植物药中肿瘤多药耐药逆转剂的筛选及其逆转机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物药在肿瘤的治疗和辅助治疗中有重要的应用价值,许多植物药来源的抗肿瘤药物已经广泛在临床使用,如紫杉醇、长春新碱等。肿瘤多药耐药性的发生是肿瘤化疗失败的重要原因,据估计约有90%的转移性肿瘤的化疗失败应归因于肿瘤细胞的多药耐药性。多数肿瘤多药耐药逆转剂临床实验失败的主要原因是由于逆转剂本身的毒副作用过大,从而导致其治疗效应小于相应的副作用。由于很多植物药有悠久的药用历史,其毒副作用相对较为清楚,所以从植物药中寻找肿瘤多药耐药逆转剂是值得期待的研究方向。本课题以Caco-2细胞中Rho-123的蓄积为筛选模型,筛选出了灵芝、山豆根和冬凌草三种具有潜在逆转作用的植物药提取物,并确定了灵芝、冬凌草的具有逆转MDR作用的活性组分群,初步探讨了其逆转MDR的作用机制。主要研究结果如下:
     1、以Caco-2细胞中Rho-123的蓄积为筛选模型,以阳性药维拉帕米处理组中Rho-123相关的荧光强度为筛选标准,对20种植物药进行筛选,结果显示:麻黄、苦参、花椒、青风藤、野菊花、山豆根、冬凌草以及灵芝提取物均显示了促进Caco-2细胞中Rho-123蓄积的作用。其中麻黄、苦参、花椒、青风藤提取物是已经证实的具有逆转MDR的作用植物药,也印证了本筛选模型适用于成分复杂的植物提取物的筛选:山豆根、冬凌草以及灵芝提取物与阿霉素联用时可增加ADM对Caco-2细胞的细胞毒作用,可以促进ADM在Caco-2细胞中的蓄积,说明冬凌草、灵芝、山豆根提取物具有潜在逆转p-gp介导MDR的作用。
     2、制备了灵芝的GP、GC、GE、GB和GW提取部位,以Caco-2细胞中Rho-123的蓄积筛选模型对灵芝不同提取部位进行筛选,结果显示:在非毒性剂量下(     3、灵芝活性提取部位可以有效逆转SGC-7901/ADR耐药细胞对ADM的耐药性,在非毒性剂量下(     4、对其逆转机制的研究中揭示:灵芝活性提取部位可以促进SGC-7901/ADR细胞内阿霉素的蓄积,其阿霉素相关的荧光蓄积倍数分别为3.35(GE,20μg/mL)、2.52(GB,20μg/mL)、3.26(GW,20μg/mL),说明灵芝提取物逆转SGC-7901/ADR的MDR与其促进细胞内阿霉素的蓄积相关,有可能是通过调节p-gp活性实现的。灵芝乙酸乙酯部位和正丁醇部位对SGC-7901/ADR细胞MDR1基因转录影响的RT-PCR结果显示,不同活性部位处理后,MDR1基因的转录下降率分别为:32.16%(GE,20ng/mL)、50.27%(GE,100μg/mL)、25.34%(GB,4μg/mL)、41.53(GB,20μg/mL)。对细胞总P-gp的免疫荧光检测显示:GE (20μg/mL,100μ/mL)、GB(4μg/mL、20μg/mL)处理后,细胞荧光强度分别下降了21.5%、32.7%、20.5%、27.8%。呈明显的剂量效应,说明灵芝提取物逆转MDR的效应是通过抑制P-gp的作用实现的。
     5、GE和GB也可以有效逆转耐药细胞MCF-7/ADM细胞的耐药性,在非毒性剂量下(     6、制备了HP、HC、HE、HB和HW提取部位,以Caco-2细胞中Rho-123的蓄积筛选模型对冬凌草不同提取部位进行筛选和初步验证的的结果显示:在非毒性剂量下(     7, HC、HE和HW可以有效逆转SGC-7901/ADR细胞的阿霉素耐药性,逆转倍数分别为其逆转倍数分别为2.51(HC,20μg/mL)、2.80(HC,100jig/mL)、2.29(HE,20μg/mL)、3.15(HE,100μg/mL)、1.47(HW,20μg/mL)、1.64(HW,100μg/mL),对SGC-7901/ADR细胞中阿霉素相关的荧光蓄积倍数分别为:3.05(HC,20μg/mL).2.74(HE,20μg/mL)、2.62(HW,20μg/mL)。
     8、利用RT-PCRJI技术对HE、 HC的SGC-7901/ADR细胞MDR1基因转录的半定量检测显示,HC和HE可以抑制MDR1基因的转录;对细胞总P-gp的免疫荧光检测显示:药物处理后,P-gp表达量分别降低约17.10%(HC,10μg/mL)和14.17(HE,10μg/mL),说明冬凌草提取物逆转MDR的效应是通过抑制p-gp的表达实现的。冬凌草逆转作用的主要活性组分群位于HC和HE。
     9、HC和HE也可以有效逆转耐药细胞MCF-7/ADM细胞的耐药性,在非毒性剂量下(     1O、HC和HE对MCF-7/ADM细胞MDR1基因及也有相似的抑制效应,也可以有效地降低MCF-7/ADM细胞中P-gp的表达,说明冬凌草提取物逆转MCF-7/ADM细胞的耐药性同样与抑制P-gp的活性相关。也说明冬凌草提取物逆转肿瘤的MDR的活性组分群位于HC和HE。
Botanical Medicines has great application value in the tumor therapy and adjuvant therapy, many antineoplastic agents such as taxol, vincristine that originated from botanical medicines have been widely used in clinical. The main reason for the failure of chemotherapy are due to the occurrence of multidrug resistance (MDR) of cancer, it is estimated that about90%of the failure are ascribed for MDR. Many MDR reverse agents had been stopped in clinical trials due to their toxicity, and the therapeutic effect is less than their toxicity effect. Plenty of botanical medicines has long medicinal history and its side effects are also be relatively clear, therefore it has great advantages in looking for MDR reverse agents from botanical medicines. In this research, the accumulation of Rho-123in1Caco-2cells was used as the drug screening model for MDR reverse agents extracts from Botanical Medicines, which including GanodermaLucidum Karst, Rabdosia rubescens (Hemsl.) and Hara Sophora tonkinensis Gapnep. We determined the effective component group of Ganoderma Lucidum Karst and Rabdosia rubescens (Hemsl.),and the mechanism of these extracts on MDR reverse effects is also discussed. The main results are as follows:
     1. The accumulation of Rho-123in Caco-2cells was used as the drug screening model, the intracellular mean fluorescence intensity associated with Rh123by the the positive drug verapamil was used as criterion,20kinds of botanical medicines extracts were screened,and the results showed:extracts from Ephedra sinica Stapf, Sophora flavescens Ait, Zanthoxylum schinifolium Sieb. et Zucc, Sinomenium acutum (Thunb.), Chrysanthemum indicum L., GanodermaLucidum Karst, Rabdosia rubescens (Hemsl.) and Hara Sophora tonkinensis Gapnep could increase the intracellular accumulation of Rh123, as for that extracts from the Ephedra sinica Stapf, Sophora flavescens Ait, Zanthoxylum schinifolium Sieb. et Zucc, Sinomenium acutum (Thunb.), Chrysanthemum indicum L.had been verified to be positive in MDR reverse effects, it is also confirmed that this screening model is suitable for screening MDR reverse agents from the complex extracts; When extracts from GanodermaLucidum Karst,Rabdosia rubescens (Hemsl.) or Hara Sophora tonkinensis Gapnep were used in conjunction with ADM,the cytotoxicity of ADM were increased, and the intracellular accumulation of ADM are also increased,which suggested that these three extracts has potential MDR reverse effects.
     2. Extracts of GanodermaLucidum Karst by different solvent were prepared as GP,GC,GE,GB and GW, each extracts was screened by aforementioned cell model, the results shows:when treated at non-toxicity dose, except for the GP, other extrats GC,GE,GB and GW could increase the intracellular accumulation of Rh123, when combination ADM with GC,GE,GB and GW, GE, GB and GW could enhance the cytotoxicity of ADM and increase the intracellular accumulation of ADM. The fluorescence accumulation multiple associated with ADM are2.27(GE,20μg/mL)>3.51(GE,100μg/mL),4.48(GB,4μg/mL),4.22(GB,20μg/mL),1.94(GW,4μg/mL)and2.63(GW,20μg/mL), respectively, and the effect are concentration dependently.
     3. The effects of GC,GE,GB and GW are also concentration-dependently in enhancing the ADM cytotoxicity and its intracellular accumulation. GC,GE,GB and GW from Ganoderma Lucidum Karst could reverse the MDR of SGC-7901/ADR cells to ADM at non-toxicity dose, and the revers folds are3.71(GE,20μg/mL),4.53(GE,100μg/mL),2.12(GB,4μg/mL),2.64(GB,20μg/mL),2.22(GW,4ug/mL)and2.16(GW,20μg/mL), respectively.
     4. Studies on the mechanism of MDR reverse effects shows:GE and GB could enhance the intracellular accumulation of ADM in SGC-7901/ADR cells, and the fluorescence accumulation multiple associated with ADM are3.35(GE,20μg/mL)>2.52(GB,20μg/mL) and3.26(GW,20μg/mL),which indicated that the MDR reverse effects of GE, GB and GW may be mediated by modulating the activities of p-gp. The effects of GE and GB on the transcription of MDR1were determined by RT-PCR. The results shows:when treated with GE and GB, the transcription of MDR1are decreased by32.16%(GE,20μg/mL),50.27%(GE,100μg/mL)>25.34%(GB,4μg/mL) and41.53(GB,20μg/mL), respectively; the abundance of p-gp is determined by immunofluorescence method, the p-gp relevant mean fluorescence intensity was decreased by21.5%(GE,20μg/mL),32.7%(GE,100μg/mL),20.5%(GB,4μg/mL) and27.8%(GB,20μg/mL), indicated that the MDR reverse effects of extracts from Ganoderma Lucidum Karst are mediated by modulating the activities of p-gp.
     5. GE and GB could also reverse the MDR of MCF-7/ADM cells to ADM, when treated with non-toxicity dose, the reverse folds are1.78(GE,8μg/mL),3.56(GE,40 μg/mL),2.11(GB,8μg/mL)and3.47(GB,40μg/mL), respectively. As in the ADM accumulation assay, the fluorescence accumulation multiple associated with ADM are3.31(GE,8μg/mL),4.48(GE,40μg/mL),1.94(GB,8μg/mL) and2.57(GB,8μg/mL), and the effect is also concentration-dependently. GE and GB also has the same effects in the inhibition of the transcription of MDR1and the decrease of p-gp expression, these results indicated that the MDR reverse effects of GE and GB on MCF-7/ADM cells is also mediated by modulating the activities of p-gp, and the MDR reverse effects of GE and GB is also wide-spectrum, in all the items detected, the effect of GE is better than that of GB, indicated that GE is the major effective component group in MDR reverse effects.
     6. Extracts of Herba Rabdosiae Rubescentis by different solvent were prepared as HP,HC,HE,HB and HW, each extracts was screened by aforementioned cell model, the results show:when treated with non-toxicity dose, except for the HP and HB, HC,HE and HW could increase the intracellular accumulation of Rh123and ADM, and enhance the cytotoxicity of ADM, indicated that HC,HE and HW are the potential effective component groups in MDR reverse effects.
     7. HC、HE and HW could reverse the MDR of SGC-7901/ADR cells to ADM at non-toxicity dose. The reverse folds are2.51(HC,20μg/mL)、2.80(HC,100μg/mL),2.29(HE,20μg/mL)、3.15(HE,100μg/mL),1.47(HW,20μg/mL) and1.64(HW,100μg/mL), respectively. The fluorescence accumulation multiple associated with ADM are3.05(HC,20μg/mL)、2.74(HE,20μg/mL)、2.62(HW,20μg/mL), respectively.
     8. The effect of HC and HE on the transcription of MDR1are determined by RT-PCR. The results shows:when treated with HC and HE, the transcription of MDR1are decreased, and the abundance of p-gp is also decreased by17.10%((HC,10μg/mL),14.7%(HE,10μg/mL)when determined by immunofluorescence method. These results indicated that the MDR reverse effects of HC and HE on SGC-7901/ADR cells is also mediated by modulating the activities of p-gp, and the potential effective component group are in HC and HE.
     9. HC and HE could also reverse the MDR of MCF-7/ADM cells to ADM, when treated with non-toxicity dose, the reverse folds are1.87(HE,4μg/mL),4.02(HE,20μg/mL)、2.16(HC,4μg/mL)and4.60(HC,20μg/mL), respectively. As in the ADM accumulation assay, the fluorescence accumulation multiple associated with ADM are3.97(HE,4μg/mL)、4.21(HE,20μg/mL)、61(HC,4μg/mL)and3.83(HC,20μg/mL), it is in line with the MDR reverse experiments on SGC-7901/ADR cells, The difference is that their MDR reverse effect on MCF-7/ADM cells is more efficient than that on SGC-7901/ADR cells, indicate that extracts from Rabdosia rubescens (Hemsl.) may have difference efficiency on different origin of MDR cells.
     10. HC and HE could also inhibite the transcription of MDR1,and decrease the expression of p-gp, these results suggested that the MDR reverse effects of HC and HE on MCF-7/ADM cells is also mediated by modulating the activities of p-gp, and HC and HE are the major effective component group in Rabdosia rubescens for MDR reverse effects.
引文
[1]Longley D B, Johnston P G. Molecular mechanisms of drug resistance [J]. J. Pathol, 2005,205(2):275-292.
    [2]Szakacs G, Varadi A, Ozvegy-Laczka C, et al. The role of ABC transporters in drug absorption, distribution, metabolism, excretion and toxicity (ADME-Tox) [J]. Drug discovery today,2008,13(9):379-393.
    [3]Krishna R, Mayer L D. Multidrug resistance (MDR) in cancer:mechanisms, reversal using modulators of MDR and the role of MDR modulators in influenceing the pharmacokinetics of anticancer drugs [J]. Eur. J. Pharm. Sci,2000,11(4):265-283.
    [4]Guo W, Healey J H, Meyers P A, et al. Mechanisms of methotrexate resistance in osteosarcoma [J]. Clin. Cancer Res.,1999,5(3):621-627.
    [5]Gottesman M M, Ling V. The molecular basis of multidrug resistance in cancer:the early years of P-glycoprotein research [J]. Febs Lett,2006,580(4):998-1009
    [6]Dean M, Hamon Y, Chimini G. The human ATP-binding cassette (ABC) transporter superfamily [J]. J. Lipid Res,2001,42(7):1007-1017.
    [7]Schinkel A H, Jonker J W. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family:an overview [J]. Adv. Drug Deliver. Rev,2012.
    [8]Lehne G. P-glycoprotein as a drug target in the treatment of multidrug resistant cancer [J]. Curr. Drug Targets,2000,1(1):85-99.
    [9]Youle R J, Strasser A. The BCL-2 protein family:opposing activities that mediate cell death [J]. Nat Rev Mol Cell Biol,2008,9(1):47-59.
    [10]Stavrovskaya A A. Cellular mechanisms of multidrug resistance of tumor cells [J]. Biochem C/C BIOKHIMIIA,2000,65(1):95-106.
    [11]Lage H, Dietel M. Involvement of the DNA mismatch repair system in antineoplastic drug resistance [J]. J. Cancer Res Clin,1999,125(3-4):156-165.
    [12]保秋萍,李惠民.肿瘤干细胞的耐药性与耐药机制[J].中国组织工程研究与临床康复,2011,15(1):116-]19.
    [13]Alama A, Orengo A M, Ferrini S, et al. Targeting cancer-initiating cell drug-resistance:a roadmap to a new-generation of cancer therapies?[J]. Drug discovery today,2012,17(9):435-442.
    [14]Gillet J P, Gottesman M M. Overcoming multidrug resistance in cancer:35 years after the discovery of ABCB1 [J]. Drug Res. Updates,2012,15(1):2-4.
    [15]范培红,娄红祥.逆转肿瘤多药耐药策略进展[J].天然产物研究与开发,2002,2:74-79.
    [16]Mano Y, Kikuchi Y, Yamamoto K, et al. Bcl-2 as a predictor of chemosensitivity and prognosis in primary epithelial ovarian cancer [J]. Eur. J. Cancer,1999,35(8): 1214-1219.
    [17]成志勇,梁文同,底胜峰,等.PTEN信号转导通路与肿瘤的多药耐药[J].中国肿瘤生物治疗杂志,2009,16(4):413-417.
    [18]魏宁,孙华,刘耕陶.基于ATP-结合盒转运蛋白逆转肿瘤多药耐药的研究进展[J].药学学报.,2010,10:1205-1211.
    [19]臧彩红,张艳,江金花,等.盐酸千金藤碱逆转肝癌多药耐药性与P-gp ATP酶活性的关系研究[J].中国药理学通报,2011,27(7):1002-1006.
    [20]Nobili S, Landini I, Mazzei T, et al. Overcoming tumor multidrug resistance using drugs able to evade P-glycoprotein or to exploit its expression[J]. Medicinal research reviews,2012,32(6):1220-1262.
    [21]Sukhai M, Piquette-Miller M. Regulation of the multidrug resistance genes by stress signals [J]. J Pharm. Pharm. Sci,2000,3(2):268-280
    [22]王秀梅,彭文兴,文晓柯.MDR1调控的信号传导机制研究进展[J].中国医药指南,2012,10(30):436-440
    [23]姚凡,金锋,樊华,等.ERK信号传导抑制逆转大肠癌多药耐药的研究[J].中国肿瘤临床,2005,32(5):290-29I
    [24]李琦,隋华,刘宣,等.健脾解毒方介导JNK/SAPK信号通路调控人结肠癌细胞多药耐药[J].中华中医药杂志,2012,27(3):731-735.
    [25]Bentires-Alj M, Barbu V, Fillet M, et al. NF-κB transcription factor induces drug resistance through MDR1 expression in cancer cells [J]. Oncogene,2003,22(1): 90-97.
    [26]Matsumoto T, Tani E, Yamaura I, et al. Effects of protein kinase C modulators on multidrug resistance in human glioma cells [J]. Neurosurgery,1995,36(3):565-572
    [27]Choi B H, Kim C G, Lim Y, et al. Curcumin down-regulates the multidrug-resistance< i> mdrlb gene by inhibiting the PI3K/Akt/NFκ8 pathway [J]. Cancer lett,2008,259(1):111-118.
    [30]Saraswathy M, Gong S. Different Strategies to Overcome Multidrug Resistance in Cancer [J]. Biotechnol. Adv,2013.
    [31]Zhang Z, Wu J Y, Hait W N, et al. Regulation of the stability of P-glycoprotein by ubiquitination [J]. Mol. Pharmacol,2004,66(3):395-403
    [32]Kramer R, Weber T K, Arceci R, et al. Inhibition of N-linked glycosylation of P-glycoprotein by tunicamycin results in a reduced multidrug resistance phenotype [J]. Brit. J. Cancer,1995,71(4):670
    [33]Fu D, Roufogalis B D. Actin disruption inhibits endosomal traffic of P-glycoprotein-EGFP and resistance to daunorubicin accumulation [J]. Am. J. Physiol.-Cell Ph,2007,292(4):C1543-C1552.
    [34]Fu D, van Dam E M, Brymora A, et al. The small GTPases Rab5 and RalA regulate intracellular traffic of P-glycoprotein [J]. BBA-Mol. Cell Res,2007, 1773(7):1062-1072.
    [35]Ferrandiz-Huertas C, Fernandez-Carvajal A, Ferrer-Montiel A. Rab4 interacts with the human P-glycoprotein and modulates its surface expression in multidrug resistant K562 cells [J]. Int. J. Cancer,2011,128(1):192-205
    [36]Zhou S, Liao L, Chen C, et al. CD 147 mediates chemoresistance in breast cancer via ABCG2 by affecting its cellular localization and dimerization [J]. Cancer lett, 2013
    [37]Bansal T, Akhtar N, Jaggi M, et al. Novel formulation approaches for optimising delivery of anticancer drugs based on< i> P-glycoprotein modulation [J]. Drug discovery today,2009,14(21):1067-1074
    [38]Orlowski S, Martin S, Escargueil A. P-glycoprotein and 'lipid rafts':some ambiguous mutual relationships (floating on them, building them or meeting them by chance?) [J]. Cell. Mol. Life Sci,2006,63(9):1038-1059
    [39]Yang S H, Liu J J, Chen, Y Q, et al. Reversal effect of Tween-20 on multidrug resistance in tumor cells< i> in vitro[J]. Biomed. Pharmacother,2012, 66(3):187-194
    [40]Giovannetti E, Erozenci A, Smit J, et al. Molecular mechanisms underlying the role of microRNAs (miRNAs) in anticancer drug resistance and implications for clinical practice [J]. Crit. Rev. Oncol. Hemat,2012,81(2):103-122
    [41]Bao L, Hazari S, Mehra S, et al. Increased expression of P-glycoprotein and doxorubicin chemoresistance of metastatic breast cancer is regulated by miR-298 [J]. Am. J. Pathol,2012,180(6):2490-2503
    [42]Zhu H, Wu H, Liu X, et al. Role of MicroRNA miR-27a and miR-451 in the regulation of< i> MDR 1/P-glycoprotein expression in human cancer cells [J]. Biochem. Pharmacol,2008,76(5):582-588
    [43]Wang F, Li T, Zhang B, et al. MicroRNA-19a/b regulates multidrug resistance in human gastric cancer cells by targeting PTEN [J]. Biochem. Bioph. Res. Co,2013
    [44]Tang X, Gu X, Ai H, et al. Synthesis and evaluation of nitric oxide-releasing DDB derivatives as potential Pgp-mediated MDR reversal agents in MCF-7/Adr cells [J]. Bioorg. Med. Chem. Lett,2012,22(2):801-805
    [45]Sadava D, Kane S E. Silibinin reverses drug resistance in human small-cell lung carcinoma cells [J]. Cancer lett,2013
    [46]Shi R, Li W, Zhang X, et al. A novel indirubin derivative PHII-7 potentiates adriamycin cytotoxicity via inhibiting P-glycoprotein expression in human breast cancer MCF-7/ADR cells [J]. Eur. J. Pharmacol,2011,669(1):38-44
    [47]Lin Y L, Liu Y K, Tsai N M, et al. A Lipo-PEG-PEI complex for encapsulating curcumin that enhances its antitumor effects on curcumin-sensitive and curcumin-resistance cells [J].Nanomedicine:NBM,2012,8(3):318-327
    [48]郑中华,张以忠,方青.P-gp动力学研究进展[J].吉林医药学院学报,2006,2:108-113
    [49]赵青,黎燕,彭晖.P糖蛋白与配体相互作用的结构基础及其肿瘤耐药逆转的研究[J].国际药学研究杂志,2010,37(6):439-445
    [50]赵青,黎燕,彭晖.P糖蛋白与配体相互作用的结构基础及其肿瘤耐药逆转的研究[J].国际药学研究杂志,2010,06:439-445.
    [51]谢婷,冯璐璐,刘瑞媛,李发荣.以P-糖蛋白为靶点的肿瘤多药耐药逆转剂[J].生命的化学,2010,05:699-703
    [52]Hollo Z, Homolya L, Davis C W, et al. Calcein accumulation as a fluorometric functional assay of the multidrug transporter [J]. BBA-Biomembranes,1994, 1191(2):384-388
    [53]Sugiyama Y, Kusuhara H, Suzuki H. Kinetic and biochemical analysis of carrier-mediated efflux of drugs through the blood-brain and blood-cerebrospinal fluid barriers:importance in the drug delivery to the brain [J]. J. Control. Release, 1999,62(1):179-186
    [54]Varma M V S, Ashokraj Y, Dey C S, et al. P-glycoprotein inhibitors and their screening:a perspective from bioavailability enhancement [J]. Pharmacol. Res,2003, 48(4):347-359
    [55]Sarkadi B, Homolya L, Szakacs G, et al. Human multidrug resistance ABCB and ABCG transporters:participation in a chemoimmunity defense system [J]. Physiol. Rev,2006,86(4):1179-1236
    [56]仇文卫,李静雅,李佳,南发俊.光亲和标记技术在药物发现中的应用[J].生命科学,2005,04:296-303.
    [57]Schinkel A H, Smit J J M, Van Tellingen O, et al. Disruption of the mouse< i> mdrla P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs [J]. Cell,1994,77(4):491-502
    [58]Kelly R J, Robey R W, Chen C C, et al. A pharmacodynamic study of the P-glycoprotein antagonist CBT-1(?) in combination with paclitaxel in solid tumors [J]. Oncologist,2012,17(4):512-e523
    [59]Amiri-Kordestani L, Basseville A, Kurdziel K, et al. Targeting MDR in breast and lung cancer:Discriminating its potential importance from the failure of drug resistance reversal studies [J]. Drug Res. Updates,2012,15(1):50-61
    [60]Shaffer B C, Gillet J P, Patel C, et al. Drug resistance:Still a daunting challenge to the successful treatment of AML [J]. Drug Res. Updates,2012,15(1):62-69
    [61]Breier A, Gibalova L, Seres M, et al. New Insight into P-glycoprotein as a drug target [J]. Anti-Cancer Agent Me,2013,13(1):159-170
    [62]Eichhorn T, Efferth T. P-glycoprotein and its inhibition in tumors by phytochemicals derived from Chinese herbs [J]. J. Ethnopharmacology,2012, 141(2):557-570
    [63]何琪杨,孟凡宏,张鸿卿.粉防己碱和蝙蝠葛碱减低抗三尖杉酯碱的人白血病HL60细胞对阿霉素的抗性(英文)[J].Acta Pharmacol. Sin,1996,2:023
    [64]Choi S U, Park S H, Kim K H, et al. The bis benzylisoquinoline alkaloids, tetrandine and fangchinoline, enhance the cytotoxicity of multidrug resistance-related drugs via modulation of P-glycoprotein [J]. Anti-cancer drugs, 1998,9(3):255-262
    [65]李贵海,潘成业,孙付军,等.四种生物碱逆转肿瘤获得性多药耐药与调控细胞凋亡的相关性研究[J].中成药,2006,7:1001-1004.
    [66]Fu L W, Zhang Y M, Liang Y J, et al. The multidrug resistance of tumour cells was reversed by tetrandrine< i> in vitro and in xenografts derived from human breast adenocarcinoma MCF-7/adr cells [J]. Eur. J. Cancer,2002,38(3):418-426
    [67]Xu W L, Shen H L, Ao Z F, et al. Combination of tetrandrine as a potential-reversing agent with daunorubicin, etoposide and cytarabine for the treatment of refractory and relapsed acute myelogenous leukemia [J]. Leukemia Res, 2006,30(4):407-413
    [68]李旭芬,张苏展,郑树.苦参碱对K562及其多药耐药细胞K562/Vin的细胞生物学影响[J].中国病理生理杂志,2002,18(10):1233-1237
    [69]Zhou C, Shen P, Cheng Y. Quantitative study of the drug efflux kinetics from sensitive and MDR human breast cancer cells [J]. BBA-Gen. Subjects,2007, 1770(7):1011-1020
    [70]董庆华,郑树,徐荣臻,等.小檗胺对多药耐药K562/Adr细胞作用的研究[J].中国中西医结合杂志,2004,24(9):820-822
    [71]史艳宇,李红,杨世杰.西洋参有效部位对K562细胞凋亡诱导的实验研究[J].中国药理学通报,2005,21(12):1494-1497
    [72]Kim S H, Yeo G S, Lim Y S, et al. Suppression of multidrug resistance via inhibition of heat shock factor by quercetin in MDR cells [J]. Exp. Mol. Med,1998, 30:87-92
    [73]Wang Y H, Chao P D L, Hsiu S L, et al. Lethal quercetin-digoxin interaction in pigs [J]. Life Sci,2004,74(10):1191-1197
    [74]Ganta S, Amiji M. Coadministration of paclitaxel and curcumin in nanoemulsion formulations to overcome multidrug resistance in tumor cells [J]. Mol. Pharm,2009, 6(3):928-939
    [75]林胜友,钦志泉,徐颖扉,等.非小细胞肺癌化疗辅助应用参麦针三苯氧胺及硝苯吡啶的临床意义[J].肿瘤防治杂志,2002,9(4):454-455
    [76]徐力,王明艳,许冬青,等.三物白散加味方影响肿瘤多药耐药基因表达实验研究[J].上海中医药杂志,2005,39(8):59-60
    [77]宋相容,侯世祥.中药逆转肿瘤多药耐药的研究进展[J].中国中药杂志,2005,30(16):1300-1304
    [78]Kim S W, Kwon H, Chi D W, et al. Reversal of P-glycoprotein-mediated multidrug resistance by ginsenoside Rg< sub> 3 [J]. Biochem. Pharmacol,2003,65(1): 75-82
    [79]孙国平,王华,沈玉先,等.丹皮酚诱导K562细胞凋亡的研究[J].中国药理学通报,2004,20(5):550-552
    [80]董庆华,郑树,吕庆华.康莱特注射液对多药耐药人白血病细胞株作用的实验研究[J].实用肿瘤杂志,2002,17(1):24-26
    [81]Chang J Y, Chang C Y, Kuo C C, et al. Salvinal, a novel microtubule inhibitor isolated from Salvia miltiorrhizae Bunge (Danshen), with antimitotic activity in multidrug-sensitive and-resistant human tumor cells [J]. Mol. Pharmacol,2004, 65(1):77-84
    [82]Zhang H, Li M, Han Y, et al. Down-regulation of miR-27a might reverse multidrug resistance of esophageal squamous cell carcinoma [J]. Digest. Dis. Sci,2010,55(9): 2545-2551
    [83]Zhang Y, Liu G, Lin C, et al. Silencing the EZH2 gene by RNA interference reverses the drug resistance of human hepatic multidrug-resistant cancer cells to 5-Fu[J]. Life Sci,2013
    [84]Pichler A, Zelcer N, Prior J L, et al. In vivo RNA interference-mediated ablation of MDR1 P-glycoprotein [J]. Clin. Cancer Res,2005,11(12):4487-4494
    [85]Troost J, Lindenmaier H, Haefeli W E, et al. Modulation of cellular cholesterol alters P-glycoprotein activity in multidrug-resistant cells [J]. Mol. Pharm,2004, 66(5):1332-1339
    [86]Kopecka J, Campia I, Olivero P, et al. A LDL-masked liposomal-doxorubicin reverses drug resistance in human cancer cells [J]. J. Control Release,2011,149(2): 196-205
    [87]Fenyvesi F, Fenyvesi E, Szente L, et al. P-glycoprotein inhibition by membrane cholesterol modulation [J]. Eur. J. Pharm. Sci,2008,34(4):236-242
    [88]Mechetner E B, Roninson I B. Efficient inhibition of P-glycoprotein-mediated multidrug resistance with a monoclonal antibody [J]. P. Natl, Acad. Sci,1992, 89(13):5824-5828
    [89]Tsuruo T, Hamada H, Sato S, et al. Inhibition of Multidrug-resistant Human Tumor Growth in Athymic Mice by Anti-P-glycoprotein Monoclonal Antibodies [J]. Cancer Sci,1989,80(7):627-631
    [90]Sosnik A. Reversal of multidrug resistance by the inhibition of ATP-binding cassette pumps employing "Generally Recognized As Safe"(GRAS) nanopharmaceuticals:A review [J]. Advanced drug delivery reviews,2013
    [1]林桂凤.中药逆转肿瘤细胞多药耐药的研究现状.中国药业,2007,16(10):63-64.
    [2]Sun M, Xu X, Lu Q, et al. Schisandrin B:a dual inhibitor of P-glycoprotein and multidrug resistance-associated protein 1[J]. Cancer lett,2007,246(1):300-307.
    [3]Hou X L, Takahashi K, Tanaka K, et al.< i> Curcuma drugs and curcumin regulate the expression and function of P-gp in Caco-2 cells in completely opposite ways[J]. Int. J. Pharm,2008,358(1):224-229.
    [4]Sadava D, Kane S E. Silibinin reverses drug resistance in human small-cell lung carcinoma cells[J]. Cancer lett,2013.
    [5]张卫东.中药现代化研究新思路-天然药物化学与生物学研究相结合[J].中国天然药物,2008,6(1):2-5.
    [6]Szakacs G, Varadi A, Ozvegy-Laczka C, et al. The role of ABC transporters in drug absorption, distribution, metabolism, excretion and toxicity (ADME-Tox) [J]. Drug discovery today,2008,13(9):379-393.
    [7]郑婷婷,李敏,徐波,等.基于P-gp功能的多药耐药逆转剂高内涵筛选方法的建立与应用[J].中国新药杂志,2010(10):861-866.
    [8]Perloff M D, Stormer E, von Moltke L L, et al. Rapid assessment of P-glycoprotein inhibition and induction in vitro[J]. Pharm. Res,2003,20(8):1177-1183.
    [9]Wang X, Meng M, Gao L, et al. Permeation of astilbin and taxifolin in Caco-2 cell and their effects on the P-gp[J]. Int. J. Pharm,2009,378(1):1-8.
    [10]史亦谦,田同德.三七总皂甙体外逆转K562/VCR细胞多药耐药的实验研究[J].中国中医药科技,2005,1 2(5):292-294.
    [11]马强,张振书,钟世顺,等.阿霉素在耐药株LoVo/Adr细胞内的摄入及分布特点[J].第一军医大学学报,2002,22(3):264-266.
    [12]郎廷元,晏菊芳,胡昌华.P-gp蛋白功能抑制剂高通量筛选模型的建立与应用[J].中国药理学通报,2007,23(10):1396-1399.
    [13]茆俊卿,张育,顾健,等.麻黄碱逆转K562/A02细胞多药耐药性的研究[J].中国医院药学杂志,2007,27(2):156-159.
    [14]李旭芬,张苏展,郑树.苦参碱对K562及其多药耐药细胞K562/Vin的细胞生物学影响[J].中国病理生理杂志,2002,18(10):1233-1237.
    [15]Yoshida N, Takagi A, Kitazawa H, et al. Inhibition of P-glycoprotein-mediated transport by extracts of and monoterpenoids contained in< i> Zanthoxyli Fructus[J]. Toxicol. Appl. Pharmacol,2005,209(2):167-173.
    [16]Min Y D, Choi S U, Lee K R. Aporphine alkaloids and their reversal activity of multidrug resistance (MDR) from the stems and rhizomes of Sinomenium acutum[J]. Arch. Pharmacal Res,2006,29(8):627-632.
    [17]Kim S W, Kwon H, Chi D W, et al. Reversal of P-glycoprotein-mediated multidrug resistance by ginsenoside Rg< sub> 3[J]. Biochem. Pharmacol,2003,65(1): 75-82.
    [18]肖正明,宋景贵,徐朝晖,等.山豆根水提物对体外培养人肝癌细胞增殖及代谢的影响[J].山东中医药大学学报,2000,24(1):62-64.
    [19]Schwarz R E, Donohue C A, Sadava D, et al. Pancreatic cancer in vitro toxicity mediated by Chinese herbs SPES and PC-SPES:implications for monotherapy and combination treatment[J]. Cancer lett,2003,189(1):59-68.
    [20]刘家云,魏敏,顾琴龙.冬凌草甲素抗肿瘤的研究进展[J].中国新药与临床杂志,2010,29(2):81-84.
    [21]陈纯,王恒邦,吴盈莹,等.灵芝及灵芝孢子提取物的抗肿瘤及对DNA拓扑异构酶作用的研究[J].中药药理与临床,2008,24(2):45-49.
    [22]李鹏,魏晓霞,许建华.灵芝提取物抗肿瘤作用的实验研究[J].中国现代应用药学,2011,28(9):789-792.
    [23]秦葵,张书锋.灵芝抗肿瘤药理研究进展[J].白求恩军医学院学报,2004,2(4):237-239.
    [1]韩玉复,韩绍巍.灵芝的研究进展[J].中药材,1995,18(5):266-268.
    [2]Sugiyama Y, Kusuhara H, Suzuki H. Kinetic and biochemical analysis of carrier-mediated efflux of drugs through the blood-brain and blood-cerebrospinal fluid barriers:importance in the drug delivery to the brain[J]. J. Controlled Release, 1999,62(1):179-186.
    [3]Szakacs G, Varadi A, Ozvegy-Laczka C, et al. The role of ABC transporters in drug absorption, distribution, metabolism, excretion and toxicity (ADME-Tox)[J]. Drug discovery today,2008,13(9):379-393.
    [4]刘华,唐琼.中药灵芝药理作用研究[J].中国医药导报,2009,6(5):153-154.
    [5]邓海林,吴佩颖,王建新.灵芝的研究进展[J].时珍国医国药,2005,16(2):141-143.
    [6]Shaffer B C, Gillet J P, Patel C, et al. Drug resistance:Still a daunting challenge to the successful treatment of AML[J]. Drug Res. Updates,2012,15(1):62-69.
    [7]Breier A, Gibalova L, Seres M, et al. New Insight into P-glycoprotein as a drug target[J]. Anti-Cancer Agent. Med,2013,13(1):159-170.
    [8]Eichhorn T, Efferth T. P-glycoprotein and its inhibition in tumors by phytochemicals derived from Chinese herbs[J]. J. Ethnopharm,2012,141(2): 557-570.
    [9]Choi S U, Park S H, Kim K H, et al. The bis benzylisoquinoline alkaloids, tetrandine and fangchinoline, enhance the cytotoxicity of multidrug resistance-related drugs via modulation of P-glycoprotein[J]. Anti-cancer drugs,1998,9(3):255-262.
    [10]Fu L W, Zhang Y M, Liang Y J, et al. The multidrug resistance of tumour cells was reversed by tetrandrine< i> in vitro and in xenografts derived from human breast adenocarcinoma MCF-7/adr cells[J]. Eur. J. Cancer,2002,38(3):418-426.
    [11]Xu W L, Shen H L, Ao Z F, et al. Combination of tetrandrine as a potential-reversing agent with daunorubicin, etoposide and cytarabine for the treatment of refractory and relapsed acute myelogenous leukemia[J].Leu.Res,2006, 30(4):407-413.
    [12]李晓冰,赵宏艳,郭栋.灵芝多糖药理学研究进展[J].中成药,2012,34(002):332-335.
    [13]Orlowski S, Martin S, Escargueil A. P-glycoprotein and'lipid rafts':some ambiguous mutual relationships (floating on them, building them or meeting them by chance?)[J]. Cell. Mol. Life Sci CMLS,2006,63(9):1038-1059.
    [14]Szakacs G, Paterson J K, Ludwig J A, et al. Targeting multidrug resistance in cancer[J]. Nat. Rev. Drug Discovery,2006,5(3):219-234.
    [15]Choi B H, Kim C G, Lim Y, et al. Curcumin down-regulates the multidrug-resistance< i> mdrlb gene by inhibiting the PI3K/Akt/NFκB pathway[J]. Cancer lett,2008,259(1):111-118.
    [16]Calvino E, Manjon J L, Sancho P, et al.< i> Ganoderma lucidum induced apoptosis in NB4 human leukemia cells:Involvement of Akt and Erk[J]. J.Ethnopharm,2010,128(1):71-78.
    [17]Lin S B, Li C H, Lee S S, et al. Triterpene-enriched extracts from< i> Ganoderma lucidum inhibit growth of hepatoma cells via suppressing protein kinase C, activating mitogen-activated protein kinases and G2-phase cell cycle arrest[J]. Life sci,2003,72(21):2381-2390.
    [18]Krishna R, Mayer L D. Multidrug resistance (MDR) in cancer:mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs[J]. Eur. J. Pharm. Sci,2000,11(4): 265-283.
    [19]Muller C I, Kumagai T, O'Kelly J, et al.< i> Ganoderma lucidum causes apoptosis in leukemia, lymphoma and multiple myeloma cells[J]. Leu.Res,2006, 30(7):841-848.
    [20]颜苗,李焕德.“中药化学-药效学-药动学”三维立体系统筛选中药复方有效组分群的思路[J].中华中医药杂志,2011,11:2627-2631.
    [21]姚凡,金锋,樊华,等.ERK信号传导抑制逆转大肠癌多药耐药的研究[J].中国肿瘤临床,2005,32(5):290-291.
    [22]李琦,隋华,刘宣,等.健脾解毒方介导JNK/SAPK信号通路调控人结肠癌细胞多药耐药[J].中华中医药杂志,2012,27(3):731-735.
    [23]Bentires-Alj M, Barbu V, Fillet M, et al. NF-κB transcription factor induces drug resistance through MDR1 expression in cancer cells[J]. Oncogene,2003,22(1): 90-97.
    [24]Matsumoto T, Tani E, Yamaura I, et al. Effects of protein kinase C modulators on multidrug resistance in human glioma cells[J]. Neurosurgery,1995,36(3):565-572.
    [25]Hsieh T C, Wu J M. Suppression of proliferation and oxidative stress by extracts of Ganoderma lucidum in the ovarian cancer cell line OVCAR-3[J]. Int.J.Mol. med, 2011,28(6):1065.
    [26]YUE Q X, GUAN S H, XIE F B, et al. Interaction of Ganoderma triterpenes with docetaxel and cisplatin in cytotoxicity against human carcinoma cells[J]. Chin. J. Nat.med,2008,6(5):367-371.
    [1]Liu J J, Huang R W, Lin D J, et al. Ponicidin, an ent-kaurane diterpenoid derived from a constituent of the herbal supplement PC-SPES, Rabdosia rubescens, induces apoptosis by activation of caspase-3 and mitochondrial events in lung cancer cells in vitro[J]. Cancer Invest,2006,24(2):136-148.
    [2]徐铮奎.冬凌草有望成为“紫杉醇第二”[J].中国现代中药,2007,9(8):43-45.
    [3]郭萍,李玉山,郭远强.冬凌草化学成分和药理活性研究进展[J].药物评价研究,2010,33(002):144-147.
    [4]尹锋,梁敬钰,刘净.冬凌草化学成分的研究[J].中国药科大学学报,2003,34(4):302-304.
    [5]孙汉董,林中文,秦崇秋,等.抗癌植物冬凌草化学成分的研究[J].云南植物研究,1981,3(1):95-100.
    [6]宋发军,吴士筠,梁建军.巴东冬凌草的抗菌活性研究[J].中南民族大学学报:自然科学版,2004,23(4):9.
    [7]徐霞,张小莉,闫素清,等.冬凌草甲素等二萜类化合物的抗氧化作用[J].海峡药学,2002,14(6):28-31.
    [8]Sun Z, Huang Z, Zhang D D. Phosphorylation of Nrf2 at multiple sites by MAP kinases has a limited contribution in modulating the Nrf2-dependent antioxidant response [J]. PloS one,2009,4(8):e6588.
    [9]杨胜利,韩绍印,张巧,等.冬凌草甲素抗突变性研究[J].癌变·畸变·突变,2001,13(1):8-9.
    [10]王一飞,江金花,王庆端,等.冬凌草多糖的抗肿瘤及其免疫增强作用[J].中国病理生理杂志,2002,18(11):1341-1343.
    [11]李琦,刘洁,陈正.冬凌草甲素对家兔血流动力学的影响及其机理研究[J].白求恩医科大学学报,1994,20(2):128-129.
    [12]Li C, Wang E, Cheng Y, et al. Oridonin:An active diterpenoid targeting cell cycle arrest, apoptotic and autophagic pathways for cancer therapeutics [J]. Int. J Biochem. & Cell Biol,2011,43(5):701-704.
    [13]Ikezoe T, Yang Y, Bandobashi K, et al. Oridonin, a diterpenoid purified from Rabdosia rubescens, inhibits the proliferation of cells from lymphoid malignancies in association with blockade of the NF-κB signal pathways [J]. Mol. Cancer Ther, 2005,4(4):578-586.
    [14]刘家云,魏敏,顾琴龙.冬凌草甲素抗肿瘤的研究进展[J].中国新药与临床杂 志,2010,29(2):81-84.
    [15]郭娟娟,潘祥林,冯长伟.冬凌草甲素逆转多药耐药细胞系K562/A02耐药性的研究[J].上海医学,2002,25(1):43-45.
    [16]刘晓丹,刘文达,王春芝,等.冬凌草乙索对白血病NB4细胞的体外诱导凋亡作用研究[J].中华肿瘤防治杂志,2010,17(12):894-898.
    [17]刘晓丹,刘文达,徐妍,等.冬凌草乙素对白血病K562细胞的诱导凋亡作用及机制研究[J].中国中药杂志,2010,35(16):2161-2165.
    [18]胡颖军,张进朝,王岚,等.冬凌草有效部位急性毒性试验研究[J].光明中医,2011,26(11):2216-2217.
    [19]姚会枝,李吉学,郑海娜.冬凌草提取物对大鼠长期毒性的实验研究[J].时珍国医国药,2010,21(6):1371-1373.
    [20]Calvino E, Manjon J L, Sancho P, et al.< i> Ganoderma lucidum induced apoptosis in NB4 human leukemia cells:Involvement of Akt and Erk [J]. J. Ethnopharmacol,2010,128(1):71-78.
    [21]Krishna R, Mayer L D. Multidrug resistance (MDR) in cancer:mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs [J]. Eur. J. Pharm. Sci,2000,11(4): 265-283.
    [22]Muller C I, Kumagai T, O'Kelly J, et al.< i> Ganoderma lucidum causes apoptosis in leukemia, lymphoma and multiple myeloma cells [J]. Leu. Res,2006, 30(7):841-848.
    [23]Brouty-Boye D, Kolonias D, Wu C J, et al. Relationship of multidrug resistance to rhodamine-123 selectivity between carcinoma and normal epithelial cells:taxol and vinblastine modulate drug efflux [J]. Cancer Res,1995,55(8):1633-1638.
    [24]Hsieh T C, Wu J M. Suppression of proliferation and oxidative stress by extracts of Ganoderma lucidum in the ovarian cancer cell line OVCAR-3[J]. Int. J. Mol Med, 2011,28(6):1065.
    [25]YUE Q X, GUAN S H, XIE F B, et al. Interaction of Ganoderma triterpenes with docetaxel and cisplatin in cytotoxicity against human carcinoma cells [J]. Chin. J. Nat. Med,2008,6(5):367-371.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700