铜氧体系下的碳—碳键及碳—杂键生成反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过渡金属催化的交叉偶联反应来构建碳-碳键及碳-杂原子键作为金属有机化学的一个重要板块,在过去的三十年里得到了迅猛的发展。2010年的诺贝尔化学奖颁给了Richard Heck, Ei-ichi Negishi和Akira Suzuki,以奖励他们在钯催化的基于碳-卤键的交叉偶联反应的贡献。而目前这个领域的发展则把交叉偶联作为串联反应的一个重要步骤,并且C-H键活化则扮演着重要的角色。最近,人们开始把以前认为相对惰性的而又广泛存在于有机分子中的C-H键作为一种官能团来实现交叉偶联反应,并且将C-H键的官能化推向一个与C-X (X=卤原子)一样的高度和热度。
     基于C-H键的交叉偶联反应具有缩短合成步骤、提高原子经济性,可以省去前活化程序,可望发展高效、经济的合成策略,为化学反应合成路线的设计,特别是天然产物的全合成的逆合成分析提供新的思路等优点。尽管如此,目前发展的基于C-H键的交叉偶联反应使用的催化剂仍大多为金、铂、铑、铱等贵金属,而实现催化循环常用的氧化剂常常是当量的金属盐(如醋酸铜、氧化银等),以及醋酸碘苯、苯醌、过硫酸钾等环境不友好的试剂。因此发展由廉价金属(如铜、铁等)催化剂,并且使用氧气作为当量的绿色氧化剂实现有机分子的选择性官能化来构建碳-碳键及碳-杂原子键是实验室以及工业上非常吸引人的课题。
     沿着这样的思路,我们也意识到使用铜催化剂,氧气为最终氧化剂对有机分子的选择性氧化官能化还面临着以下的挑战:(1)活性:铜配合物对于有机分子的催化活性,以及氧气作为一种相对较弱的氧化剂来实现催化循环的能力;(2)选择性:相对惰性的C-H键与C-X键的化学选择性,对于同一个分子中多个活性的C-H键的区域选择性以及立体选择性。在此背景下,本文研究了铜催化氧气氧化官能化来构建碳-碳键以及碳-杂原子键,并且提供了合成多取代噁二唑、噁唑、吡唑、吲唑等含氮杂环衍生物以及炔烃的合成方法学:
     (1)铜催化氧化亚胺C-H键的官能化/Csp2-O键的偶联反应,产物为在农药、医药、材料(特别是发光材料)中广泛使用的噁二唑的衍生物。该反应代表着较少的使用铜催化氧气氧化Csp2-O键形成的例子。另外特别吸引人之处是使用了常压的氧气作为最终的氧化剂。
     (2)铜催化氧化分子内Csp2-H键官能化/C-N键的形成来构建在医药、材料领域有广泛应用的吡唑、吲唑类衍生物。该反应具有较好的区域选择性,从而解决了以往此类吡唑化合物的合成过程中产生的异构体,同时该反应条件温和,底物使用范围广,并且通过简单的添加剂的调控就可以实现芳环Csp2-H的胺化反应。
     (3)一种新颖的合成炔烃的方式,即用腙作为炔烃的前体,以铜作为催化剂,氧气氧化,实现了氧气的选择性氧化Csp3-H键为Csp-H键。同时,本文具有以下特点:(a)解决了铜催化氧气氧化的活性,即Csp3-H键的氧化;以及选择性的问题,该反应具有很好的区域选择性;(b)为长期困扰炔烃合成的难题提供了一条新思路,即使用腙作为炔烃的替代物,可以在炔烃参与的交叉偶联反应中,避免使用大大过量的末端炔,或很麻烦的操作,并且可以实现很高的催化效率。
     (4)铜催化氧气氧化烯烃、芳烃的Csp2-H键官能化/C-S键的偶联反应,分别得到烯基砜以及芳基硫醚的衍生物。该反应使用的硫源是磺酰肼,一价铜催化,通过简单地调节不同的碱添加剂,即可以实现N-S键、S-O键以及C-S键的断裂,使得磺酰肼可以在铜/氧气体系下分别作为砜源、硫源以及芳基源来实现交叉偶联反应。值得一提的是,该反应具有较好的区域、化学和立体选择性。
     (5)铜催化氧化内炔、腈、水的Cascade反应得到多官能化的噁唑衍生物。该反应有非常好区域选择性,对于内炔两端的取代基的电性有很好的敏感性,从而对不对称地内炔底物有单一构型的噁唑产物;同时该反应应用一个大气压的氧气作为该反应的最终氧化剂,绿色环保;一个COX-2抑制剂的衍生物应用该反应可以很简便的合成,从而说明该反应潜在的实用性。
Transition-metal-catalyzed carbon–carbon as well as carbon–heteroatom bond-formingreactions constitutes a major fraction of the area of Organometallic Chemistry. Nobel Prize inChemistry was awarded to Richard Heck, Ei-ichi Negishi, and Akira Suzuki in2010for theirseminal work on such cross-coupling reactions. Recent development brings forward more andmore sequential reactions incorporating cross-couplings as one of the steps and that C–Hbond activation has started to play a major role. Chemists also begin to performcross-coupling reactions using widely existed but relatively inert C-H bond as a functionalgroup, what’s more, C-H bond functionalization is emerging as a hot topic as well as C-Xbond functionalization. Cross-coupling reactions of C-H bonds offer advantages such asshorten the synthetic steps, improve the atom-economy, eliminate the pre-activation steps, andare also expected to develop efficient and economic synthetic strategies, more importantly, toprovide fresh ideas on the design of synthetic routes for organic synthesis, especiallyretrosynthetic analysis for the totle synthesis of natural products. Despite these merits, recentadvancement in this field still face some challenges, such as using noble metals Au, Pt, Rh, Iret. al. as the catalysts, what’s more, the frequently-used oxidant to achieve the high turn-overnumber in the catalytic cycle is metal salts (such as Cu(OAc)2and Ag2O), PhI(OAc)2, BQ,K2S2O8, which is not environment friendly oxidant and bring tremendous pressure on theenvironment. Thus, the development of utilizing cheap and abundant metal catalyst (such ascopper or iron),and using molecular oxygen as the green oxidant to achieve the selectivelyoxidative functionalization of organic molecules is a highly promising and desirable topic inlab research and industry.
     Along such mentality, we also realize that there are some formidable challenges layahead:(1) the catalytic reactivity of copper complex towards organic molecules, as well as theability of molecular oxygen as a relative weak oxidant to operate the catalytic cycle;(2)chemoselectivity of relative inert C-H bonds versus C-X bonds, regioselectivity towards morethan one C-H bond available to participate the corresponding reactions. In this context, westudies copper-catalyzed aerobic oxidative functionalization of organic molecules for the C-Cand C-heteroatom bond formation, what’s more, we also provide the synthetic methodology on the synthesis of nitro-containing heterocycles such as oxadiazoles, oxazoles, pyrazoles,indazoles etc. as well as fucntionlized alkynes using this strategy.
     (1) In chapter2, we developed a copper-catalyzed aerobic oxidative imine C-H bondfunctionalization/Csp2-O bond formation to deliver1,3,4-oxadiazoles, which were widelyused as key fragments in pesticides, medicines, functionalized materials (especially opticalmaterials). This reaction represents a relative rare example in the field of copper-catalyzedaerobic Csp2-O bond formation. An attractive feature of this transformation is the use ofmolecular oxygen as the terminal oxidant.
     (2) In chapter3, we developed a copper-catalyzed intramolecular Csp2-H bondfunctionalization/C-N bond formation, affording pyrazoles and indazoles which were widelyapplied in medicines and materials. This reaction features good regioselectivity, which wasthe often encountered challenge in the traditional pyrazoles synthesis. The reaction behavesmild condition, great functional-group tolerance, more significantly, aromatic Csp2-H bondamination could be also realized with slight modification of the additive.
     (3) In chapter4, we developed a novel strategy for the alkyne synthesis, that is, utilizingketone-derived hydrazones as the precursors of the alkynes. With the aid of copper catalyst,molecular oxygen as the oxidant, we realized herein aerobic oxidative transformation ofCsp3-H bond into C-C triple bond;(a) As to the selectivity issue, this reaction features goodregioselectivity towards more than one C-H bond available to oxidation for the C-C triplebond formation;(b) This discovery also provides a new opportunity for dealing with the issuepeople puzzled always, that is, using N-Tosyl hydrazones as the alternatives for alkynes couldeliminate the use of highly excess terminal alkynes or troublesome operations, instead, highturn-over number was also achieved.
     (5) In chapter5, a regio-, chemo-, stereoselective synthesis of sulfones and thioethers viaCu(I)-catalyzed aerobic oxidative N-S bond cleavage of sulfonyl hydrazides andcross-coupling with alkenes and aromatic compounds for the Csp2-S bond formation isdeveloped. N2and H2O are the byproducts of this transformation, thus offering anenvironmentally benign process with wide potential applications in organic synthesis andmedicinal chemistry.
     (5) In chapter6, we developed a copper-catalyzed oxidative cascade reaction of internal alkynes, nitriles and water leading to highly fuctionalized oxazoles. This reaction featuresgreat regioselectivity, and showed a good sensitivity towards the substituents on the internalalkynes, thus the exclusive formation of the oxazoles with single configuration when usingunsymmetric internal alkynes as substrates. Molecular oxygen was used in this reaction as theoxidant. Further synthetic potential was also investigated by synthesizing a core structure ofCOX-2inhibitor derivative.
引文
[1](a) Comprehensive Heterocyclic Chemistry III; Katritzky, A. R., Ramsden, C. A., Scriven,E. F. V., Taylor, R. J. K., Eds.; Pergamon: Oxford,2008;(b) Ricci, A. Amino GroupChemistry: From Synthesis to the Life Sciences; Willey-VCH: Weinheim,2008.
    [2] Magnus, P.; Eisenbeis, S. A.; Fairhurst, R. A. et al. Synthetic and Mechanistic Studies onthe Azabicyclo[7.3.1]enediyne Core and Naphtho[2,3-h]quinoline Portions of Dynemicin A[J]. J. Am. Chem. Soc.1997,119(24):5591–5605.
    [3](a) Hegedus, L. S. Organometallics in Organic Synthesis, Schlosser, M. ed., Wiley, NewYork,1994;(b) Tsuji, J. Palladium Reagents and Catalysts: Innovations in Organic Synthesis,Wiley, Chichester,1995;(c) Geissler, H. Transition Metals for Organic Synthesis, Beller, M.;Bolm, C.(eds), Wiley-VCH, Weinheim,1998, Vol1, pp158–193;(d) Diederich, F.; Stang, P.J. Metal-Catalyzed Cross-Coupling Reactions, Wiley-VCH, Weinheim,1998;
    [4](a) Li, J. J.; Gribble, G. W. Palladium in Heterocyclic Chemistry: A Guide for theSynthetic Chemist, Pergamon, Amsterdam,2000;(b) Beller, M.; Bolm, C. Transition Metalsfor Organic Synthesis, Wiley-VCH, Weinheim,2004, Vol1,2nd edition.
    [5](a) Tamao, K.; Sumitani, K.; Kumada, M. Alkyl group isomerization in the cross-couplingreaction of secondary alkyl Grignard reagents with organic halides in the presence ofnickel-phosphine complexes as catalysts [J]. J. Am. Chem. Soc.1972,94(26):4374–4376;(b)Corriu, R. J. P.; Masse, J. P. Activation of Grignard Reagents by Transition Metal Compounds[J]. Chem. Commun.1972,3:144–144.
    [6] Mizoroki, T.; Mori, K.; Ozaki, A. Arylation of Olefin with Aryl Iodide Catalyzed byPalladium [J]. Bull. Chem. Soc. Jpn.1971,44:581–581.
    [7](a) Heck, R. F.; Nolley, J. P. Research Article Palladium-catalyzed Vinylic HydrogenSubstitution Reactions with Aryl, Benzyl, and Styryl Halides [J]. J. Org. Chem.1972,37(14):2320–2322;(b) Dieck, H. A.; Heck, R. F. Organophosphinepalladium Complexes as Catalystsfor Vinylic Hydrogen Substitution Reactions [J]. J. Am. Chem. Soc.1974,96(4):1133–1136;(c) Ziegler, C. B.; Heck, R. F. Palladium-Catalyzed Vinylic Substitution with HighlyActivated Aryl Halides [J]. J. Org. Chem.1978,43(15):2941–2946.
    [8] Negishi, E.; Hu, Q.; Huang, Z. et al. Palladium-Catalyzed Alkenylation by the NegishiCoupling [J]. Aldrichimica Acta,2005,38:71–88.
    [9] Miyaura, N.; Yamada, K.; Suzuki, A. A New Stereospecific Cross-Coupling by thePalladium-Catalyzed Reaction of1-Alkenylboranes with1-Alkenyl or1-Alkynyl Halides [J].Tetrahedron Lett.1979,20(36):3437–3440.
    [10] Danishefsky, S. J.; Masters, J. J.; Young, W. B. et al. Total Synthesis of Baccatin III andTaxol [J]. J. Am. Chem. Soc.,1996,118(2):2843–2849.
    [11] Nicolaou, K. C.; Ramanjulu, J. M.; Natarajan, S. et al. A SuzukiCoupling–Macrolactamization Approach to the AB-COD Bicyclic System of Vancomycin [J].Chem Commun,1997,20:1899–1900.
    [12] Negishi, E.; King, A. O.; Okukado, N. Selective Carbon-Carbon Bond Formation viaTransition Metal Catalysis.3. A Highly Selective Synthesis of Unsymmetrical Biaryls andDiarylmethanes by the Nickel-or Palladium-Catalyzed Reaction of Aryl-and BenzylzincDerivatives with Aryl Halides [J]. J. Org. Chem.1977,42(10):1821–1823.
    [13] Yoo, E. J.; Ma, S.; Mei, T.-S. et al. Pd-Catalyzed Intermolecular C–H Amination withAlkylamines [J]. J. Am. Chem. Soc.2011,133(20):7652–7655.
    [14] Handbook of C-H Transformations; G. Dyker, Ed.; Wiley-VCH Velag GmbH&Co.KGaA: Weinheim, Germany,2005.
    [15] Wencel-Delord, J.; Dr ge, T.; Liu, F. et al. Towards Mild Metal-Catalyzed C–H bondActivation [J]. Chem. Soc. Rev.2011,40:4740–4761.
    [16](a) Murai, S.; Kakiuchi, F.; Sekine, S. et al. Efficient Catalytic Addition of AromaticCarbon-Hydrogen Bonds to Olefins [J]. Nature1993,366:529–531;(b) Kakiuchi, F.; Murai,S. Catalytic C H/Olefin Coupling [J]. Acc. Chem. Res.2002,35(10):826–834;(c) Chatani,N.; Asaumi, T.; Ikeda, T. et al. Carbonylation at sp3C H Bonds Adjacent to a Nitrogen Atomin Alkylamines Catalyzed by Rhodium Complexes [J]. J. Am. Chem. Soc.2000,122(51):12882–12885;(d) Thalji, R. K.; Ellman, J. A.; Bergman, R. G. Highly Efficient andEnantioselective Cyclization of Aromatic Imines via Directed C H Bond Activation [J]. J. Am.Chem. Soc.2004,126(23):7192–7193.
    [17](a) Seregin, I. V.; Gevorgyan, V. Direct Transition Metal-Catalyzed Functionalization ofHeteroaromatic Compounds [J]. Chem. Soc. Rev.2007,36:1173–1193;(b) Lewis, J. C.;Bergman, R. G.; Ellman, J. A. Rh(I)-Catalyzed Alkylation of Quinolines and Pyridines viaC H Bond Activation [J]. J. Am. Chem. Soc.2007,129(17):5332–5333;(c) Davies, H. M. L.;Manning, J. R. Catalytic C–H Functionalization by Metal Carbenoid and Nitrenoid Insertion[J]. Nature2008,451:417–424.
    [18](a) Dick, A. R.; Hull, K. L.; Sanford, M. S. A Highly Selective Catalytic Method for theOxidative Functionalization of C H Bonds [J]. J. Am. Chem. Soc.2004,126(8):2300–2301;(b) Stowers, K. J.; Sanford, M. S. Mechanistic Comparison between Pd-CatalyzedLigand-Directed C H Chlorination and C H Acetoxylation [J]. Org. Lett.2009,11(20):4584–4587;(c) Desai, L. V.; Stowers, K. J.; Sanford, M. S.; Insights into Directing GroupAbility in Palladium-Catalyzed C H Bond Functionalization [J]. J. Am. Chem. Soc.2008,130(40):13285–13293.
    [19] Desai, L. V.; Hull, K. L.; Sanford, M. S. Palladium-Catalyzed Oxygenation ofUnactivated sp3C H Bonds [J]. J. Am. Chem. Soc.2004,126(31):9542–9543.
    [20] Desai, L. V.; Malik, H. A.; Sanford, M. S. Oxone as an Inexpensive, Safe, andEnvironmentally Benign Oxidant for C H Bond Oxygenation [J]. Org. Lett.,2006,8(6):1141–1144.
    [21] Yin, Z.; Jiang, X.; Sun, P. Palladium-Catalyzed Direct ortho Alkoxylation of AromaticAzo Compounds with Alcohols [J]. J. Org. Chem.,2013,78(19):10002–10007.
    [22] Ju, L.; Yao, J.; Wu, Z.; Liu, Z.; Zhang, Y. Palladium-Catalyzed Oxidative Acetoxylationof Benzylic C–H Bond Using Bidentate Auxiliary [J]. J. Org. Chem.,2013,78(21):10821–10831.
    [23] Rit, R. K.; Yadav, M. R.; Sahoo, A. K. Pd(II)-Catalyzed ortho-C–H Oxidation ofArylacetic Acid Derivatives: Synthesis of Benzofuranones [J]. Org. Lett.,2014,16(3):968–971.
    [24] Wang, X.; Lu, Y.; Dai, H.-X. et al. Pd(II)-Catalyzed Hydroxyl-Directed C HActivation/C O Cyclization: Expedient Construction of Dihydrobenzofurans [J]. J. Am. Chem.Soc.,2010,132(35):12203–12205.
    [25] Cheng, X.-F.; Li, Y.; Su, Y.-M. et al. Pd(II)-Catalyzed Enantioselective C–HActivation/C–O Bond Formation: Synthesis of Chiral Benzofuranones [J]. J. Am. Chem. Soc.,2013,135(4):1236–1239.
    [26] Xiao, B.; Gong, T.-J.; Liu, Z.-J. et al. Synthesis of Dibenzofurans viaPalladium-Catalyzed Phenol-Directed C-H Activation/C-O Cyclization [J]. J. Am. Chem. Soc.2011,133(24):9250–9253.
    [27] Kharasch, M. S.; Sosnovsky, G. The Reaction of t-Butyl Perbenzoate and Olefins-AStereospecific Reaction [J]. J. Am. Chem. Soc.1958,80(3):756-756.
    [28] Chen, X.; Hao, X.-S.; Goodhue, C. E. et al. Cu(II)-Catalyzed Functionalizations of ArylC H Bonds Using O2as an Oxidant [J]. J. Am. Chem. Soc.,2006,128(21):6790–6791.
    [29] Wang, W.; Luo, F.; Zhang, S. et al. Copper(II)-Catalyzed Ortho-Acyloxylation of the2-Arylpyridines sp2C H Bonds with Anhydrides, Using O2as Terminal Oxidant [J]. J. Org.Chem.,2010,75(7):2415–2418.
    [30] Beletskaya, I. P. Copper in Cross-Coupling Reactions: The post-Ullmann Chemistry [J].Coord. Chem. Rev.2004,248(21-24):2337–2364.
    [31] Paul, F.; Patt, J.; Hartwig, J. F. Palladium-Catalyzed Formation of Carbon-NitrogenBonds. Reaction Intermediates and Catalyst Improvements in the Hetero Cross-Coupling ofAryl Halides and Sin Amides. J. Am. Chem. Soc.1994,116(13):5969–5970.
    [32] Tsang, W. C. P.; Zheng, N.; Buchwald, S. L. Combined C-H Functionalization/C-N BondFormation Route to Carbazoles [J]. J. Am. Chem. Soc.,2005,127(42):14560-14561.
    [33] Jordan-Hore, J. A.; Johansson, C. C. C.; Gulias, M. et al. Oxidative Pd(II)-CatalyzedC H Bond Amination to Carbazole at Ambient Temperature [J]. J. Am. Chem. Soc.,2008,130(48):16184–16186.
    [34] Mei, T.-S.; Wang, X.; Yu, J.-Q. Pd(II)-Catalyzed Amination of C H Bonds UsingSingle-Electron or Two-electron Oxidants [J]. J. Am. Chem. Soc.2009,131(31):10806-10807.
    [35] Tan, Y.; Hartwig, J. F. Palladium-Catalyzed Amination of Aromatic C-H Bonds withOxime Esters [J]. J. Am. Chem. Soc.,2010,132(11):3676–3677.
    [36] Thu, H.-Y.; Yu, W.-Y.; Che, C.-M. Intermolecular Amidation of Unactivated sp2and sp3C-H Bonds via Palladium-Catalyzed Cascade C–H Activation/Nitrene Insertion [J]. J. Am.Chem. Soc.2006,128:9048–9049.
    [37] Dick, A. R.; Remy, M. S.; Kampf, J. W. et al. Carbon-Nitrogen Bond-Forming Reactionsof Palladacycles with Hypervalent Iodine Reagents [J]. Organometallics2007,26(6):1365-1370.
    [38] Ng, K.-H.; Chan, A. S. C.; Yu, W.-Y. Pd-Catalyzed Intermolecular ortho-C-H Amidationof Anilides by N-Nosyloxycarbamate [J]. J. Am. Chem. Soc.,2010,132(37):12862-12864.
    [39] Xiao, B.; Gong, T.-J.; Xu, J. et al. Palladium-Catalyzed Intermolecular Directed C HAmidation of Aromatic Ketones [J]. J. Am. Chem. Soc.,2011,133(5):1466–1474.
    [40] Mei, T.-S.; Wang, X.; Yu, J.-Q. Pd(II)-Catalyzed Amination of C-H Bonds UsingSingle-Electron or Two-electron Oxidants [J]. J. Am. Chem. Soc.,2009,131(31):10806–10807.
    [41](a) Delcamp, J. H.;Gormisky, P. E. White, M. C. Oxidative Heck Vinylation for theSynthesis of Complex Dienes and Polyenes [J]. J. Am. Chem. Soc.,2013,135(23):8460–8463;(b) Strambeanu, I. I.; White, M. C. Catalyst-Controlled C–O versus C–N AllylicFunctionalization of Terminal Olefins [J]. J. Am. Chem. Soc.2013,135(32):12032–12037;(c)Rice, G. T.; White, M. C. Allylic C H Amination for the Preparation of syn-1,3-AminoAlcohol Motifs [J]. J. Am. Chem. Soc.,2009,131(33):1707–11711;(d) Paradine, S. M.;White, M. C. Iron-Catalyzed Intramolecular Allylic C–H Amination [J]. J. Am. Chem. Soc.2012,134(4):2036–2039.
    [42](a) Kim, J. Y.; Park, S. H.; Jaeyune Ryu, J. et al. Rhodium-Catalyzed IntermolecularAmidation of Arenes with Sulfonyl Azides via Chelation-Assisted C–H Bond Activation [J]. J.Am. Chem. Soc.2012,134(22):9110–9113;(b) Kang, T.; Kim, Y.; Lee, D. et al.Iridium-Catalyzed Intermolecular Amidation of sp3C-H Bonds: Late-Stage Functionalizationof an Unactivated Methyl Group [J]. J. Am. Chem. Soc.,2014,136(11):4141–4144.
    [43](a) Kim, H.; Shin, K.; Chang, S. Iridium-Catalyzed C-H Amination with Anilines atRoom Temperature: Compatibility of Iridacycles with External Oxidants [J]. J. Am. Chem.Soc.,2014,136(16):5904–5907;(b) Ryu, J.; Kwak, J.; Shin, K. et al. Ir(III)-Catalyzed MildC-H Amidation of Arenes and Alkenes: An Efficient Usage of Acyl Azides as the NitrogenSource [J]. J. Am. Chem. Soc.,2013,135(34):12861–12868.
    [44] Park, S. H.; Kwak,J.; Shin, K et al. Mechanistic Studies of the Rhodium-Catalyzed DirectC-H Amintion Reaction Using Azides as the Nitrogen Source [J]. J. Am. Chem. Soc.,2014,136(6):2492–2502;(b) Kim, J.; Chang, S. Iridium-Catalyzed Direct C-H Amidation withWeak-Coordinating Carbonyl Directing Groups under Mild Conditions [J]. Angew. Chem. Int.Ed.,2014,53(8):2203–2207.
    [45](a) Roizen, J. L.; Harvey, M. E.; Bois, J. D. Metal-Catalyzed Nitrogen-Atom TransferMethods for the Oxidation of Aliphatic C–H Bonds [J]. Acc. Chem. Res.,2012,45(6):911–92;(b) Bois, J. D. Rhodium-Catalyzed C–H Amination. An Enabling Method for ChemicalSynthesis [J]. Org. Process Res. Dev.,2011,15(4):758–762.
    [46] Cho, S. H.; Kim, J, Y.; Lee, S. Y. et al. Silver-Mediated Direct Amination ofBenzoxazoles: Tuning the Amino Group Source from Formamides to Parent Amines [J].Angew. Chem. Int. Ed.2009,48(48):9127–9130.
    [47] Kim, J. Y.; Cho, S. H.; Jomy Joseph, J. et al. Cobalt-and Manganese-Catalyzed DirectAmination of Azoles under Mild Reaction Conditions and the Mechanistic Details [J]. Angew.Chem. Int. Ed.2010,49(51):9899–9903.
    [48] Sun, S.-Z.; Dai, H.-X.; Yu, J.-Q. Cu(II)-Mediated C–H Amidation and Amination ofArenes: Exceptional Compatibility with Heterocycles [J]. J. Am. Chem. Soc.,2014,136(9):3354–3357.
    [49] Brasche, G.; Buchwald, S. L. C–H Functionalization/C-N Bond Formation:Copper-Catalyzed Synthesis of Benzimidazoles from Amidines [J]. Angew. Chem. Int. Ed.2008,47(10):1932–1934.
    [50](a) Cho, S. H.; Yoon, J.; Chang, S. Intramolecular Oxidative C N Bond Formation forthe Synthesis of Carbazoles: Comparison of Reactivity between the Copper-Catalyzed andMetal-Free Conditions [J]. J. Am. Chem. Soc.,2011,133(15):5996–6005;(b) Kim, H. J.;Kim, J.; Cho, S. H. et al. Intermolecular Oxidative C–N Bond Formation under Metal-FreeConditions: Control of Chemoselectivity between Aryl sp2and Benzylic sp3C–H BondImidation [J]. J. Am. Chem. Soc.,2011,133(41):16382–16385.
    [51] Wang, H.; Wang, Y.; Peng, C. et al. A Direct Intramolecular C–H Amination ReactionCocatalyzed by Copper(II) and Iron(III) as Part of an Effcient Route for the Synthesis ofPyrido[1,2-a]benzimidazoles from N-Aryl-2-aminopyridines [J]. J. Am. Chem. Soc.2010,132(38):13217–13219.
    [52] Wang, H.; Wang, Y.; Liang, D. et al. Copper-Catalyzed Intramolecular DehydrogenativeAminooxygenation: Direct Access to Formyl-Substituted Aromatic N-Heterocycles [J]. Angew.Chem. Int. Ed.2011,50(25):5678–5681.
    [53] Lu, J.; Jin, Y.; Liu, H. et al. Copper-Catalyzed Aerobic Oxidative Intramolecular AlkeneC–H Amination Leading to N-Heterocycles [J]. Org. Lett.2011,13(14):3694–3697.
    [54] Hamada, T.; Ye, X.; S. Stahl, S. S. Copper-Catalyzed Aerobic Oxidative Amidation ofTerminal Alkynes: Efficient Synthesis of Ynamides [J]. J. Am. Chem. Soc.,2008,130(3):833–835.
    [55] Wang, L.; Huang, H.; Priebbenow, D. L. et al. Copper-Catalyzed OxidativeCross-Coupling of Sulfoximines and Alkynes [J]. Angew. Chem. Int. Ed.2013,125(12):3562–3564.
    [56] Peterson, L. I.; Britton, E. C. A Novel Synthesis of Ynamines. Copper CatalyzedOxidation of Phenylacetylene in the Presence of Secondary Amines [J]. Tetrahedron Lett.1968,9(51):5357–5360.
    [57] Chun Zhang, C.; Jiao, N. Dioxygen Activation under Ambient Conditions: Cu-CatalyzedOxidative Amidation Diketonization of Terminal Alkynes Leading to-Ketoamides [J]. J.Am. Chem. Soc.,2010,132(1):28–29.
    [58] Wei, Y.; Zhao, H.; Kan, J. et al. Copper-Catalyzed Direct Alkynylation ofElectron-Deficient Polyfluoroarenes with Terminal Alkynes Using O2as an Oxidant [J]. J. Am.Chem. Soc.2010,132(8):2522–2523.
    [59] Wang, Q.; Schreiber, S. L. Copper-Mediated Amidation of Heterocyclic and AromaticC H Bonds [J]. Org. Lett.2009,11(22):5178–5180.
    [60](a) Nadres, E. T.; Santos, G. I. F.; Shabashov, D. et al. Scope and Limitations ofAuxiliary-Assisted, Palladium-Catalyzed Arylation and Alkylation of sp2and sp3C–H Bonds[J]. J. Org. Chem.,2013,78(19):9689–9714;(b) Tran, L. D.; Popov, I.; Daugulis, O.Copper-Promoted Sulfenylation of sp2C–H Bonds [J]. J. Am. Chem. Soc.,2012,134(44):18237–18240.
    [61] Rouquet, G.; Chatani, N. Catalytic Functionalization of C(sp2)-H and C(sp3)-H BondsUsing Bidentate Directing Groups [J]. Angew. Chem. Int. Ed.,2013,52(45):1726–11743.
    [62](a) Wu, X.; Zhao, Y.; Zhang, G. et al. Copper-Catalyzed Site-Selective IntramolecularAmidation of Unactivated C(sp3)-H Bonds [J]. Angew. Chem. Int. Ed.2014,53(14):706–3710;(b) Wang, Z.; Ni, J.; Yoichiro Kuninobu, Y. et al. Copper-Catalyzed IntramolecularC(sp3)-H and C(sp2)-H Amidation by Oxidative Cyclization [J]. Angew. Chem. Int. Ed.2014,53(13):3496–3499.
    [63](a) Kosugi, M.; Shimizu, T.; Migita, T. Reactions of Aryl Haldies with thiolate Anions inthe Presence of Catalytic Amounts of Tetrakis(Triphenylphosphine)Palladium Preparation ofAryl Sulfides [J]. Chem. Lett.1978:13–14.(b) Migita, T.; Shimizu, T.; Asami, Y. et al. ThePalladium Catalyzed Nucleophilic Substitution of Aryl Halides by Thiolate Anions [J]. Bull.Chem. Soc. Jpn.1980,53:1385–1389.
    [64](a) Cristau, H. J.; Chabaud, B.; Chene, A. et al. Synthesis of Diaryl Sulfides byNickel(II)-Catalyzed Arylation of Arenethiolates [J]. Synthesis1981,11:892–894;(b) Cristau,H. J.; Chabaud, B.; Labaudiniere, R. et al. Synthesis of Vinyl Selenides or Sulfides andKetene Selenoacetals or Thioacetals by Nickel(II) Vinylation of Sodium Benzeneselenolate orBenzenethiolate [J]. J. Org. Chem.1986,51(6):875–878.
    [65](a) Trost, B. M.; Van Vranken, D. L. Asymmetric Transition Metal-Catalyzed AllylicAlkylations [J]. Chem. Rev.1996,96(1):395–422.(b) Tsuji, J. In Palladium Reagents andCatalysts; John Wiley&Sons: New York,1995; p290.(c) Harrington, P. J. In ComprehensiveOrganometallic Chemistry II; Abel, E. W., Stone, F. G. A.; Wilkinson, G.; Eds.; Pergamon:Oxford, U.K.,1995; Vol.12, p797. Allylic amination, also see:(d) Johannsen, M.; J rgensen,K. A. Allylic Amination [J]. Chem. Rev.1998,98(4):1689–1708.
    [66] Yamada, Y.; Mukai, K.; Yoshioka, H. et al. Palladium Catalyzed Thiono-Thiolo AllylicRearrangement of O-allyl Phosphoro-and Phosphonothionates [J]. Tetrahedron Lett.1979,20(52):5015–5018。
    [67] Tamaru, Y.; Yoshida, Z.; Yamada, Y. et al. Palladium-Catalyzed Thiono-Thiolo AllylicRearrangement of O-allyl Phosphoro-and Phosphonothionates [J]. J. Org. Chem.1983,48(8):1293–1297.
    [68] Kondo, T.; Morisaki, Y.; Uenoyama, S. et al. First Ruthenium-Catalyzed Allylation ofThiols Enables the General Synthesis of Allylic Sulfides [J]. J. Am. Chem. Soc.1999,121(37):8657–8658.
    [69](a) Ley, S. V.; Thomas, A. W. Modern Synthetic Methods for Copper-Mediated C(aryl)-O,C(aryl)-N, and C(aryl)-S Bond Formation. Angew. Chem. Int. Ed.2003,42(44):5400–5449;(b) Kondo, T.; Mitsudo, T. Metal-Catalyzed Carbon Sulfur Bond Formation [J]. Chem. Rev.2000,100(8):3205–3220.
    [70] Palomo, C.; Oiabide, M.; Lopez, R.; Gomez-Bengoa, E. Phosphazene Bases for thePreparation of Biaryl Thioethers from Aryl Oodides and Arenethiols [J]. Tetrahedron Lett.2000,41:1283–1286.
    [71] Kwong, F. Y.; Buchwald, S. L. A General, Efficient, and Inexpensive Catalyst System forthe Coupling of Aryl Iodides and Thiols [J]. Org. Lett.2002,4:3517–3520.
    [72](a) Baskin, J. M.; Wang, Z. An Efficient Copper Catalyst for the Formation of Sulfonesfrom Sulfinic Acid Salts and Aryl Iodides [J]. Org. Lett.2002,4:4423–4425;(b) Baskin, J.M.; Wang, Z. A Mild, Convenient Synthesis of Sulfinic Acid salts and Sulfonamides fromAlkyl and Aryl Halides [J]. Tetrahedron Lett.2002,43:8479–8483.
    [73] Zhu, W.; Ma, D. Synthesis of Aryl Sulfones via L-Proline-Promoted CuI-CatalyzedCoupling Reaction of Aryl Halides with Sulfinic Acid Salts [J]. J. Org. Chem.2005,70(7):2696–2700.
    [74] Zhao, P.; Yin, H.; Gao, H. et al. Cu-catalyzed Synthesis of Diaryl Thioethers and S-cyclesby Reaction of Aryl Iodides with Carbon Disulfide in the Presence of DBU [J]. J. Org. Chem.2013,78(10):5001–5006.
    [75] Screttas, C. G.; Micha-Screttas, M. Markownikoff Two-step Hydrolithiationof.Alpha.-olefins. Transformation of Secondary and Tertiary Alkyl Phenyl Sulfides to theRelevant Alkyllithium Reagents [J]. J. Org. Chem.1979,44(5):713–719.
    [76] Kuniyasu, H.; Ogawa, A.; Sato, K. et al. The First Example ofTransition-Metal-Catalyzed Addition of Aromatic Thiols to Acetylenes [J]. J. Am. Chem. Soc.1992,114(14):5902-5903.
    [77] Ogawa, A.; Kawakami, J.; Sonoda, N. et al. Highly Regioselective Addition ofBenzenethiol to Allenes Catalyzed by Palladium Acetate [J]. J. Org. Chem.1996,61(12):4161–4163.
    [78] Inamoto, K.; Hasegawa, C.; Hiroya, K. et al. Palladium-Catalyzed Synthesis of2-Substituted Benzothiazoles via a C–H Functionalization/Intramolecular C–S BondFormation Process [J]. Org. Lett.2008,10(22):5147–5150.
    [79] Wang, H.; Wang, L.; Shang, J. et al. Fe-catalysed oxidative C–H functionalization/C–Sbond Formation [J]. Chem. Commun.,2012,48:76–78.
    [80] Zhao, X. D.; Dimitrijev iic, E.; Dong; V. M. Palladium-Catalyzed C H BondFunctionalization with Arylsulfonyl Chlorides [J]. J. Am. Chem. Soc.2009,131(10):3466–3467.
    [81](a) Guo, Y.-J.; Tang, R.-Y.; Li, J.-H. et al. Palladium-Catalyzed Annulation of2-(1-Alkynyl)benzenamines with Disulfides: Synthesis of3-Sulfenylindoles [J]. Adv. Synth.Catal.2009,351:2615–2618;(b) Song, R.-J.; Liu, Y.; Liu, Y.-Y. et al. Palladium-CatalyzedConjugate Addition to Electron-Deficient Alkynes with Benzenesulfinic Acid Derived from1,2-Bis(phenylsulfonyl)ethane: Selective Synthesis of (E)-Vinyl Sulfones [J]. J. Org. Chem.2011,76(3):1001–1004;(c) Hu, B.-L.; Pi, S.-S.; Qian, P.-C. et al. Palladium-CatalyzedIodine-Mediated Electrophilic Annulation of2-(1-Alkynyl)biphenyls with Disulfides [J]. J.Org. Chem.2013,78(3):1300–1305.
    [82](a) Li, X.; Xu, X.; Zhou, C. Tetrabutylammonium Iodide Catalyzed Allylic Sulfonylationof-methyl Styrene Derivatives with Sulfonylhydrazides [J]. Chem. Commun.2012,48:12240–12242;(b) Li, X.; Xu, X.; Hu, P. et al. Synthesis of Sulfonated Oxindoles byPotassium Iodide Catalyzed Arylsulfonylation of Activated Alkenes with Sulfonylhydrazidesin Water [J]. J. Org. Chem.,2013,78(14):7343–7348;(c) Li, X.; Shi, X.; Fang, M. et al. IronHalide-Mediated Regio-and Stereoselective Halosulfonylation of Terminal Alkynes withSulfonylhydrazides: Synthesis of (E)-β-Chloro and Bromo Vinylsulfones [J]. J. Org. Chem.2013,78(18):94999504.
    [83](a) Baskin, J. M.; Wang, Z. An Efficient Copper Catalyst for the Formation of Sulfonesfrom Sulfinic Acid Salts and Aryl Iodides [J]. Org. Lett.2002,4(25):4423–4425.(b) Nair, V.;Augustine, A.; George, T. G. et al. An Efficient One-Pot Synthesis of Vinyl Sulphones viaCAN Mediated Reaction of Aryl Sulphinates and Alkenes [J]. Tetrahedron Lett.2001,42:6763–6765.(c) Cacchi, S.; Fabrizi, G.; Goggiamani, A. et al. Unsymmetrical Diaryl Sulfonesand Aryl Vinyl Sulfones through Palladium-Catalyzed Coupling of Aryl and Vinyl Halides orTriflates with Sulfinic Acid Salts [J]. J. Org. Chem.2004,69(17):5608–5614.
    [84](a) Taniguchi, N. Tandem Stereoselective Synthesis of (E)-Alkenyl Sulfones fromAlkenes or Alkynes via Copper-Catalyzed Oxidation of Sodium Sulfinates [J]. Synlett2011,9:1308–1312;(b) Taniguchi, N. Copper-Catalyzed Oxidative Hydrosulfonylation of AlkynesUsing Sodium Sulfinates in Air [J]. Synlett2012,23(8):1245–1249.
    [85] Battace, A.; Zair, T.; Doucet, H. et al. Heck Vinylations Using Vinyl Sulfide, VinylSulfoxide, Vinyl Sulfone, or Vinyl Sulfonate Derivatives and Aryl Bromides Catalyzed by aPalladium Complex Derived from a Tetraphosphine [J]. Synthesis2006,20:3495–3505.[86](a) Lu, Q.; Zhang, J.; Wei, F. et al. Aerobic Oxysulfonylation of Alkenes Leading toSecondary and Tertiary β-Hydroxysulfones [J]. Angew. Chem. Int. Ed.2013,52(28):7156–7159;(b) Lu, Q.; Zhang, J.; Zhao, G. et al. Dioxygen-Triggered Oxidative RadicalReaction: Direct Aerobic Difunctionalization of Terminal Alkynes toward β Keto Sulfones [J].J. Am. Chem. Soc.2013,135(31):1148111484.
    [87] Xi, Y.; Dong, B.; McClain, E. J et al. Gold-Catalyzed Intermolecular C-S BondFormation: Efficient Synthesis of a-Substituted Vinyl Sulfones [J]. Angew. Chem. Int. Ed.2014,53(18):4657–4661.
    [88](a) Yuan, G.; Zheng, J.; Gao, X. et al. Chem. Commun.,2012,48:7513-7515;(b) Tang,X.; Huang, L.; Xu, Y. et al. Copper-Catalyzed Coupling of Oxime Acetates with SodiumSulfinates: An Efficient Synthesis of Sulfone Derivatives [J]. Angew. Chem. Int. Ed.2014,53(16):4205–4208;(c) Xu, Y.; Zhao, J.; Tang, X. et al. Chemoselective Synthesis ofUnsymmetrical Internal Alkynes or Vinyl Sulfones via Palladium-Catalyzed Cross-CouplingReaction of Sodium Sulfinates with Alkynes [J]. Adv. Synth. Catal.2014, DOI:10.1002/adsc.201300945.
    [89](a) Backvall, J.-E. Modern Oxidation Methods,2nd ed., Wiley-VCH, Weinheim,2011;(b) Cavani, F.; Teles, J. H. Sustainability in Catalytic Oxidation: An Alternative Approach or aStructural Evolution?[J]. ChemSusChem2009,2(6):508–534;(c) Caron, S.; Dugger, R. W.;Ruggeri, S. G. et al. Large-Scale Oxidations in the Pharmaceutical Industry [J]. Chem. Rev.2006,106(7):2943–2989;(d) Dick, A. R. Sanford, M. S. Transition Metal CatalyzedOxidative Functionalization of Carbon–Hydrogen Bonds [J]. Tetrahedron2006,62(11):2439–2463;(e) Labinger, J. A. Bercaw, J. E. Understanding and Exploiting C–H bondActivation [J]. Nature2002,417,507–514;(f) Davies, H. M. L.; Manning, J. R. CatalyticC–H Functionalization by Metal Carbenoid and Nitrenoid Insertion [J]. Nature2008,451:417–424.
    [90](a) Punniyamurthy, T.; Velusamy, S.; Iqbal, J. Recent Advances in Transition MetalCatalyzed Oxidation of Organic Substrates with Molecular Oxygen [J]. Chem. Rev.2005,105:2329–2363;(b) Shi, Z.; Zhang, C.; Tanga, C. et al. Recent Advances in Transition-MetalCatalyzed Reactions Using Molecular Oxygen as the Oxidant [J]. Chem. Soc. Rev.2012,41:3381–3430;(c) Stahl, S. S. Palladium Oxidase Catalysis: Selective Oxidation of OrganicChemicals by Direct Dioxygen-Coupled Turnover [J]. Angew. Chem. Int. Ed.2004,43:3400–3420;(d) Stahl, S. S. Palladium-Catalyzed Oxidation of Organic Chemicals with O2[J].Science2005,309:1824-1826;(e) Gligorich, K. M.; Sigman, M. S. Recent Advancementsand Challenges of Palladiumii-Catalyzed Oxidation Reactions with Molecular Oxygen as theSole Oxidant [J]. Chem. Commun.2009:3854–3867;(f) Wu, W.; Jiang, H.Palladium-Catalyzed Oxidation of Unsaturated Hydrocarbons Using Molecular Oxygen [J].Acc. Res. Chem.2012,45:1736–1748;(g) Campbell, A. N.; Stahl, S. S. Overcoming the“Oxidant Problem”: Strategies to Use O2as the Oxidant in Organometallic C-H OxidationReactions Catalyzed by Pd (and Cu)[J]. Acc. Res. Chem.2012,45:851–863.
    [91](a) Yeung, C. S. Dong, V. M. Catalytic Dehydrogenative Cross-Coupling: FormingCarbon Carbon Bonds by Oxidizing Two Carbon Hydrogen Bonds [J]. Chem. Rev.2011,111(3):1215–1292;(b) Ackermann, L. Carboxylate-Assisted Transition-Metal-CatalyzedC H Bond Functionalizations: Mechanism and Scope [J]. Chem. Rev.2011,111(3):1315–1345;(c) Lyons, T. W.; Sanford, M. S. Palladium-Catalyzed Ligand-Directed C HFunctionalization Reactions [J]. Chem. Rev.2010,110:1147–1169.(d) Chen, X.; Engle, K.M.; Wang, X et al. Pd(II)-Catalyzed C–H Activation/C–C Cross-Coupling Reactions:Versatility and Practicality [J]. Angew. Chem. Int. Ed.2009,48(28):5094–5115;(e) Jensen, T.;Fristrup, P. Toward Efficient Palladium-Catalyzed Allylic C–H Alkylation [J]. Chem. Eur. J.2009,15(38):9632–9636;(f) Ritleng, V.; Sirlin, C.; Pfeffer, M. Ru-, Rh-, and Pd-CatalyzedC C Bond Formation Involving C H Activation and Addition on Unsaturated Substrates:Reactions and Mechanistic Aspects [J]. Chem. Rev.2002,102(5):1731–1770.(g) Jia, C.;Kitamura, T.; Fujiwara, Y. Catalytic Functionalization of Arenes and Alkanes via C H BondActivation [J]. Acc. Chem. Res.2001,34(8):633–639.
    [92] For reviews on high-valent Pd chemistry, see:(a) K. Muniz. High-Oxidation-StatePalladium Catalysis: New Reactivity for Organic Synthesis [J]. Angew. Chem. Int. Ed.2009,48(50):9412–9423;(b) Xu, L.-M.; Li, B.-J.; Yang, Z. et al. Organopalladium(iv) Chemistry[J]. Chem. Soc. Rev.2010,39:712–733;(c) Sehnal, P.; Taylor, R. J. K.; Fairlamb, I. J. S.Emergence of Palladium(IV) Chemistry in Synthesis and Catalysis [J]. Chem. Rev.2010,110(2):824–889.
    [93](a) Zhang, Y.-H.; Yu, J.-Q. Pd(II)-Catalyzed Hydroxylation of Arenes with1atm of O2orAir [J]. J. Am. Chem. Soc.2009,131:14654–14655;(b) Zhang, J.; Khaskin, E.; Anderson, N.P.; et al. Catalytic aerobic oxidation of substituted8-methylquinolines [J]. Chem. Commun.2008,3625–3627;(c) Campbell, A. N.; White, P. B.; Guzei, I. A. et al. Allylic C HAcetoxylation with a4,5-Diazafluorenone-Ligated Palladium Catalyst: A Ligand-BasedStrategy To Achieve Aerobic Catalytic Turnover [J]. J. Am. Chem. Soc.2010,132(43):15116–15119;(d) Brasche, G.; Garca-Fortanet, J.; Buchwald, S. L. Twofold C HFunctionalization: Palladium-Catalyzed Ortho Arylation of Anilides [J]. Org. Lett.2008,10(11):2207–2210.
    [94](a) Himes, R. A.; K. D. Karlin. Copper–Dioxygen Complex Mediated C–H BondOxygenation: Relevance for Particulate Methane Monooxygenase (pMMO)[J]. Curr. Opin.Chem. Biol.2009,13(1):119–131;(b) Que, L.; Tolman, W. B. Biologically InspiredOxidation Catalysis [J]. Nature2008,455:333–340;(c) Chufn, E. E.; Puiu, S. C.; Karlin, K.D. Acc. Chem. Res.2007,40:563–572;(d) Rosenzweig, A. C.; Sazinsky, M. H. StructuralInsights into Dioxygen-Activating Copper Enzymes [J]. Curr. Opin. Struct. Biol.2006,16:729–735;(e) Mirica, L. M.; Ottenwaelder, X.; Stack, T. D. P. Structure and Spectroscopy ofCopper–Dioxygen Complexes [J]. Chem. Rev.2004,104(2):1013–1046;(f) Lewis, E. A.;Tolman, W. B. Reactivity of Dioxygen Copper Systems [J]. Chem. Rev.2004,104(2):1047–1076;(g) Solomon, E. I.; Chen, P.; Metz, M. et al. Oxygen Binding, Activation, andReduction to Water by Copper Proteins [J]. Angew. Chem. Int. Ed.2001,40(24):4570–4590;(h) Mahadevan, V.; Gebbink, R. J. M. K.; Stack, T. D. P. Biomimetic Modeling of CopperOxidase Reactivity [J]. Curr. Opin. Chem. Biol.2000,4(2):228–234;(i) Klinman, J. P.Mechanisms Whereby Mononuclear Copper Proteins Functionalize Organic Substrates [J].Chem. Rev.1996,96(7):2541–2562;(j) Solomon, E. I.; Sundaram, U. M.; Machonkin, T. E.Multicopper Oxidases and Oxygenases [J]. Chem. Rev.1996,96(7):2563–2606.
    [95]“Interaction of CuIcomplexes with Dioxygen”: A. D. Zuber-bhler in Metal Ions inBiological Systems, Vol.5(Ed.: H.Sigel), Marcel Dekker, New York,1976, pp.325–368.
    [96](a) Gampp, H.; Zuberbhler, A. D. in Metal Ions in BiologicalSystems, Vol.12(Eds.: H.Sigel, A. Sigel), Marcel Dekker, NewYork,1981, p.133;(b) Gamez, P.; Aubel, P. G.; Driessen,W. L.; Reedijk, J. Homogeneous Bio-Inspired Copper-Catalyzed Oxidation [J]. Chem. Soc.Rev.2001,30:376–385;(c) vander Vlugt, J. I.; Meyer, F. Homogeneous Copper-CatalyzedOxidations [J]. Top. Organomet. Chem.2007,22:191–240.
    [97] Siemsen, P.; Livingston, R. C.; Diederich, F. Acetylenic Coupling: A Powerful Tool inMolecular Construction [J]. Angew. Chem. Int. Ed.2000,39(15):2632–2657.
    [98](a)“Poly(Phenylene Oxides)”: J.; Bussink, van de Grampelin H. T. UllmannsEncyclopedia of Industrial Chemistry,5th ed.(Eds.: Gerhartz, W.; Yamamoto, Y. S.; Campbell,F. T.; Pfefferkorn, R.; Rounsaville, J. F.), VCH, Weinheim,1985;(b) Hay, A. S.; Blanchard, H.S.; Endres, G. F.; Eustance, J. W. Polymerization by Oxidative Coupling [J]. J. Am. Chem. Soc.1959,81(23):6335–6336;(c) A. S. Hay (GeneralElectric Co.), US3306875,1967.
    [99](a)“Vitamins”: M, Eggersdorfer. et al. in Ullmanns Encyclope-dia of IndustrialChemistry,5th ed.(Eds.: W. Gerhartz, Y. S.Yamamoto, F. T. Campbell, R. Pfefferkorn, J. F.Rounsaville),VCH, Weinheim,1985;(b) Shimizu, M.; Watanabe, Y.; Orita, H.; Hayakawa, T.;Takehira, K. Bull. Chem. Soc. Jpn.1992,65,1522–1526;(c) Brenner, W.(Hoffmann-LaRoche), DE2221,624,1972.
    [100](a) Tundo, P.; Selva, M. The Chemistry of Dimethyl Carbonate [J]. Acc. Chem. Res.2002,35(9):706–716;(b) Romano, U.; Tesel, R.; Mauri, M. M. et al. Synthesis of DimethylCarbonate from Methanol, Carbon Monoxide, and Oxygen Catalyzed by Copper Compounds[J]. Ind. Eng. Chem. Prod. Res. Dev.1980,19:396–403.
    [101](a) Mark, I. E.; Giles, P. R.; Tsukazaki, M et al. Copper-Catalyzed Oxidation ofAlcohols to Aldehydes and Ketones: An Efficient, Aerobic Alternative [J]. Science1996,274:2044–2046;(b) Mark, I. E.; Gautier, A.; Chell-Regnaut, I. et al. Efficient and PracticalCatalytic Oxidation of Alcohols Using Molecular Oxygen [J]. J. Org. Chem.1998,63(22):7576–7577;(c) Mark, I. E.; Giles, P. R.; Tsukazaki, M. et al. Efficient, Ecologically Benign,Aerobic Oxidation of Alcohols [J]. J. Org. Chem.1999,64(7):2433–2439.
    [102] For selected Cu-TEMPO-based methods, see: Semmelhack, M. F.; Schmid, C. R.; Corts,D. A.; Chou, C. S. Oxidation of Alcohols to Aldehydes with Oxygen and Cupric ion,Mediated by Nitrosonium Ion [J]. J. Am. Chem. Soc.1984,106(11):3374–3376.
    [103] Schmittel, M.; Burghart, A. Understanding Reactivity Patterns of Radical Cations [J].Angew. Chem. Int. Ed.1997,36,2550–2589.
    [104](a) Pummerer, R.; Frankfurter, F. Chem. Ber.1914,47:1472–1493;(b) Pummerer, R.;Frankfurter, F. Chem. Ber.1919,52,1416–1420;(c) Pummerer, R.; Prell, E.; Rieche, A. Chem.Ber.1926,59:2159–2161;(d) R. Pummerer, A. Rieche, Chem. Ber.1926,59,2161–2175.
    [105] Endres, G. F.; Hay, A. S.; Eustance, J. W. Polymerization by Oxidative Coupling. V.Catalytic Specificity in the Copper-Amine-catalyzed Oxidation of2,6-Dimethylphenol1[J]. J.Org. Chem.1963,28(5):1300–1305.
    [106] Finkbeiner, H.; Hay, A. S.; Blanchard, H. S. et al. Polymerization by OxidativeCoupling. The Function of Copper in the Oxidation of2,6-Dimethylphenol [J]. J. Org. Chem.1966,31(32):549–555.
    [107] Glaser, C. Beitr ge zur Kenntniss des Acetenylbenzols [J]. Chem. Ber.1869,2:422–424.
    [108] Fedenok, L. G.; Berdnikov, V. M.; Shvartsberg, M. S. J. Org. Chem. USSR1974,10:934–936
    [109](a) Challa, G.; Meinders, H. C. J. Mol. Catal.1977,3:185–190;(b) Kevelam, H. J.; deJong, K. P.; Meinders, H. C. et al. Makromol. Chem.1975,176:1369–1381;(c) Clifford, A.A.; Waters, W. A. J. Chem. Soc.1963,3056–3062.
    [110] Hewgley, B.; Stahl, S. S.; Kozlowski, M. C. Mechanistic Study of AsymmetricOxidative Biaryl Coupling: Evidence for Self-Processing of the Copper Catalyst to AchieveControl of Oxidase vs Oxygenase Activity [J]. J. Am. Chem. Soc.2008,130(37):12232–12233.
    [111] Menini, L.; Parreira, L. A.; Gusevskaya, E. V. A Practical Highly SelectiveOxybromination of Phenols with Dioxygen [J]. Tetrahedron Lett.2007,48(36):6401–6404.
    [112] Menini, L.; da Cruz Santos, J. C.; Gusevskaya, E. V. Copper-Catalyzed Oxybrominationand Oxychlorination of Primary Aromatic Amines Using LiBr or LiCl and Molecular Oxygen[J]. Adv. Synth. Catal.2008,350(13):2052–2058.
    [113](a) Ban, I.; Sudo, T.; Taniguchi, T. et al. Copper-Mediated C H Bond Arylation ofArenes with [J]. Org. Lett.2008,10:3607–3609;(b) Zhang, S.; Qian, P.; Zhang, M.; Hu, M.;Cheng, J. Copper-Catalyzed Thiolation of the Di-or Trimethoxybenzene Arene C-H Bondwith Disulfides [J]. J. Org. Chem.2010,75(19):6732–6735.
    [114](a) Li, C.-J. Acc. Chem. Res.2009,42:335–344;(b) Li, C.-J. Li, Z. Green chemistry:The Development of Cross-Dehydrogenative Coupling (CDC) for Chemical Synthesis [J].Pure Appl. Chem.2006,78(5):935–945;(c) Li, Z. Bohle, D. S.; Li, C.-J. Cu-CatalyzedCross-Dehydrogenative Coupling: A Versatile Strategy for C–C bond Formations via theOxidative Activation of sp3C–H bonds [J]. Proc. Natl. Acad. Sci. USA2006,103:8928–8933.
    [115](a) Basl, O.; Li, C.-J. Copper Catalyzed Oxidative Alkylation of sp3C–H bond Adjacentto a Nitrogen Atom Using Molecular Oxygen in Water [J]. Green Chem.2007,9:1047–1050;(b) Basl, O.; Li, C.-J. Copper-Catalyzed Aerobic Phosphonation of sp3C–H bonds [J]. Chem.Commun.2009,4124–4126.
    [116](a) Shen, Y.; Li, M.; Wang, S.; Zhan, T.; Tan, Z.; Guo, C.-C. An EfficientCopper-Catalyzed Oxidative Mannich Reaction [J]. Chem.Commun.2009,953–955;(b) Klein,J. E. M. N.; Perry, A.; Pugh, D. S. et al. First C H Activation Route to Oxindoles usingCopper Catalysis [J]. Org.Lett.2010,12(15):3446–3449;(c) Perry, A.; Taylor, R. J. K.Oxindole synthesis by direct C–H, Ar–H coupling [J]. Chem. Commun.2009,3249–3251.
    [117] Uemura, T.; Imoto, S.; Chatani, N. Copper-catalyzed click reaction-direct arylationsequence-Modular syntheses of1,2,3-triazoles [J]. Chem. Lett.2006,35:842–843.
    [118] Ueda, S.; Nagasawa, H. Synthesis of2-Arylbenzoxazoles by Copper-CatalyzedIntramolecular Oxidative CO Coupling of Benzanilides [J]. Angew. Chem. Int. Ed.2008,47(34):6411–6413.
    [119](a) Guru, M. M.; Ali, M. A.; Punniyamurthy, T. Copper(II)-Catalyzed Conversion ofBisaryloxime Ethers to2-Arylbenzoxazoles via C H Functionalization/C N/C O BondsFormation [J]. Org. Lett.2011,13(5):1194–1197;(b) Guru, M. M.; Ali, M. A.;Punniyamurthy, T. Copper-Mediated Synthesis of Substituted2-Aryl-N-benzylbenzimidazolesand2-Arylbenzoxazoles via C–H Functionalization/C–N/C–O Bond Formation [J]. J. Org.Chem.2011,76(13):5295–5308.
    [120] Ueda, S.; Nagasawa, H. Facile Synthesis of1,2,4-Triazoles via a Copper-CatalyzedTandemAddition Oxidative Cyclization [J]. J. Am. Chem. Soc.2009,131(42):15080–15081.
    [121] Tang, B.-X.; Song, R.-J.; Wu, C.-Y. et al. Copper-Catalyzed Intramolecular C HOxidation/Acylation of Formyl-N-arylformamides Leading to Indoline-2,3-diones [J]. J. Am.Chem. Soc.2010,132(26):8900–8902.
    [122] Gao, Y.; Wang, G.; Chen, L et al. Copper-Catalyzed Aerobic Oxidative Coupling ofTerminal Alkynes with H-Phosphonates Leading to Alkynylphosphonates [J]. J. Am. Chem.Soc.2009,131(23):7956–7957.
    [123] Chu, L.; Qing, F.-L. Copper-Mediated Aerobic Oxidative Trifluoromethylation ofTerminal Alkynes with Me3SiCF3[J]. J. Am. Chem. Soc.2010,132(21):7262–7263.
    [124] Do, H.-Q.; Daugulis, O. An Aromatic Glaser Hay Reaction [J]. J. Am. Chem. Soc.2009,131(47):17052–17053.
    [125] Wei, Y.; Zhao, H.; Kan, J. et al. Copper-Catalyzed Direct Alkynylation ofElectron-Deficient Polyfluoroarenes with Terminal Alkynes Using O2as an Oxidant [J]. J. Am.Chem. Soc.2010,132(8):2522–2523.
    [126](a) Kitahara, M.; Hirano, K.; Tsurugi, H. et al. Copper-Mediated Direct Cross-Couplingof1,3,4-Oxadiazoles and Oxazoles with Terminal Alkynes [J]. Chem. Eur. J.2010,16(6):1772–1775;(b) Matsuyama, N.; Kitahara, M.; Hirano, K. et al. Nickel-and Copper-CatalyzedDirect Alkynylation of Azoles and Polyfluoroarenes with Terminal Alkynes under O2orAtmospheric Conditions [J]. Org. Lett.2010,12(10):2358–2361.
    [127] Huang, L.; Jiang, H.; Qi, C. et al. Copper-Catalyzed Intermolecular Oxidative [3+2]Cycloaddition between Alkenes and Anhydrides: ANew Synthetic Approach to γ-Lactones [J].J. Am. Chem. Soc.,2010,132(50):17652–17654.
    [128](a) Bertz, S. H.; Cope, S.; Murphy, M. et al. Rapid Injection NMR in MechanisticOrganocopper Chemistry. Preparation of the Elusive Copper(III)Intermediate [J]. J. Am. Chem.Soc.2007,129(23):7208–7209;(b) Bertz, S. H.; Cope, S.; Dorton, D. et al. OrganocuprateCross-Coupling: The Central Role of the Copper(III) Intermediate and the Importance of theCopper(I) Precursor [J]. Angew. Chem. Int. Ed.2007,46(37):7082–7085;(c) Hu, H. P.;Snyder, J. P. Organocuprate Conjugate Addition: The Square-Planar “CuIII” Intermediate [J].J. Am. Chem. Soc.2007,129(23):7210–7211;(d) Bartholomew, E. R.; Bertz, S. H.; Cope, S.et al. Preparation of σ-and π-Allylcopper(III) Intermediates in SN2and SN2’ Reactions ofOrganocuprate(I) Reagents with Allylic Substrates [J]. J. Am. Chem. Soc.2008,130(35):11244–11245.
    [129] Casitas, A.; King, A. E.; Parella, T. et al. Direct Observation of CuI/CuIIIRedox StepsRelevant to Ullmann-type Coupling Reactions [J]. Chem. Sci.2010,1,326–330.
    [130](a) Ribas, X.; Xifra, R.; Parella, T. et al. Regiospecific C-H Bond Activation: ReversibleH/D Exchange Promoted by CuI Complexes with Triazamacrocyclic Ligands [J]. Angew.Chem. Int. Ed.2006,45(18):2941–2944;(b) Usui, S.; Hashimoto, Y.; Morey, J. V. et al. J. Am.Chem. Soc.2007,129:15102–15103;(c) Chen, B.; Hou, X.-L.; Li, Y.-X. et al. J. Am. Chem.Soc.2011,133:7668–7671.
    [131](a) Ribas, X.; Jackson, D. A.; Donnadieu, B. et al. Aryl C-H Activation by CuIITo Forman Organometallic Aryl–CuIIISpecies: A Novel Twist on Copper Disproportionation [J].Angew. Chem. Int. Ed.2002,41(16):2991–2994;(b) Ribas, X.; Calle, C.; Poater, A. et al. et al.Facile C H Bond Cleavage via a Proton-Coupled Electron Transfer Involving a C H···CuIIInteraction [J]. J. Am. Chem. Soc.2010,132(35):12299–12306.
    [132] Huffman, L. M.; Stahl, S. S. Carbon Nitrogen Bond Formation Involving Well-DefinedAryl Copper(III) Complexes [J]. J. Am. Chem. Soc.2008,130(29):9196–9197.
    [133] King, A. E.; Huffman, L. M.; Casitas, A. et al. Copper-Catalyzed Aerobic OxidativeFunctionalization of an Arene C H Bond: Evidence for an Aryl-Copper(III) Intermediate [J].J. Am. Chem. Soc.2010,132(34):12068–12073.
    [134] King, A. E.; Brunold, T. C.; Stahl, S. S. Mechanistic Study of Copper-CatalyzedAerobic Oxidative Coupling of Arylboronic Esters and Methanol: Insights into anOrganometallic Oxidase Reaction [J]. J. Am. Chem. Soc.2009,131(14):5044–5045.
    [135] Huffman, L. M.; Casitas, A.; Font, M. et al. Observation and Mechanistic Study ofFacile C-O Bond Formation between a Well-Defined Aryl–Copper(III) Complex and OxygenNucleophiles [J]. Chem. Eur. J.2011,17(38):10643–10650.
    [136] Yao, B.; Wang, D.-X.; Huang, Z.-T. et al. Room-Temperature Aerobic Formation of aStable Aryl–Cu (iii) Complex and Its Reactions with Nucleophiles: Highly Efficient andDiverse Arene C–H Functionalizations of Azacalix[1]arene[3]pyridine [J]. Chem. Commun.2009,2899–2901.
    [137](a) Oxazoles: Synthesis, Reactions and Spectroscopy, Part A; Palmer, D. C., Ed.; JohnWiley&Sons: Hoboken, N. J,2003;(b) Oxazoles: Synthesis, Reactions and Spectroscopy,Part B; Palmer, D. C., Ed.; John Wiley&Sons: Hoboken, N. J,2004;(c) Z. Jin. Nat. Prod.Rep.2006,23:464-496;(d) Yeh, V. S. C. Tetrahedron.2004,60:11995–12042;(e) P. Wipf.Chem. Rev.1995,95:2115–2134.
    [138](a) Weaver, G. W. In Science of Synthesis; Storr, R. C., Gilchrist, T. L., Eds.; Thieme:Stuttgart,2004, Vol.13, pp219-251;(b) Hill, J. In Comprehensive Heterocyclic Chemistry II;Storr, R. C., Ed.; Pergamon: Oxford,1996; Vol.4,. pp267–287and905–1006.
    [139](a) Chen, Q.; Zhu, X. L.; Jiang, L. L. et al. Synthesis, Fungicidal Activities and CoMFAAnalysis of Novel1,2,4-Triazolo[1,5-a]Pyrimidine Derivatives [J]. Eur. J. Med. Chem.2008,43:595–603;(b) Omar, F. A.; Mahfouz, N. M.;. Rahman, M. A. Synthesis, characterizationand crystal structure of ethyl4-(3-chloro benzamido)benzoate [J]. Eur J. Med. Chem.1996,31:819–825;(c) Chiang, C. C.; Chen, H. C.; Lee, C. et al. Electrochemical Deposition ofBis(N,N-diphenylaminoaryl) Substituted Ferrocenes, and Their Application as aHole-Injection Layer on Polymeric Light-Emitting Diodes [J]. Chem. Mater,2008,20:540–552.
    [140] Dobrota, C.; Paraschivescu, C. C.; Dumitru, I. Convenient Preparation ofUnsymmetrical2,5-Dsubstituted1,3,4-Oxadiazoles Promoted by Dess–Martin Reagent [J].Tetrahedron Lett.2009,50(17):1886–1888.
    [141](a) Guin, S.; Ghosh, T.; Rout, S. K. et al. Cu(II)-Catalyzed Imine C–H FunctionalizationLeading to Synthesis of2,5-Substituted1,3,4-Oxadiazoles [J]. Org. Lett.2011,13(22):5976–5979;(b) Yu, W.; Huang, G.; Zhang, Y et al. I2-Mediated Oxidative C–O BondFormation for the Synthesis of1,3,4-Oxadiazoles from Aldehydes and Hydrazides [J]. J. Org.Chem.2013,78(20):10337–10343;(c) Kumar, S. V.; Yadav, S. K.; Raghava, B. et al.Cyclocondensation of Arylhydrazines with1,3-Bis(het)arylmonothio-1,3-diketones and1,3-Bis(het)aryl-3-(methylthio)-2-propenones: Synthesis of1-Aryl-3,5-bis(het)arylpyrazoleswith Complementary Regioselectivity [J]. J. Org. Chem.,2013,78(10):4960–4973;(d) Kong,Y.; Meng Tang, M.; Wang, Y. Regioselective Synthesis of1,3,5-Trisubstituted Pyrazoles fromN-Alkylated Tosylhydrazones and Terminal Alkynes [J]. Org. Lett.,2014,16(2):576–579.
    [142](a) Wrobleski, S. T.; Chen, P.; Hynes, J., Jr.; Lin, S. et al. Rational Design and Synthesisof an Orally Active Indolopyridone as a Novel Conformationally Constrained CannabinoidLigand Possessing Antiinflammatory Properties [J]. J. Med. Chem.2003,46(11):21102116;(b) Magano, J.; Waldo, M.; Greene, D. et al. The Synthesis of(S)-5-Fluoro-1-(2-fluorophenyl)-3-(piperidin-3-ylmethoxy)-1H-indazole, a Norepinephrine/Serotonin Reuptake Inhibitor for the Treatment of Fibromyalgia [J]. Org. Process Res. Dev.2008,12(5):877883.
    [143](a) Zhang, T.; Bao, W. Synthesis of1H Indazoles and1H Pyrazoles via FeBr3/O2Mediated Intramolecular C H Amination [J]. J. Org. Chem.2013,78(3):13171322;(b) Hu,J.; Chen, S.; Sun, Y. et al. Synthesis of Tri-and Tetrasubstituted Pyrazoles via Ru(II) Catalysis:Intramolecular Aerobic Oxidative C-N Coupling [J]. Org. Lett.2012,14(19):5030–5033.
    [144](a) Kadnikov, D. V.; Larock, R. C. Synthesis of2-Quinolones via Palladium-CatalyzedCarbonylative Annulation of Internal Alkynes by N-Substituted o-Iodoanilines [J]. J. Org.Chem.2004,69(20):6772–6780.(b) Chen, H.; Sanjaya, S.; Wang, Y.-F. et al.Copper-Catalyzed Aliphatic C–H Amination with an Amidine Moiety [J]. Org. Lett.,2013,15(1):212–215;(b) Toh, K. K.; Wang, Y.-F.; Ng, E. P. J. et al. Copper-Mediated AerobicSynthesis of3-Azabicyclo[3.1.0]hex-2-enes and4-Carbonylpyrroles from N-Allyl/PropargylEnamine Carboxylates [J]. J. Am. Chem. Soc.,2011,133(35):13942–13945.
    [145](a) Yu, D.-G.; Suri, M.; Glorius, F. RhIII/CuII-Cocatalyzed Synthesis of1H-Indazolesthrough C–H Amidation and N–N Bond Formation [J]. J. Am. Chem. Soc.,2013,135(24):8802–8805;(b) Han, S.; Shin, Y.; Sharma, S. et al. Rh(III)-Catalyzed Oxidative Coupling of1,2-Disubstituted Arylhydrazines and Olefins: A New Strategy for2,3-Dihydro-1H-Indazoles[J]. Org. Lett., Article ASAP. DOI:10.1021/ol500865j.
    [146](a) Qi, Q.; Shen, Q.; Lu, L. Copper-Mediated Aerobic Fluoroalkylation of ArylboronicAcids with Fluoroalkyl Iodides at Room Temperature [J]. J. Am. Chem. Soc.2012,134(15):65486551; For reports on reductive elimination of N-arylamines or N-arylimines from theputative aminyl or iminyl copper (III) species, see:(b) Zhou, W.; Liu, Y.; Yang, Y. et al.Copper-Catalyzed Intramolecular Direct Amination of sp2C-H Bonds for the Synthesis ofN-aryl Acridones [J]. Chem. Commun.2012,48:10678–10680;(c) Liu, S.; Yu, Y.;Liebeskind, L. S. N-Substituted Imines by the Copper-Catalyzed N-Imination of BoronicAcids and Organostannanes with O-Acyl Ketoximes [J]. Org. Lett.2007,9(10):1947–1950;(d) Cacci reported a similar Cu-catalyzed intramolecular C(sp2)–H amination leading to2-quinolinones under an air atmosphere:(e) Berrino, R.; Cacchi, S.; Fabrizi, G. et al. Controlof Chemo-and Stereoselectivity in the Reactions of Organocuprates with. alpha.-oxoketeneDithioacetals [J]. J. Org. Chem.2012,77(5):25372542; For a recent review oncopper-catalyzed C N bond formations, see:(f) Beletskaya, I. P.; Cheprakov, A. V.Organometallics2012,31:77537808.
    [147](a) Stephens, R. D.; Castro, C. E. The Substitution of Aryl Iodides with CuprousAcetylides. A Synthesis of Tolanes and Heterocyclics [J]. J. Org. Chem.1963,28(12):3313–3315.
    [148](a) Okuro, K.; Furuune, M.; Enna, M. et al. Synthesis of Aryl-and VinylacetyleneDerivatives by Copper-Catalyzed Reaction of Aryl and Vinyl Iodides with Terminal Alkynes[J]. J. Org. Chem.,1993,58(17):4716–4721;(b) Zuidema, E.; Bolm, C. Sub-Mol%CatalystLoading and Ligand-Acceleration in the Copper-Catalyzed Coupling of Aryl Iodides andTerminal Alkyenes [J]. Chem. Eur. J.,2010,16(14):4181–4185.
    [149](a) Merkul, E., Dohe, J., Gers, C. et al. Three-Component Synthesis of Ynediones by aGlyoxylation/Stephens–Castro Coupling Sequence [J]. Angew. Chem. Int. Ed.,2011,50(13):2966–2969;(b) Boersch, C., Merkul, E., Müller, J. J. Catalytic Syntheses of N-HeterocyclicYnones and Ynediones by In Situ Activation of Carboxylic Acids with Oxalyl Chloride [J].Angew. Chem. Int. Ed.,2011,50(44):10448–10452;(c) Schneider, C. M.; Khownium, K.; Li,W. et al. Synthesis of Oximidine II by a Copper-Mediated Reductive Ene–YneMacrocyclization [J]. Angew. Chem. Int. Ed.,2011,50(34):7855–7857.
    [150](a) Cassar, L. Synthesis of Aryl-and Vinyl-Substituted Acetylene Derivatives by theUse of Nickel and Palladium Complexes [J]. J. Organomet. Chem.,1975,93(2):253–257;(b)Dieck, H. A.; Heck, F. R. Synthesis of Aryl-and Vinyl-Substituted Acetylene Derivatives bythe Use of Nickel and Palladium Complexes [J] J. Organomet. Chem.,1975,93(2):259–263.
    [151] Sonogashira, K.; Tohda, Y.; Hagihara, N. A Convenient Synthesis of Acetylenes:Catalytic Substitutions of Acetylenic Hydrogen with Bromoalkenes, Iodoarenes andBromopyridines [J]. Tetrahedron Lett.,1975,16(50):4467–4470.
    [152](a) Chinchilla, R.; Nájera, C. The Sonogashira Reaction: A Booming Methodology inSynthetic Organic Chemistry [J]. Chem. Rev.,2007,107(3):874–922;(b) Chinchilla, R.;Nájera, C. Recent Advances in Sonogashira Reactions [J]. Chem. Soc. Rev.2011,40:5084–5121.
    [153](a) Sonogashira, K. in Handbook of Organopalladium Chemistry for Organic Synthesis(eds E. Negishi and A. de Meijere), John Wiley&Sons, Inc., New York,2002, pp.493–529;(b) Sonogashira, K. Development of Pd–Cu Catalyzed Cross-Coupling of TerminalAcetylenes with sp2-carbon Halides [J]. J. Organomet.Chem.,2002,653(1):46–49.
    [154](a) Nyuchev, A. V.; Sharonova, E. A.; Lenshina, N. A. et al. Synthesis of FluorescentCoumarin Triazolylglycosides [J]. Tetrahedron Lett.2011,52(32):4196–4199;(b) Nakamura,K.; Okubo, H.; Yamaguchi, M. Low Temperature Sonogashira Coupling Reaction [J]. Synlett.1999,5:549–550;(c) Alami, M.; Ferri, F.; Linstrumelle, G. An Efficient Palladium-CatalysedReaction of Vinyl and Aryl Halides or Triflates with Terminal Alkynes [J]. Tetrahedron Lett.,1993,34(40):6403–6406;(d) Brandsma, L.;Vasilevsky, S. F.;Verkruijsse, H. D. Applicationof Transition Metal Catalysts in Organic Synthesis, Springer, Berlin,1997, pp.179–225;(e)Boydston, A. J.; Haley, M. M.; Williams, R. V. et al. Diatropicity of3,4,7,8,9,10,13,14-Octadehydro[14]annulenes: A Combined Experimental and TheoreticalInvestigation [J]. J. Org. Chem.,2002,67(25):8812–8819.
    [155] Reddy, E. A.; Barange, D. K.; Islam, A. et al. Synthesis of2-Alkynylquinolines from2-Chloro and2,4-Dichloroquinoline via Pd/C-catalyzed Coupling Reaction in Water [J].Tetrahedron,2008,64(30):7143–7150.
    [156] Eckhardt, M.; Fu, G. C. The First Applications of Carbene Ligands in Cross-Couplingsof Alkyl Electrophiles: Sonogashira Reactions of Unactivated Alkyl Bromides and Iodides [J].J. Am. Chem. Soc.,2003,125(45):13642–13643.
    [157] Vechorkin, O.;Barmaz, D.;Proust, V. et al. Ni-Catalyzed Sonogashira Coupling ofNonactivated Alkyl Halides: Orthogonal Functionalization of Alkyl Iodides, Bromides, andChlorides [J]. J. Am. Chem. Soc.,2009,131(34):12078–12079.
    [158] Bi, H.-P.; Zhao, L.; Liang, Y.-M. et al. The Copper-Catalyzed Decarboxylative Couplingof the sp3-Hybridized Carbon Atoms of-Amino Acids [J]. Angew. Chem. Int. Ed.2009,48(4):792–795.
    [159] Trofimov, B. A., Stepanova, Z. V., Sobenina, L. N., et al. Ethynylation of pyrroles with1-acyl-2-bromoacetylenes on alumina: a formal ‘inverse Sonogashira coupling [J].Tetrahedron Lett.2004,45(34):6513–6516.
    [160] Li, Y.; Brand, J. P.; Waser, J. Gold-Catalyzed Regioselective Synthesis of2-and3-Alkynyl Furans [J]. Angew. Chem. Int. Ed.2013,52(26):6743–6747.
    [161](a) Ano, Y.; Tobisu, M.; Chatani, N. Palladium-Catalyzed Direct ortho-Alkynylation ofAromatic Carboxylic Acid Derivatives [J]. Org. Lett.,2012,14(1):354–357;(b) Ano, Y.;Tobisu, M.; Chatani, N. Palladium-Catalyzed Direct Ethynylation of C(sp3)–H Bonds inAliphatic Carboxylic Acid Derivatives [J]. J. Am. Chem. Soc.,2011,133(33):12984–12986.
    [162] He, J.; Wasa, M.; Chan, K. S. L. et al. Palladium(0)-Catalyzed Alkynylation ofC(sp3)–H Bonds [J]. J. Am. Chem. Soc.,2013,135(9):3387–3390.
    [163] Xie, F.; Qi, Z.; Yu, S. et al. Rh(III)-and Ir(III)-Catalyzed C–H Alkynylation of Arenesunder Chelation Assistance [J]. J. Am. Chem. Soc.,2014,136(12):4780–4787.
    [164](a) Cadiot, P.; Chodkiewicz, W. in Chemistry of Acetylenes (ed. H.G. Viehe), MarcelDekker, New York,1969, pp.597–647;(b) Dembinski, R.; Bartik, T.; Bartik, B. et al. TowardMetal-Capped One-Dimensional Carbon Allotropes: Wirelike C6C20Polyynediyl ChainsThat Span Two Redox-Active (η5-C5Me5)Re(NO)(PPh3) Endgroups [J]. J. Am. Chem. Soc.,2000,122(5):810–822;(c) Gibtner, T.; Hampel, F.; Gisselbrecht, J.-P. et al. End-CapStabilized Oligoynes: Model Compounds for the Linear sp Carbon Allotrope Carbyne [J].Chem. Eur. J.,2002,8(2):408–432.
    [165](a) Negishi, E.; Anastasia, L. Palladium-Catalyzed Alkynylation [J]. Chem. Rev.2003,103(5):1979–2017;(b) Weng, Y.; Cheng, B.; He, C. et al. Rational Design of aPalladium-Catalyzed Csp–Csp Cross-Coupling Reaction Inspired by Kinetic Studies [J].Angew. Chem. Int. Ed.2012,51(38):9547–9951;(c) Yin, W.; He, C.; Chen, M. et al.Nickel-Catalyzed Oxidative Coupling Reactions of Two Different Terminal Alkynes Using O2as the Oxidant at Room Temperature: Facile Syntheses of Unsymmetric1,3-Diynes [J]. Org.Lett.2009,11(3):709–712;(d) Kusuda, A.; Xu, X.-H.; Wang, X. et al. Organic Reaction inSolkane R-365mfc: Homocoupling Reaction of Terminal Alkynes [J]. Green Chem.,2011,13:843–846;(e) Adimurthy, S.; Malakar, C. C.; Beifuss, U. Influence of Bases and Ligands onthe Outcome of the Cu(I)-Catalyzed Oxidative Homocoupling of Terminal Alkynes to1,4-Disubstituted1,3-Diynes Using Oxygen as an Oxidant [J]. J. Org. Chem.2009,74(15):5648–5651;(f) Ma, S.; He, Q.; Zhang, X. Pd(0)-Catalyzed Highly Selective Synthesis of1,1-Diarylpropadienes and1,3-Diarylpropynes from1-Aryl-1-propynes and Aryl Halides [J].J. Org. Chem.2005,70(8):3336–3338;(g) Xu, Y.; Zhao, J.; Tang, X. et al. ChemoselectiveSynthesis of Unsymmetrical Internal Alkynes or Vinyl Sulfones via Palladium-CatalyzedCross-Coupling Reaction of Sodium Sulfinates with Alkynes [J]. Adv. Synth. Catal. DOI:10.1002/adsc.201300945;(h) Chen, Z.; Jiang, H. Wang, A. et al. Transition-Metal-FreeHomocoupling of1-Haloalkynes: A Facile Synthesis of Symmetrical1,3-Diynes [J]. J. Org.Chem.,2010,75(19):6700–6703.
    [166](a) Xia, Y.; Zhang, Y.; Wang, J. Catalytic Cascade Reactions Involving Metal CarbeneMigratory Insertion [J]. ACS Catal.,2013,3(11):2586–2598;(b) Liu, Z.; Wang, J.Cross-Coupling Reactions Involving Metal Carbene: From C=C/C-C Bond Formation to C-HBond Functionalization [J]. J. Org. Chem.,2013,78(20):10024–10030;(c) Xiao, Q.; Zhang,Y.; Wang, Y. Diazo Compounds and N-Tosylhydrazones: Novel Cross-Coupling Partners inTransition-Metal-Catalyzed Reactions [J]. Acc. Chem. Res.,2013,46(2):236–247.
    [167](a) Hossain, M. L.; Ye, F.; Zhang, Y. et al. CuI-Catalyzed Cross-Coupling ofN-Tosylhydrazones with Terminal Alkynes: Synthesis of1,3-Disubstituted Allenes [J]. J. Org.Chem.,2013,78(3):1236–1241;(b) Zhou, L.; Shi, Y.; Xiao, Q. et al. CuBr-CatalyzedCoupling of N-Tosylhydrazones and Terminal Alkynes: Synthesis of Benzofurans and Indoles[J]. Org. Lett.2011,13(5):968–971.
    [168] Ye, F.; Ma, X.; Xiao, Q. et al. C(sp)–C(sp3) Bond Formation through Cu-CatalyzedCross-Coupling of N-Tosylhydrazones and Trialkylsilylethynes [J]. J. Am. Chem. Soc.,2012,134(13):5742–5745;
    [169] Zhao, X.; Wu, G.; Zhang, Y. et al. Copper-Catalyzed Direct Benzylation or Allylation of1,3-Azoles with N-Tosylhydrazones [J]. J. Am. Chem. Soc.,2011,133(10):3296–3299.
    [170](a) Boisvert, L.; Goldberg, K. I. Acc. Chem. Res.2012,45:899–910;(b) Würtele, C.;Gaoutchenova, E.; Harms, K. et al. Crystallographic Characterization of a Synthetic1:1End-on Copper Dioxygen Adduct Complex [J]. Angew. Chem. Int. Ed.2006,45,3867–3869;(c) Chen, P.; Solomon, E. I. Proc. Natl. Acad. Sci. USA2004,101:13015;(d) Decker, H.;Schweikardt, T.; Tuczek, F. The First Crystal Structure of Tyrosinase: All Questions Answered?[J]. Angew. Chem. Int. Ed.2006,45(28):4546–4550;(e) Chen, P.; Fujisawa, K.; Solomon, E.I. Spectroscopic and Theoretical Studies of Mononuclear Copper(II) Alkyl-and HydroperoxoComplexes: Electronic Structure Contributions to Reactivity [J]. J. Am. Chem. Soc.2000,122(41):10177–10193;(f) A. Casitas, X. Ribas, The Role of Organometallic Copper(III)Complexes in Homogeneous Catalysis [J]. Chem. Sci.2013,4:2301–2318.
    [171] Ishiguro, K.; Hirano, Y.; Sawaki, Y. Mechanism of Ester Formation in thePhotosensitized Oxidation of Diazomethanes. Carbonyl Oxides Do Not Isomerize toDioxiranes in Solution [J]. J. Org. Chem.1988,53(23):5397–5405.
    [172](a) Yang, F.-L.; Tian, S.-K. Iodine-Catalyzed Regioselective Sulfenylation of Indoleswith Sulfonyl Hydrazides [J]. Angew. Chem. Int. Ed.2013,52(18),4929–4932;(b) Johnson,M. W.; Bagley, S. W.; Mankad, N. P. et al. Application of Fundamental OrganometallicChemistry to the Development of a Gold-Catalyzed Synthesis of Sulfinate Derivatives [J].Angew. Chem. Int. Ed.2014,53(17):4404–4407.
    [173](a) Giddens, A. C.; Boshof, H. I. M.; Franzblau, S. G. et al. Antimycobacterial NaturalProducts: Synthesis and Preliminary Biological Evaluation of the Oxazole-ContainingAlkaloid Texaline [J]. Tetrahedron Lett.,2005,46(43):7355–7357.(b) Atkins, J. M.; Vedejs,E. A Two-Stage Iterative Process for the Synthesis of Poly-oxazoles [J]. Org. Lett.,2005,7(15):3351–3354.(c) Zhang, J.; Ciufolini, M. A. Total Synthesis of Siphonazoles by the Useof a Conjunctive Oxazole Building Block [J]. Org. Lett.,2009,11(11):2389–2392.(d) Vedejs,E.; Barda, D. A. Progress toward Synthesis of Diazonamide A. Preparation of a3-(Oxazol-5-yl)-4-trifluoromethylsulfonyloxyindole and Its Use in Biaryl Coupling Reactions[J]. Org. Lett.,2000,2(8):1033–1035.
    [174] Wan, C.; Zhang, J.; Wang, S. et al. Facile Synthesis of Polysubstituted Oxazoles via ACopper-Catalyzed Tandem Oxidative Cyclization [J]. Org. Lett.2010,12(10):2338–2341.
    [175] Jiang, H.; Huang, H.; Cao, H. et al. TBHP/I2-Mediated Domino Oxidative Cyclizationfor One-Pot Synthesis of Polysubstituted Oxazoles [J]. Org. Lett.2010,12(23):5561–5563.
    [176] Xu, Z.; Zhang, C.; Jiao, N. Synthesis of Oxazoles through Copper-Mediated AerobicOxidative Dehydrogenative Annulation and Oxygenation of Aldehydes and Amines [J].Angew. Chem. Int. Ed.2012,51(45):11367–11370.
    [177] Cano, I.; álvarez, E.; Nicasio, C. M. et al. Regioselective Formation of2,5-Disubstituted Oxazoles Via Copper(I)-Catalyzed Cycloaddition of Acyl Azides and1-Alkynes [J]. J. Am. Chem. Soc.2011,133(2):191–193.
    [178](a) Linder, J.; Garner, T. P.; Williams, H. E. L. et al. Telomestatin: Formal TotalSynthesis and Cation-Mediated Interaction of Its seco-Derivatives with G-Quadruplexes [J]. J.Am. Chem. Soc.2011,133(4):1044–1051;(b) Honey, M. A.; Pasceri, R.; Lewis, W. et al.Diverse Trifluoromethyl Heterocycles from a Single Precursor [J]. J. Org. Chem.2012,77(3):1396–1405.
    [179](a) He, W.; Li, C.; Zhang, L. An Efficient [2+2+1] Synthesis of2,5-DisubstitutedOxazoles via Gold-Catalyzed Intermolecular Alkyne Oxidation [J]. J. Am. Chem. Soc.2011,133(22):8482–8485;(b) Luo, Y.; Ji, K.; Li, Y. et al. Tempering the Reactivities of Postulated-Oxo Gold Carbenes Using Bidentate Ligands: Implication of Tricoordinated GoldIntermediates and the Development of an Expedient Bimolecular Assembly of2,4-Disubstituted Oxazoles [J]. J. Am. Chem. Soc.2012,134(42):1741217415.
    [180](a) Wendlandt, A. E.; Stahl, S. S. Copper(II)-Mediated Oxidative Cyclization ofEnamides to Oxazoles [J]. Org. Biomol. Chem.2012,10(19):3866–3870;(b) Cheung, C. W.;Buchwald, S. L. Room Temperature Copper(II)-Catalyzed Oxidative Cyclization of Enamidesto2,5-Disubstituted Oxazoles via Vinylic C–H Functionalization [J]. J. Org. Chem.2012,77(17):75267537;(c) Zheng, Y.; Li, X.; Ren, C. et al. Synthesis of Oxazoles fromEnamides via Phenyliodine Diacetate-Mediated Intramolecular Oxidative Cyclization [J]. J.Org. Chem.2012,77(22):1035310361.
    [181] Saito, A.; Taniguchi, A.; Kambara, Y. et al. Metal-Free [2+2+1] Annulation of Alkynes,Nitriles, and Oxygen Atoms: Iodine(III)-Mediated Synthesis of Highly Substituted Oxazoles[J]. Org. Lett.2013,15(11):2672–2675.
    [182] Huang, L.; Wang,Q.; Liu, X. et al. Switch of Selectivity in the Synthesis of-Methylene-γ-Lactones: Palladium-Catalyzed Intermolecular Carboesterification of Alkeneswith Alkynes [J]. Angew. Chem. Int. Ed.,2012,51(23):5696–5700
    [183](a) Neumann, J. J.; Suri, M.; Glorius, F. Efficient Synthesis of Pyrazoles: OxidativeC-C/N-N Bond-Formation Cascade [J]. Angew. Chem. Int. Ed.2010,49(42):7790–7794;(b)Suri, M.; Jousseaume, T.; Neumann, J. J. et al. An Efficient Copper-Catalyzed Formation ofHighly Substituted Pyrazoles Using Molecular Oxygen as the Oxidant [J]. Green Chem.,2012,14:2193–2196.
    [184] Barluenga, J.; Fernández-Rodríguez, M. á.; García-García, P. et al. Gold-CatalyzedIntermolecular Hetero-Dehydro-Diels-Alder Cycloaddition of Captodative Dienynes withNitriles: A New Reaction and Regioselective Direct Access to Pyridines [J]. J. Am. Chem. Soc.2008,130(9):2764–2765.
    [185] Ren, W.; Xia, Y.; Ji, S.-J. et al. Wacker-Type Oxidation of Alkynes into1,2-DiketonesUsing Molecular Oxygen [J]. Org. Lett.2009,11(8):1841–1844.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700