine were instrumented with an ultrasound flow probe on the left anterior descending artery (LAD). An extravascular occluder was used to produce stenosis. Contrast material injections were made into the left coronary artery during image acquisition. Volumetric blood flow from the flow probe (Qq), coronary pressure (Pa), distal coronary pressure (Pd) and right atrium pressure (Pv) were continuously recorded. Angiography-based blood flow (Qa) was calculated by using a time-density curve based on the FPA technique.①Flow probe based absolute CFR (aCFRq) and angiography based aCFR (aCFRa) were calculated as the ratio of hyperemic to baseline flow using Qq and Qa, respectively.②Relative angiographic FFR (rFFRa) was calculated as the ratio of the normalized Qa in LAD to the left circumflex artery (LCx) during hyperemia.③To determine the angiography-based FFR (FFRa), the ratio of blood flow in the presence of a stenosis (Qs) to theoretically normal blood flow (QN) was calculated. Qs was measured using a time-density curve and the assumption that blood was momentarily replaced with contrast agent during the injection. QN was estimated from the total coronary arterial volume using scaling laws. Flow probe-based FFR (FFRq) was measured from the ratio of flow with and without stenosis. Pressure-wire measurements of FFR (FFRP), which was calculated from the ratio of (Pd-Py) divided by (Pa-Py), were continuously obtained during the study. Resu I ts:aCFRa showed a strong correlation with the gold standard aCFRq (aCFRa=0.91aCFRq+0.30, r=0.90, p<0.0001). Relative FFRa correlated linearly with FFRq (relative FFRa=0.86FFRq+0.05, r=0.90, p<0.0001). FFRa showed a good correlation with FFRq (FFRa=0.97FFRq+0.06, r=0.86, p<0.001), although FFRP overestimated the FFRq (FFRp=0.686FFRq+0.271, r=0.87, p<0.0001). Additionally, the Bland-Altman analysis showed a close agreement between the angiographic and the gold standard flow probe indices. Conelusions:The quantification of CFR and FFR using angiographic image data was validated in a swine model. This angiographic technique, which does not require a wire across the stenosis, could potentially be used for coronary physiological assessment during routine cardiac catheterization.
     Part Ⅱ Assessment of Coronary Microcirculation in a Swine Animal Model
     Objective:Structural coronary microcirculation abnormalities are important prognostic determinants in clinical settings. Several hemodynamic indices, such as absolute coronary flow reserve (aCFR), microvascular resistance (MR) and zero-flow pressure (Pzf). However, assessment of coronary microvascular system requires a velocity wire. A first-pass distribution analysis (FPA) technique to measure volumetric blood flow has previously been validated. The aim of this study was the in vivo validation of the MR measurement technique using FPA, to compare and establish the most reliable index to assess coronary microcirculation. Materials and Methods:Twelve anesthetized swine were instrumented with a transit-time ultrasound flow probe on the proximal segment of the left anterior descending (LAD) artery. A pressure wire was advanced into the distal LAD. Intravenous adenosine (400μg/kg/min) was used to produce maximum hyperemia. Microspheres were injected into the LAD to create a model of microvascular dysfunction. An occluder was used to produce stenosis. A region of interest in the LAD arterial bed was drawn to generate time-density curves using angiographic images. Volumetric blood flow measurements (Qa) were made using a time-density curve and the assumption that blood was momentarily replaced with contrast agent during the injection. Blood flow from the probe (Qq), aortic pressure (Pa), distal coronary pressure (Pd) and right atrium pressure (Pv) were continuously recorded. Flow probe based aCFR (aCFRq) and angiographic aCFR (aCFRa) were calculated using Qq and Qa, respectively. Flow probe based normalized MR (NMRq) and angiography based normalized MR (NMRa) were calculated using Qq and Qa, respectively during hyperemia. Pzf was calculated using Qq and Pd. Results:In258measurements, Qa showed a strong correlation with the gold standard Qq (Qa=0.90Qq+6.6ml/min, r=0.956, p<0.0001). NMRa correlated linearly with NMRq (NMRa=0.90NMRq+0.02mmHg/ml/min, r=0.956, p<0.0001). Additionally, the Bland-Altman analysis showed a close agreement between NMRa and NMRq. Two series of ROC curves were generated: normal epicardial artery model (N-model) and stenosis model (S-model). The areas under the ROC curves for aCFRq, aCFRa, NMRq, NMRa, Pzf were0.855,0.836,0.976,0.956,0.855in N-model and0.737,0.700,0.935,0.889,0.698in S-model. Both NMRq and NMRa were significantly more reliable than aCFR and Pzf in detecting the microvascular deterioration. Conelusions:A technique based on angiographic image data for quantifying NMR was validated using a swine model. Compared to aCFR and Pzf, NMR provided a more accurate assessment of microcirculation. This improved accuracy was more prevalent when stenosis existed. This study provides a method to measure NMR, without using a velocity wire, which can potentially be used to evaluate microvascular conditions during coronary arteriography as a less invasive method.
引文
[1]Wu Z, Yao C, Zhao D, et al. Sino-MONICA project:a collaborative study on trends and determinants in cardiovascular diseases in China, Part i:morbidity and mortality monitoring[J]. Circulation,2001,103(3):462-468.
    [2]Roger VL, Go AS, Lloyd-Jones DM, et al. Heart disease and stroke statistics--2012 update:a report from the American Heart Association[J]. Circulation,2012,125(1):e2-e220.
    [3]Lloyd-Jones D, Adams R, Carnethon M, et al. Heart disease and stroke statistics--2009 update:a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee[J]. Circulation,2009, 119(3):480-486.
    [4]Thomas GN, Ho SY, Janus ED, et al. The US National Cholesterol Education Programme Adult Treatment Panel III (NCEP ATP Ⅲ) prevalence of the metabolic syndrome in a Chinese population[J]. Diabetes Res Clin Pract,2005, 67(3):251-257.
    [5]Varnava AM, Mills PG, Davies MJ. Relationship between coronary artery remodeling and plaque vulnerability[J]. Circulation,2002,105(8):939-943.
    [6]Spaan JAE, Piek JJ, Hoffman JIE, et al. Physiological basis of clinically used coronary hemodynamic indices[J]. Circulation,2006,113(3):446-455.
    [7]Knaapen P, Camici PG, Marques KM, et al. Coronary microvascular resistance: methods for its quantification in humans[J]. Basic Res Cardiol,2009, 104(5):485-498.
    [8]Cheezum MK, Hulten EA, Fischer C, et al. Prognostic value of coronary CT angiography[J]. Cardiol Clin,2012,30(1):77-91.
    [9]Camici PG, Crea F. Coronary microvascular dysfunction[J]. N Engl J Med, 2007,356(8):830-840.
    [10]Kern MJ, Lerman A, Bech JW, et al. Physiological assessment of coronary artery disease in the cardiac catheterization laboratory: a scientific statement from the American Heart Association Committee on Diagnostic and Interventional Cardiac Catheterization, Council on Clinical Cardiology[J]. Circulation,2006,114(12):1321-1341.
    [11]van Liebergen RA, Piek JJ, Koch KT, et al. Quantification of collateral flow in humans:a comparison of angiographic, electrocardiographic and hemodynamic variables[J]. J Am Coll Cardiol,1999,33(3):670-677.
    [12]White CW, Wright CB, Doty DB, et al. Does visual interpretation of the coronary arteriogram predict the physiologic importance of a coronary stenosis?[J]. N Engl J Med,1984,310(13):819-824.
    [13]Folland ED, Vogel RA, Hartigan P, et al. Relation between coronary artery stenosis assessed by visual, caliper, and computer methods and exercise capacity in patients with single-vessel coronary artery disease. The Veterans Affairs ACME Investigators[J]. Circulation,1994,89(5):2005-2014.
    [14]De Bruyne B, Baudhuin T, Melin JA, et al. Coronary flow reserve calculated from pressure measurements in humans. Validation with positron emission tomography[J]. Circulation,1994,89(3):1013-1022.
    [15]Pijls NH, De Bruyne B, Peels K, et al. Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses[J]. N Engl J Med, 1996,334(26):1703-1708.
    [16]Tonino PA, De Bruyne B, Pijls NH, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention[J]. N Engl J Med, 2009,360(3):213-224.
    [17]Bradley AJ, Alpert JS. Coronary flow reserve[J]. Am Heart J,1991,122(4 Pt 1):1116-1128.
    [18]Spaan JA. Coronary flow is not that simple![J]. Heart,2009,95(9):761-762; author reply 762.
    [19]Gould KL, Lipscomb K, Hamilton GW. Physiologic basis for assessing critical coronary stenosis. Instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve[J]. Am J Cardiol,1974,33(1):87-94.
    [20]Gould KL, Kirkeeide RL, Buchi M. Coronary Flow Reserve as a Physiologic Measure of Stenosis Severity[J]. Journal of the American College of Cardiology,1990,15(2):459-474.
    [21]El-Ahdab F, Ragosta M. Invasive assessment of coronary flow reserve[J]. J Nucl Cardiol,2008,15(2):276-281.
    [22]Lepper W, Hoffmann R, Kamp O, et al. Assessment of myocardial reperfusion by intravenous myocardial contrast echocardiography and coronary flow reserve after primary percutaneous transluminal coronary angioplasty [correction of angiography] in patients with acute myocardial infarction[J]. Circulation,2000,101(20):2368-2374.
    [23]Voudris V, Avramides D, Koutelou M, et al. Relative coronary flow velocity reserve improves correlation with stress myocardial perfusion imaging in assessment of coronary artery stenoses[J]. Chest,2003,124(4):1266-1274.
    [24]Melikian N, Del Furia F, Di Mario C. Physiologic lesion assessment during percutaneous coronary intervention[J]. Cardiol Clin,2010,28(1):31-54.
    [25]De Bruyne B, Sarma J. Fractional flow reserve:a review:invasive imaging[J]. Heart,2008,94(7):949-959.
    [26]Baumgart D, Haude M, Goerge G, et al. Improved assessment of coronary stenosis severity using the relative flow velocity reserve[J]. Circulation,1998, 98(1):40-46.
    [27]Heusch G. Adenosine and maximum coronary vasodilation in humans:myth and misconceptions in the assessment of coronary reserve[J]. Basic Res Cardiol,2010,105(1):1-5.
    [28]Bassenge E, Heusch G Endothelial and neuro-humoral control of coronary blood flow in health and disease[J]. Rev Physiol Biochem Pharmacol,1990, 116:77-165.
    [29]Liu Y, Gutterman DD. Vascular control in humans:focus on the coronary microcirculation[J]. Basic Res Cardiol,2009,104(3):211-227.
    [30]Spaan JA, Piek JJ, Hoffman JI, et al. Physiological basis of clinically used coronary hemodynamic indices[J]. Circulation,2006,113(3):446-455.
    [31]Kitabata H, Imanishi T, Kubo T, et al. Coronary microvascular resistance index immediately after primary percutaneous coronary intervention as a predictor of the transmural extent of infarction in patients with ST-segment elevation anterior acute myocardial infarction[J]. JACC Cardiovasc Imaging, 2009,2(3):263-272.
    [32]Ng MK, Yeung AC, Fearon WF. Invasive assessment of the coronary microcirculation: superior reproducibility and less hemodynamic dependence of index of microcirculatory resistance compared with coronary flow reserve[J]. Circulation,2006,113(17):2054-2061.
    [33]De Bruyne B, Pijls NH, Smith L, et al. Coronary thermodilution to assess flow reserve:experimental validation[J]. Circulation,2001,104(17):2003-2006.
    [34]Fearon WF, Farouque HM, Balsam LB, et al. Comparison of coronary thermodilution and Doppler velocity for assessing coronary flow reserve[J]. Circulation,2003,108(18):2198-2200.
    [35]Meuwissen M, Chamuleau SA, Siebes M, et al. Role of variability in microvascular resistance on fractional flow reserve and coronary blood flow velocity reserve in intermediate coronary lesions[J]. Circulation,2001, 103(2):184-187.
    [36]Fearon WF, Balsam LB, Farouque HM, et al. Novel index for invasively assessing the coronary microcirculation[J]. Circulation,2003, 107(25):3129-3132.
    [37]Gould KL, Lipscomb K. Effects of coronary stenoses on coronary flow reserve and resistance[J]. Am J Cardiol,1974,34(1):48-55.
    [38]Gould KL, Lipscomb K, Calvert C. Compensatory changes of the distal coronary vascular bed during progressive coronary constriction[J]. Circulation, 1975,51(6):1085-1094.
    [39]Shimada K, Sakanoue Y, Kobayashi Y, et al. Assessment of myocardial viability using coronary zero flow pressure after successful angioplasty in patients with acute anterior myocardial infarction [J]. Heart,2003, 89(1):71-76.
    [40]Vogel R, Indermuhle A, Reinhardt J, et al. The quantification of absolute myocardial perfusion in humans by contrast echocardiography:algorithm and validation[J]. J Am Coll Cardiol,2005,45(5):754-762.
    [41]Vogel R, Zbinden R, Indermuhle A, et al. Collateral-flow measurements in humans by myocardial contrast echocardiography:validation of coronary pressure-derived collateral-flow assessment[J]. Eur Heart J,2006, 27(2):157-165.
    [42]Vogel R, Indermuhle A, Seiler C. Determination of the absolute perfusion threshold preventing myocardial ischaemia in humans[J]. Heart,2007, 93(1):115-116.
    [43]Vogel R, Indermuhle A, Meier P, et al. Quantitative stress echocardiography in coronary artery disease using contrast-based myocardial blood flow measurements:prospective comparison with coronary angiography[J]. Heart, 2009,95(5):377-384.
    [44]Ganz W, Tamura K, Marcus HS, et al. Measurement of coronary sinus blood flow by continuous thermodilution in man[J]. Circulation,1971, 44(2):181-195.
    [45]van't Veer M, Geven MC, Rutten MC, et al. Continuous infusion thermodilution for assessment of coronary flow:theoretical background and in vitro validation[J]. Med Eng Phys,2009,31(6):688-694.
    [46]Banerjee RK, Ashtekar KD, Effat MA, et al. Concurrent assessment of epicardial coronary artery stenosis and microvascular dysfunction using diagnostic endpoints derived from fundamental fluid dynamics principles[J]. J Invasive Cardiol,2009,21(10):511-517.
    [47]Hangiandreou NJ, Folts JD, Peppler WW, et al. Coronary blood flow measurement using an angiographic first pass distribution technique:a feasibility study[J]. Med Phys,1991,18(5):947-954.
    [48]Marinus H, Buis B, van Benthem A. Pulsatile coronary flow determination by digital angiography[J]. Int J Card Imaging,1990,5(2-3):173-182.
    [49]Molloi S, Ersahin A, Tang J, et al. Quantification of volumetric coronary blood flow with dual-energy digital subtraction angiography[J]. Circulation, 1996,93(10):1919-1927.
    [50]Molloi S, Bednarz G, Tang J, et al. Absolute volumetric coronary blood flow measurement with digital subtraction angiography[J]. Int J Card Imaging, 1998,14(3):137-145.
    [51]Wong JT, Molloi S. Determination of fractional flow reserve (FFR) based on scaling laws:a simulation study[J]. Phys Med Biol,2008,53(14):3995-4011.
    [52]Ko JC, Williams BL, Smith VL, et al. Comparison of Telazol, Telazol-ketamine, Telazol-xylazine, and Telazol-ketamine-xylazine as chemical restraint and anesthetic induction combination in swine[J]. Lab Anim Sci,1993,43(5):476-480.
    [53]Ko JC, Williams BL, Rogers ER, et al. Increasing xylazine dose-enhanced anesthetic properties of telazol-xylazine combination in swine[J]. Lab Anim Sci,1995,45(3):290-294.
    [54]Gewirtz H, Ohley W, Williams DO, et al. Effect of intraaortic balloon counterpulsation on regional myocardial blood flow and oxygen consumption in the presence of coronary artery stenosis:observations in an awake animal model[J]. Am J Cardiol,1982,50(4):829-837.
    [55]Molloi S, Kassab GS, Zhou Y. Quantification of coronary artery lumen volume by digital angiography: in vivo validation[J]. Circulation,2001, 104(19):2351-2357.
    [56]Wong JT, Le H, Suh WM, et al. Quantification of fractional flow reserve based on angiographic image data[J]. Int J Cardiovasc Imaging,2012, 28(1):13-22.
    [57]Pijls NH, Uijen GJ, Hoevelaken A, et al. Mean transit time for the assessment of myocardial perfusion by videodensitometry[J]. Circulation,1990, 81(4):1331-1340.
    [58]Pijls NH, Uijen GJ, Hoevelaken A, et al. Mean transit time for videodensitometric assessment of myocardial perfusion and the concept of maximal flow ratio:a validation study in the intact dog and a pilot study in man[J]. Int J Card Imaging,1990,5(2-3):191-202.
    [59]Pijls NH, Uijen GJ, Pijnenburg T, et al. Reproducibility of mean transit time for maximal myocardial flow assessment by videodensitometry[J]. Int J Card Imaging,1990,6(2):101-108.
    [60]Rittger H, Kuper A, Breithardt OA, et al. A new angiographic method to assess coronary flow reserve-validation in humans[J]. Catheter Cardiovasc Interv,75(2):167-173.
    [61]Zhang Z, Takarada S, Molloi S. Quantification of coronary microvascular resistance using angiographic images for volumetric blood flow measurement: in vivo validation[J]. Am J Physiol Heart Circ Physiol,2011, 300(6):H2096-2104.
    [62]Kaimovitz B, Lanir Y, Kassab GS. Large-scale 3-D geometric reconstruction of the porcine coronary arterial vasculature based on detailed anatomical data[J].Ann Biomed Eng,2005,33(11):1517-1535.
    [63]Kern MJ, Puri S, Craig WR, et al. Hemodynamic rounds series Ⅱ:Coronary hemodynamics for angioplasty and stenting after myocardial infarction:use of absolute, relative coronary velocity and fractional flow reserve[J]. Cathet Cardiovasc Diagn,1998,45(2):174-182.
    [64]Le H, Wong JT, Molloi S. Estimation of regional myocardial mass at risk based on distal arterial lumen volume and length using 3D micro-CT images[J]. Comput Med Imaging Graph,2008,32(6):488-501.
    [65]Le HQ, Wong JT, Molloi S. Allometric scaling in the coronary arterial system[J]. Int J Cardiovasc Imaging,2008,24(7):771-781.
    [66]Molloi S, Chalyan D, Le H, et al. Estimation of coronary artery hyperemic blood flow based on arterial lumen volume using angiographic images[J]. Int J Cardiovasc Imaging,2012,28(1):1-11.
    [67]de Groot D, Grundmann S, Timmers L, et al. Assessment of collateral artery function and growth in a pig model of stepwise coronary occlusion[J]. Am J Physiol Heart Circ Physiol,2011,300(1):H408-414.
    [68]Struijker-Boudier HA, Rosei AE, Bruneval P, et al. Evaluation of the microcirculation in hypertension and cardiovascular disease[J]. Eur Heart J, 2007,28(23):2834-2840.
    [69]Zhang Z, Takarada S, Molloi S. Assessment of coronary microcirculation in a swine animal model[J]. Am J Physiol Heart Circ Physiol,2011, 301(2):H402-408.
    [70]Lima RS, Watson DD, Goode AR, et al. Incremental value of combined perfusion and function over perfusion alone by gated SPECT myocardial perfusion imaging for detection of severe three-vessel coronary artery disease[J]. J Am Coll Cardiol,2003,42(1):64-70.
    [71]Senen K, Yetkin E, Turhan H, et al. Increased thrombolysis in myocardial infarction frame counts in patients with isolated coronary artery ectasia[J]. Heart Vessels,2004,19(1):23-26.
    [72]Vijayalakshmi K, De Belder MA. Angiographic and physiologic assessment of coronary flow and myocardial perfusion in the cardiac catheterization laboratory[J]. Acute Card Care,2008,10(2):69-78.
    [73]Bishop AH, Samady H. Fractional flow reserve: critical review of an important physiologic adjunct to angiography[J]. Am Heart J,2004, 147(5):792-802.
    [74]Pijls NH, van Son JA, Kirkeeide RL, et al. Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous transluminal coronary angioplasty[J]. Circulation,1993, 87(4):1354-1367.
    [75]Siebes M, Chamuleau SA, Meuwissen M, et al. Influence of hemodynamic conditions on fractional flow reserve:parametric analysis of underlying model[J]. Am J Physiol Heart Circ Physiol,2002,283(4):H1462-1470.
    [76]Pantely GA, Ladley HD, Bristow JD. Low zero-flow pressure and minimal capacitance effect on diastolic coronary arterial pressure-flow relationships during maximum vasodilation in swine[J]. Circulation,1984,70(3):485-494.
    [77]Waters SL, Alastruey J, Beard DA, et al. Theoretical models for coronary vascular biomechanics:progress & challenges[J]. Prog Biophys Mol Biol, 2011,104(1-3):49-76.
    [78]Siebes M, Verhoeff BJ, Meuwissen M, et al. Single-wire pressure and flow velocity measurement to quantify coronary stenosis hemodynamics and effects of percutaneous interventions[J]. Circulation,2004,109(6):756-762.
    [79]Verhoeff BJ, Siebes M, Meuwissen M, et al. Influence of percutaneous coronary intervention on coronary microvascular resistance index[J]. Circulation,2005, 111(1):76-82.
    [80]de Marchi SF, Gloekler S, Rimoldi SF, et al. Microvascular response to metabolic and pressure challenge in the human coronary circulation[J]. Am J Physiol Heart Circ Physiol,2011,301(2):H434-441.
    [81]Fearon WF, Shah M, Ng M, et al. Predictive value of the index of microcirculatory resistance in patients with ST-segment elevation myocardial infarction[J]. J Am Coll Cardiol,2008,51(5):560-565.
    [82]Nanto S, Masuyama T, Hori M, et al. Zero flow pressure in human coronary circulation[J]. Angiology,1996,47(2):115-122.
    [83]Spinale FG, Tanaka R, Crawford FA, et al. Changes in myocardial blood flow during development of and recovery from tachycardia-induced cardiomyopathy[J]. Circulation,1992,85(2):717-729.
    [84]Bartoli CR, Okabe K, Akiyama I, et al. Repeat microsphere delivery for serial measurement of regional blood perfusion in the chronically instrumented, conscious canine[J]. J Surg Res,2008,145(1):135-141.
    [85]Carlsson M, Saloner D, Martin AJ, et al. Heterogeneous microinfarcts caused by coronary microemboli:evaluation with multidetector CT and MR imaging in a swine model[J]. Radiology,2010,254(3):718-728.
    [86]Skyschally A, Schulz R, Erbel R, et al. Reduced coronary and inotropic reserves with coronary microembolization[J]. Am J Physiol Heart Circ Physiol,2002,282(2):H611-614.
    [87]Thielmann M, Dorge H, Martin C, et al. Myocardial dysfunction with coronary microembolization:signal transduction through a sequence of nitric oxide, tumor necrosis factor-alpha, and sphingosine[J]. Circ Res,2002, 90(7):807-813.
    [88]Escaned J, Flores A, Garcia-Pavia P, et al. Assessment of microcirculatory remodeling with intracoronary flow velocity and pressure measurements: validation with endomyocardial sampling in cardiac allografts[J]. Circulation, 2009,120(16):1561-1568.
    [89]Van Herck PL, Carlier SG, Claeys MJ, et al. Coronary microvascular dysfunction after myocardial infarction:increased coronary zero flow pressure both in the infarcted and in the remote myocardium is mainly related to left ventricular filling pressure[J]. Heart,2007,93(10):1231-1237.
    [90]Versluis JP, Heslinga JW, Sipkema P, et al. Microvascular pressure measurement reveals a coronary vascular waterfall in arterioles larger than 110 microm[J]. Am J Physiol Heart Circ Physiol,2001,281(5):H1913-1918.
    [91]Tanaka N, Takazawa K, Takeda K, et al. Coronary flow--pressure relationship distal to epicardial stenosis[J]. Circ J,2003,67(6):525-529.
    [92]Ito H. No-reflow phenomenon and prognosis in patients with acute myocardial infarction[J]. Nat Clin Pract Cardiovasc Med,2006,3(9):499-506.
    [93]Ito H, Terai K, Iwakura K, et al. Hemodynamics of microvascular dysfunction in patients with anterior wall acute myocardial infarction[J]. Am J Cardiol, 2004,94(2):209-212.
    [94]Chamuleau SA, Siebes M, Meuwissen M, et al. Association between coronary lesion severity and distal microvascular resistance in patients with coronary artery disease[J]. Am J Physiol Heart Circ Physiol,2003,285(5):H2194-2200.
    [95]Marzilli M, Sambuceti G, Fedele S, et al. Coronary microcirculatory vasoconstriction during ischemia in patients with unstable angina[J]. J Am Coll Cardiol,2000,35(2):327-334.
    [96]Sambuceti G, Marzilli M, Fedele S, et al. Paradoxical increase in microvascular resistance during tachycardia downstream from a severe stenosis in patients with coronary artery disease:reversal by angioplasty[J]. Circulation,2001,103(19):2352-2360.
    [97]Siebes M, Verhoeff BJ, Meuwissen M, et al. Single-wire pressure and flow velocity measurement to quantify coronary stenosis hemodynamics and effects of percutaneous interventions[J]. Circulation,2004,109(6):756-762.
    [98]Aarnoudse W, Fearon WF, Manoharan G, et al. Epicardial stenosis severity does not affect minimal microcirculatory resistance[J]. Circulation,2004, 110(15):2137-2142.
    [99]Fearon WF, Aarnoudse W, Pijls NH, et al. Microvascular resistance is not influenced by epicardial coronary artery stenosis severity:experimental validation[J]. Circulation,2004,109(19):2269-2272.
    [100]Ito N, Nanto S, Doi Y, et al. High index of microcirculatory resistance level after successful primary percutaneous coronary intervention can be improved by intracoronary administration of nicorandil[J]. Circ J,74(5):909-915.
    [101]van Royen N, Piek JJ, Schaper W, et al. A critical review of clinical arteriogenesis research[J]. J Am Coll Cardiol,2009,55(1):17-25.
    [1]Wu Z, Yao C, Zhao D, et al. Sino-MONICA project: a collaborative study on trends and determinants in cardiovascular diseases in China, Part i:morbidity and mortality monitoring[J]. Circulation,2001,103 (3):462-468.
    [2]Roger VL, Go AS, Lloyd-Jones DM, et al. Heart disease and stroke statistics--2012 update:a report from the American Heart Association[J]. Circulation,2012,125 (1):e2-e220.
    [3]Thomas GN, Ho SY, Janus ED, et al. The US National Cholesterol Education Programme Adult Treatment Panel III (NCEP ATP III) prevalence of the metabolic syndrome in a Chinese population[J]. Diabetes Res Clin Pract,2005, 67 (3):251-257.
    [4]Kern MJ, Lerman A, Bech JW, et al. Physiological assessment of coronary artery disease in the cardiac catheterization laboratory: a scientific statement from the American Heart Association Committee on Diagnostic and Interventional Cardiac Catheterization, Council on Clinical Cardiology[J]. Circulation,2006,114 (12):1321-1341.
    [5]Okubo M, Kawasaki M, Ishihara Y, et al. Tissue characterization of coronary plaques:comparison of integrated backscatter intravascular ultrasound with virtual histology intravascular ultrasound[J]. Circ J,2008,72 (10):1631-1639.
    [6]Kubo T, Imanishi T, Takarada S, et al. Assessment of culprit lesion morphology in acute myocardial infarction:ability of optical coherence tomography compared with intravascular ultrasound and coronary angioscopy[J]. J Am Coll Cardiol,2007,50 (10):933-939.
    [7]Kern MJ, Puri S, Craig WR, et al. Hemodynamic rounds series II:Coronary hemodynamics for angioplasty and stenting after myocardial infarction:use of absolute, relative coronary velocity and fractional flow reserve[J]. Cathet Cardiovasc Diagn,1998,45 (2):174-182.
    [8]van Liebergen RA, Piek JJ, Koch KT, et al. Quantification of collateral flow in humans:a comparison of angiographic, electrocardiographic and hemodynamic variables[J]. J Am Coll Cardiol,1999,33 (3):670-677.
    [9]White CW, Wright CB, Doty DB, et al. Does visual interpretation of the coronary arteriogram predict the physiologic importance of a coronary stenosis?[J]. N Engl J Med,1984,310 (13):819-824.
    [10]Folland ED, Vogel RA, Hartigan P, et al. Relation between coronary artery stenosis assessed by visual, caliper, and computer methods and exercise capacity in patients with single-vessel coronary artery disease. The Veterans Affairs ACME Investigators[J]. Circulation,1994,89 (5):2005-2014.
    [11]De Bruyne B, Baudhuin T, Melin JA, et al. Coronary flow reserve calculated from pressure measurements in humans. Validation with positron emission tomography[J]. Circulation,1994,89 (3):1013-1022.
    [12]Pijls NH, De Bruyne B, Peels K, et al. Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses[J]. N Engl J Med, 1996,334 (26):1703-1708.
    [13]Tonino PA, De Bruyne B, Pijls NH, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention[J]. N Engl J Med, 2009,360 (3):213-224.
    [14]Gould KL, Lipscomb K, Hamilton GW. Physiologic basis for assessing critical coronary stenosis. Instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve[J]. Am J Cardiol,1974,33 (1):87-94.
    [15]Spaan JA, Piek JJ, Hoffman JI, et al. Physiological basis of clinically used coronary hemodynamic indices [J]. Circulation,2006,113 (3):446-455.
    [16]Gould KL, Kirkeeide RL, Buchi M. Coronary Flow Reserve as a Physiologic Measure of Stenosis Severity[J]. Journal of the American College of Cardiology,1990,15 (2):459-474.
    [17]El-Ahdab F, Ragosta M. Invasive assessment of coronary flow reserve[J]. J Nucl Cardiol,2008,15 (2):276-281.
    [18]Lepper W, Hoffmann R, Kamp O, et al. Assessment of myocardial reperfusion by intravenous myocardial contrast echocardiography and coronary flow reserve after primary percutaneous transluminal coronary angioplasty [correction of angiography] in patients with acute myocardial infarction[J]. Circulation,2000,101 (20):2368-2374.
    [19]Voudris V, Avramides D, Koutelou M, et al. Relative coronary flow velocity reserve improves correlation with stress myocardial perfusion imaging in assessment of coronary artery stenoses[J]. Chest,2003,124 (4):1266-1274.
    [20]Melikian N, Del Furia F, Di Mario C. Physiologic lesion assessment during percutaneous coronary intervention[J]. Cardiol Clin,2010,28 (1):31-54.
    [21]Kaimovitz B, Lanir Y, Kassab GS. Large-scale 3-D geometric reconstruction of the porcine coronary arterial vasculature based on detailed anatomical data[J]. Ann Biomed Eng,2005,33 (11):1517-1535.
    [22]Baumgart D, Haude M, Goerge G, et al. Improved assessment of coronary stenosis severity using the relative flow velocity reserve[J]. Circulation,1998, 98 (1):40-46.
    [23]Zhang Z, Takarada S, Molloi S. Quantification of coronary micro vascular resistance using angiographic images for volumetric blood flow measurement: in vivo validation[J]. Am J Physiol Heart Circ Physiol,2011,300 (6):H2096-2104.
    [24]Wong JT, Le H, Suh WM, et al. Quantification of fractional flow reserve based on angiographic image data[J]. Int J Cardiovasc Imaging,2012,28 (1):13-22.
    [25]Wong JT, Molloi S. Determination of fractional flow reserve (FFR) based on scaling laws: a simulation study[J]. Phys Med Biol,2008,53 (14):3995-4011.
    [26]De Bruyne B, Sarma J. Fractional flow reserve:a review:invasive imaging[J]. Heart,2008,94 (7):949-959.
    [27]Bishop AH, Samady H. Fractional flow reserve:critical review of an important physiologic adjunct to angiography[J]. Am Heart J,2004,147 (5):792-802.
    [28]Bassenge E, Heusch G. Endothelial and neuro-humoral control of coronary blood flow in health and disease[J]. Rev Physiol Biochem Pharmacol,1990, 116:77-165.
    [29]Knaapen P, Camici PG, Marques KM, et al. Coronary microvascular resistance: methods for its quantification in humans[J]. Basic Res Cardiol,2009,104 (5):485-498.
    [30]Liu Y, Gutterman DD. Vascular control in humans:focus on the coronary microcirculation[J]. Basic Res Cardiol,2009,104 (3):211-227.
    [31]Pijls NH, Van Gelder B, Van der Voort P, et al. Fractional flow reserve. A useful index to evaluate the influence of an epicardial coronary stenosis on myocardial blood flow[J]. Circulation,1995,92 (11):3183-3193.
    [32]Meuwissen M, Chamuleau SA, Siebes M, et al. Role of variability in microvascular resistance on fractional flow reserve and coronary blood flow velocity reserve in intermediate coronary lesions[J]. Circulation,2001,103 (2):184-187.
    [33]Beohar N, Erdogan AK, Lee DC, et al. Acute heart failure syndromes and coronary perfusion[J]. J Am Coll Cardiol,2008,52 (1):13-16.
    [34]Verberne HJ, Meuwissen M, Chamuleau SA, et al. Effect of simultaneous intracoronary guidewires on the predictive accuracy of functional parameters of coronary lesion severity[J]. Am J Physiol Heart Circ Physiol,2007,292 (5):H2349-2355.
    [35]Banerjee RK, Ashtekar KD, Effat MA, et al. Concurrent assessment of epicardial coronary artery stenosis and microvascular dysfunction using diagnostic endpoints derived from fundamental fluid dynamics principles[J]. J Invasive Cardiol,2009,21 (10):511-517.
    [36]Sinha Roy A, Back MR, Khoury SF, et al. Functional and anatomical diagnosis of coronary artery stenoses[J]. J Surg Res,2008,150 (1):24-33.
    [37]Peelukhana SV, Back LH, Banerjee RK. Influence of coronary collateral flow on coronary diagnostic parameters:an in vitro study[J]. J Biomech,2009,42 (16):2753-2759.
    [38]Kitabata H, Imanishi T, Kubo T, et al. Coronary microvascular resistance index immediately after primary percutaneous coronary intervention as a predictor of the transmural extent of infarction in patients with ST-segment elevation anterior acute myocardial infarction[J]. JACC Cardiovasc Imaging, 2009,2 (3):263-272.
    [39]Ng MK, Yeung AC, Fearon WF. Invasive assessment of the coronary microcirculation: superior reproducibility and less hemodynamic dependence of index of microcirculatory resistance compared with coronary flow reserve[J]. Circulation,2006,113 (17):2054-2061.
    [40]Gould KL, Lipscomb K. Effects of coronary stenoses on coronary flow reserve and resistance[J]. Am J Cardiol,1974,34 (1):48-55.
    [41]Fearon WF, Balsam LB, Farouque HM, et al. Novel index for invasively assessing the coronary microcirculation[J]. Circulation,2003,107 (25):3129-3132.
    [42]Daniels DV, Fearon WF. The index of microcirculatory resistance (IMR) in takotsubo cardiomyopathy[J]. Catheter Cardiovasc Interv,2010.
    [43]Fearon WF, Aarnoudse W, Pijls NH, et al. Microvascular resistance is not influenced by epicardial coronary artery stenosis severity:experimental validation[J]. Circulation,2004,109 (19):2269-2272.
    [44]Fearon WF, Shah M, Ng M, et al. Predictive value of the index of microcirculatory resistance in patients with ST-segment elevation myocardial infarction[J]. J Am Coll Cardiol,2008,51(5):560-565.
    [45]Siebes M, Chamuleau SA, Meuwissen M, et al. Influence of hemodynamic conditions on fractional flow reserve: parametric analysis of underlying model[J]. Am J Physiol Heart Circ Physiol,2002,283 (4):H1462-1470.
    [46]Zhang Z, Takarada S, Molloi S. Assessment of coronary microcirculation in a swine animal model[J]. Am J Physiol Heart Circ Physiol,2011,301 (2):H402-408.
    [47]Le H, Wong JT, Molloi S. Estimation of regional myocardial mass at risk based on distal arterial lumen volume and length using 3D micro-CT images[J]. Comput Med Imaging Graph,2008,32 (6):488-501.
    [48]Le HQ, Wong JT, Molloi S. Allometric scaling in the coronary arterial system[J]. Int J Cardiovasc Imaging,2008,24 (7):771-781.
    [49]Molloi S, Chalyan D, Le H, et al. Estimation of coronary artery hyperemic blood flow based on arterial lumen volume using angiographic images[J]. Int J Cardiovasc Imaging,2012,28 (1):1-11.
    [50]Shimada K, Sakanoue Y, Kobayashi Y, et al. Assessment of myocardial viability using coronary zero flow pressure after successful angioplasty in patients with acute anterior myocardial infarction[J]. Heart,2003,89 (1):71-76.
    [51]Pantely GA, Ladley HD, Bristow JD. Low zero-flow pressure and minimal capacitance effect on diastolic coronary arterial pressure-flow relationships during maximum vasodilation in swine[J]. Circulation,1984,70 (3):485-494.
    [52]Tanaka N, Takazawa K, Takeda K, et al. Coronary flow--pressure relationship distal to epicardial stenosis[J]. Circ J,2003,67 (6):525-529.
    [53]Tatli E, Altun A, Buyuklu M, et al. Coronary collateral vessel development after acute myocardial infarction[J]. Exp Clin Cardiol,2007,12 (2):97-99.
    [54]Mills JD, Fischer D, Villanueva FS. Coronary collateral development during chronic ischemia: serial assessment using harmonic myocardial contrast echocardiography[J].J Am Coll Cardiol,2000,36 (2):618-624.
    [55]Seiler C. The human coronary collateral circulation[J]. Heart,2003,89 (11):1352-1357.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700