刺参Apostichopus japonicus营养成分、食物来源及消化生理的季节变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从消化生理学角度出发,研究了刺参营养成分、食物来源以及消化道结构与功能的季节变化,并对养殖水温对刺参消化道结构与功能的影响及与夏眠之间的关系进行了探讨。主要研究结果如下:
     1.较为系统地评述了我国刺参增养殖业的现状及存在的问题;对海参的营养成分研究进行了综述和展望;对刺参的消化生理及其夏眠的研究进行了综述并提出了新见解和思路。
     2.研究了刺参体壁营养成分的季节变化(2006年7月-2007年6月)。结果表明刺参体壁的基本营养成分及氨基酸、脂肪酸的含量具有显著的季节变化;氨基酸组成全面,平均氨基酸得分(AAS)在75.79-85.17之间,其中8月最高,1月最低;脂肪酸种类丰富,饱和脂肪酸(SFA)相对含量季节变化显著,8月份最高,1月份最低;单不饱和脂肪酸(MUFA)季节变化不显著;多不饱和脂肪酸(PUFA)相对含量具有明显的季节变化,其变化规律与SFA相反,8月份最低,1月份最高;综合分析表明刺参的营养价值在冬季的11月、1月最高。
     3.用脂肪酸标志法分析了刺参食物来源组成情况及季节变化(2006年7月-2007年6月)。1月份刺参的主要食物来源是硅藻、鞭毛藻或原生动物、褐藻以及细菌(变形细菌和革兰氏阴性菌),3月份是硅藻、鞭毛藻或原生动物和大型绿藻。6月份大型绿藻在刺参的食物来源中占据较大比重。7月份细菌(噬纤维菌-黄杆菌类、革兰氏阳性菌)和大型绿藻的食物贡献较大。细菌(噬纤维菌-黄杆菌类、革兰氏阳性菌)在8、9月份的食物来源中占较大比重。褐藻和细菌(变形细菌和革兰氏阴性菌)在10、11月的食物贡献较大。
     4.现场研究了刺参消化道和消化酶活性的季节变化(2006年6月到2007年6月)。结果表明:刺参的消化酶活性和消化道性状指标均有显著的季节变化。典型夏眠期的9月份,刺参的相对消化道重量(RGM)和Zihler’s指数分别降低到全年最高值的8.2%和28.0%。夏眠期间刺参的消化道指数与淀粉酶、脂肪酶、胰蛋白酶、纤维素酶、褐藻酸酶活性都很低,但胃蛋白酶活性很高,且远高于非夏眠期;分析表明Zihler’s指数可以反应刺参的食性,而相对RGM则可反应刺参的摄食状况。
     5.研究了养殖水温(7℃、14℃、21℃、28℃,40天)对刺参消化道结构与功能的影响及与夏眠的关系。室内模拟研究结果表明7℃养殖水温下刺参的RGM最高;在7℃和14℃的养殖水温下,RGM没有显著变化。刺参在21℃下的第40天和28℃下的前20天进入夏眠前期,在28℃下的第30-40天进入夏眠期;在夏眠前期和夏眠期,刺参的RGM以及淀粉酶、脂肪酶和胰蛋白酶活性下降,而胃蛋白酶活性显著升高;分析表明高温和积温是引发刺参夏眠不可或缺的外界因素。
In this dissertation, the seasonal variation of nutritional composition, food resources, and structure and function of digestive tract in Apostichopus japonicus were investigated. The effects of water temperature on digestive physiological characteristics in A. japonicus were also studied. The main results were as follows:
     1. The current status of sea cucumber farming in China was reviewed. The nutritional composition, the digestive physiological characteristics, and aestivation of sea cucumbers were reviewed. Furthermore, the future studies in the area were suggested.
     2. The seasonal variations of nutritional composition of A. japonicus were investigated from July 2006 to June 2007. The basic nutrition values, amino acid, and fatty acid levels of body wall were significantly affected by seasons. The composition evaluation of the amino acid (AAS) was between 75.79 (in January) and 85.17 (in August). Saturated fatty acids (SFA) and polyunsaturated fatty acids (PUFA) yielded significant seasonal variations. SFA showed the highest contents, whereas, PUFA showed its highest value in August. Conversely, the maximum PUFA and the minimum SFA appeared in January. The principle component analysis showed the nutrition quality of A. japonicus was best in winter (November and January).
     3. Seasonal food resources of A. japonicus were determined by fatty-acid biomarker approach from July 2006 to June 2007. In January, the main diets of the sea cucumber were diatom, flagellate or protozoan, brown alga, and bacteria (Proteobacteria and Gram-negative bacteria). The main food resources were diatom, flagellate or protozoan, and Chlorophyta in March. The proportion of Chlorophyta was maximum in the food composition of sea cucumber in June. In July, bacteria (Cytophaga-Flavobacteria and Gram-positive bacteria) and Chlorophyta were the main food resources of A. japonicus. Cytophaga-Flavobacteria and Gram-positive bacteria were the most important food resources in August and September. In October and November, A. japonicus feeds mainly on brown alga, and bacteria (Proteobacteria and Gram-negative bacteria).
     4. Seasonal variations of digestive enzyme activities and digestive tract index in A. japonicus were studied from June 2006 to June 2007 in situ. All gut dimension parameters and digestive enzyme activities except for alginase yielded significant seasonal variations. The digestive tract significantly degenerated during aestivation with relative gut mass (RGM) 8.2% and Zihler’s index 28.0% on Sep 5 respectively of the corresponding maximum values over the year. Carbohydrate enzymes (amylase, cellulase, and alginase) showed the lowest activity, whereas, pepsin showed its highest activity in September. Accordingly, high gut dimensions, high carbohydrase and trypsin activities, and low level of pepsin activity in A. japonicus exhibited in non-aestivation seasons. Zihler’s index was closely related to the properties of food consumed by A. japonicus. RGM can be used to determine the feeding states of the sea cucumber.
     5. To investigate the effects of water temperature on gut mass and digestive enzyme activities in sea cucumbers A. japonicus, relative gut mass, amylase activity, lipase activity, pepsin activity, and trypsin activity were evaluated at water temperatures of 7 oC, 14 oC, 21 oC and 28 oC for a duration of 40 days. RGM of sea cucumbers in 7 oC were higher than the other treats. RGM significantly decreased after 40 days experiments at 21℃, and it markedly decreased over the whole experiments at 28℃, yet no significant effect of duration was observed on RGM at 7℃and 14℃. Principle component analysis showed that the sea cucumbers on the 40th day in 21℃group and in the former 20 days in 28℃group were in the prophase of aestivation; the sea cucumbers aestivated at about 30-40 days after the experiments started at 28℃. In the prophase of aestivation and aestivation phase, RGM and the activities of amylase, lipase, and trypsin decreased. However the pepsin activity sharply increased in the two phases. It is concluded that the temperature effect on the digestion of A. japonicus is comparatively weak within a proper range of water temperature, and aestivation behavior of the sea cucumber was accompanied by significant changes of RGM and digestive enzyme activities. Accumulated temperature may be a more important factor to trigger the aestivation.
引文
常亚青,隋锡林,李俊. 2006. 刺参增养殖业现状、存在问题与展望. 水产科学. 25(4): 198-201.
    崔龙波,董志宁,陆瑶华. 2000. 仿刺参消化系统的组织学和组织化学研究,动物学杂志. 35(6): 2-4.
    戴聪杰. 2002. 大竹蛏软体部分的氨基酸组成分析. 莆田学院学报, 9(3): 32-35.
    董云伟,董双林,田相利,张美昭,王芳. 2005. 不同水温对刺参幼参生长、呼吸及体组成的影响. 中国水产科学. 12(1): 33-37.
    樊绘曾. 2001. 海参: 海中人参——关于海参及其成分保健医疗功能的研究与开发. 中国海洋药物. 4 (82): 37-44.
    付雪艳. 2004. 海参(Stichopus japonicus)消化蛋白酶的初步研究. 中国海洋大学硕士学位论文.
    黄华伟,王印庚. 2007. 海参养殖的现状、存在问题与前景发展. 中国水产. 10: 50-53.
    姜作发,刘永,李永发,白庆利,贾锺贺. 2005. 野生、人工养殖哲罗鱼生化成分分析和营养品质评价. 东北林业大学学报. 33(4): 34-36
    李春燕,常亚青. 2006. 海参的营养成分介绍. 科学养鱼. 2: 71-72.
    李丹彤,常亚青,陈炜,何彦明,李瑜,钟莉,张玉勇,潘伟. 2006. 獐子岛野生刺参体壁营养成分的分析. 大连水产学院学报. 21(3): 278-282.
    李丹彤,宋亮,钟莉,常亚青. 2005. 刺参凝集素的分离纯化及其性质. 水产学报. 29(5): 654-658.
    李荷芳,周汉秋. 1999. 海洋微藻脂肪酸组成的比较研究. 海洋与湖沼. 30: 34-40.
    李润玲,丁君,张玉勇,程莹,曹学彬,常亚青. 2006. 刺参 (Apostichopus japonicus) 消化道的组织学研究. 海洋环境科学. 25(4): 15-19.
    李宪璀, 范晓, 韩丽君等. 2002. 中国黄、渤海常见大型海藻的脂肪酸组成. 海洋与湖沼. 33(2): 215-224.
    廖玉麟. 1984. 中国楯手目海参的研究. 海洋科学集刊, 23: 221~247.
    廖玉麟. 1997. 中国动物志, 棘皮动物门, 海参纲. 北京. 科学出版社 PP. 334.
    姜令绪,杨宁,李建,王文琪,王仁杰,卢杰. 2007. 温度和pH 对刺参(Apostichopus japonicus) 消化酶活力的影响. 海洋与湖沼. 38(5): 476-480.
    刘永宏,李馥馨,宋本祥,孙惠玲,张榭令,顾本学. 1996. 刺参(Apostichopus japonicus Selenka)夏眠习性研究: I 夏眠生态特点的研究. 中国水产科学 3(2): 41-48.
    李馥馨,刘永宏,宋本祥,孙惠玲,顾本学,张榭令. 1996. 海参(Apostichopus japonicus Selenka)夏眠习性研究II——夏眠致因的探讨. 中国水产科学, 3(2): 49-57.
    潘鲁青,王奎琪. 1997. 三疣梭子蟹幼体消化酶活力及氨基酸组成的研究. 水产学报. 21(3): 246-251.
    苏秀榕,娄永江,常亚青,张静,邢茹莲. 2003. 海参的营养成分及海参多糖的抗肿瘤活性的研究. 营养学报. 25(2):181-182.
    隋锡林, 1988. 海参增养殖. 农业出版社, 北京.
    孙奕,陈騳. 1989. 刺参体内外微生物组成及其生理特性的研究,海洋与湖沼20(4):300-307
    谭烨辉,黄良民,尹健强,王汉奎,宋星宇. 2004. 海洋桡足类氨基酸组成及与饵料和光照的关系. 热带海洋学报, 23(5): 42-49.
    唐黎,姜海波,许重,陈骏驰. 2005. 刺参蛋白酶、淀粉酶、褐藻酸酶和纤维素酶活力测定方法探讨. 中国科技论文在线.
    唐黎,王吉桥,许重,程骏驰. 2007. 不同发育期的幼体和不同规格刺参消化道中四种消化酶的活性. 水产科学. 26(5): 275-277.
    王长云,李八方. 1993. 三种海珍品蛋白质营养价值的评价. 中国海洋药物. 46(2): 24-29.
    王红. 2007. 中国北方海域扇贝产品质量的比较研究. 中国科学院研究生院硕士学位论文.
    王吉桥,唐黎,许重,程骏驰. 2007. 仿刺参消化道的组织学及其4种消化酶活力的周年变化. 水产科学. 26(9): 481-484.
    王如才, 楼伟风, 徐家敏, 王远红, 沈海林, 王昭萍. 1989. 栉孔扇贝氨基酸组份与含量 的比较研究. 青岛海洋大学学报, 19(2): 12-19.
    王霞. 2004. 刺参消化道与呼吸树再生和夏眠的组织学研究. 大连水产学院硕士学位论文.
    向怡卉, 苏秀榕, 董明敏. 2006. 海参体壁及消化道的氨基酸和脂肪酸分析. 水产科学. 25(6): 280-282.
    谢建军. 2005. 《中国水产网》海参专题.
    许强. 2007. 贝藻混养系统中贝类食物来源的定量分析. 中国科学院研究生院博士学位论文.
    姚可成(明),食物本草(点校本) [M ]. 北京:人民卫生出版社, 1994: 695
    袁成玉. 2005. 海参饲料研究的现状与发展方向. 水产科学. 24(12): 54-56.
    袁秀堂,杨红生,王丽丽,周毅,张涛,刘鹰. 2007. 夏眠对刺参(Apostichopus japonicus (Selenka)) 能量收支的影响. 生态学报. 27(8): 3155-3161.
    张爱芳. 2007. 三种无公害养殖鱼类生化组成及营养评价. 南昌大学硕士学位论文.
    张春云,王印庚,荣小军,孙惠玲,董树刚. 2004. 国内外海参自然资源、养殖状况及存在问题. 海洋水产研究. 25(3): 89-97
    章超桦, 吴红棉, 洪鹏志, 邓尚贵, 雷晓凌. 2000. 马氏珠母贝肉的营养成分及其游离氨基酸组成. 水产学报, 24(2): 180-184.
    赵学敏(清),本草纲目拾遗 [M ]. 北京:商务印书馆,1955: 495
    郑法新,孙修勤,张进兴. 2006. 刺参吐脏再生的组织学研究,中国水产科学,13(1):134-139
    Ackman, R. G. 1995. Composition and nutritive value of fish and shellfish lipids. In
    A. Ruither (Ed.), Fish and fishery products (pp.117–156). UK: CAB International.
    Allen, W.V., 1968. Fatty acid synthesis in the echinoderms: Asterias rubens, Echinus esculentus and Holothuria forskali. J Mar Biol Assoc UK, 48:521–533
    Arts, M. T., Ackman, R. G. Holub, B. J., 2001. “Essential fatty acids” in aquatic ecosystems: a crucial link between diet and human health and evolution. Can J Fish Aquat Sci, 58: 122-137.
    Bachok Z, Mfilinge PL, Tsuchiya M., 2003. The diet of the mud clam Geloina coaxans (Mollusca, Bivalvia) as indicated by fatty acid markers in a subtropical mangrove forest of Okinawa, Japan. J Exp Mar Biol Ecol 292:187-197
    Balslev-Clausen, A., McCarthy, J.M., Carey, H.V., 2003. Hibernation reduces pancreatic amylase levels in ground squirrels. Comp. Biochem. Physiol. A 134: 573-578.
    Battaglene, S.C., Seymour, J.E., Ramofafia, C., 1999. Survival and growth of cultured juvenile sea cucumbers, Holothuria scabra. Aquaculture, 17: 293-322
    Battley, P.F., Piersma, T., 2005. Adaptive interplay between feeding and ecology and features of the digestive tract in birds. In: Starck JM, Wang T (eds) Physiological and ecological adaptations to feeding in vertebrates. Science Publishers Inc., Enfield, pp 201-228.
    Bell, J. G., McVicar, A. H., Park, M. T. and Sargent, J. R., 1991. High dietary linoleic acid affects fatty acid compositions of individual phospholipids from tissues of Atlantic salmon (Salmo salar): association with stress susceptibility and cardiac lesion. Journal of Nutrition, 121: 1163–1172.
    Bell, M.V., Sargent, J.R., 1985. Fatty acid analyses of phosphoglycerides from tissues of the clam Chlamys islandica (Muller) and the starfish Ctenodiscus crispatus (Retzius) from Balsfjorden, northern Norway. J Exp Mar Biol Ecol 87:31–40
    Beltrán-Lugo, A.,1, Maeda-Martínez, A.N., Pacheco-Aguilar, R., Nolasco-Soria, H.G., 2006. Seasonal variations in chemical, physical, textural, and microstructural properties of adductor muscles of Pacific lions-paw scallop (Nodipecten subnodosus). Aquaculture 258: 619–632.
    Bolasina, S., Pérez, A., Yamashita, Y., 2006. Digestive enzymes activity during ontogenetic development and effect of starvation in Japanese flounder, Paralichthys olivaceus. Aquaculture 252: 503-515.
    Bozinovic, F., Novoa, F.F., Veloso, C., 1990. Seasonal changes in energy expenditure and digestive tract of Abrothrix andinus (Cricetidae) in the Andes Range. Physiol. Zool. 63: 1216– 1231.
    Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Bioche. 72: 248-254.
    Budge, S.M., Parrish, C.C. 1998. Lipid biogeochemistry of plankton, settling matter and sediments in Trinity Bay, Newfoundland. II. Fatty acids. Org. Geochem. 29:1547-1559
    Budge, S.M., Parrish, C.C., Mckenzie, C.H. 2001. Fatty acid composition of phytoplankton, settling particulate matter and sediments at a sheltered bivalve aquaculture site. Marine Chemistry 76: 285–303
    Carey, H.V., 1990. Seasonal changes in mucosal structure and function in ground squirrel intestine. Am. J. Physiol. Regul. Integr. Comp. Physiol. 259: 385-392.
    Carls??, B., Danielsson, ? ., Helander, H.F., 1974. Effects of starvation on amylase storage in mouse pancreas and parotid gland. A biochemical and morphometric study. Acta Hepato-Gastroenterol. 21: 48-57.
    Caviedes-Vidal E., Afik D., Martinez del Rio C., Karasov W.H., 2000. Dietary modulation of intestinal enzymes of the house sparrow (Passer domesticus): testing an adaptive hypothesis. Comp. Biochem. Physiol. A 125: 11–24
    Chen, J.X., 2004. Present status and prospects of sea cucumber industry in China. In: Lovatelli, A., Conand, C., Purcell, S., Uthicke, S., Hamel, J.-F., Mercier, A. (Eds.), Advances in Sea Cucumber Aquaculture and Management. Fisheries Technical Paper, vol. 463. FAO, Rome, pp. 359-371.
    Choe, S. 1963. Study of Sea Cucumber: Morphology, Ecology and Propagation of Sea Cucumber. Kaibundo Publishing House, Tokyo.
    Claustre, H., Poulet S.A., Williams, R., Ben-Mlih, F., Martin-Jezequel, V., Marty, J.C., 1992. Relationship between the qualitative nature of particles and copepod faeces in the Irish Sea. Mar. Chem. 40: 231 -248.
    Cleveland, A., Montgomery, W., 2003. Gut characteristics and assimilation efficiencies in two species of herbivorous damselfishes (Pomacentridae: Stegastes dorsopunicans and S. planifrons). Mar. biol. 142: 35-44.
    Comoglio, L., Gaxiola, G., Roque, A., Cuzon, G., Amin, O., 2004. The effect of starvation on refeeding, digestive enzyme activity, oxygen consumption, and ammonia excretion in juvenile white shrimp Litopenaeus vannamei. J. Shellfish. Res. 23: 243-249.
    Conand C., Byrne M., 1993. A review of recent developments in the world sea cucumber fisheries. Mar. Fish. Rev., 55(4):1-131
    Cook, E.J., Bell, M.V., Black, K.D., Kelly, M.S., 2000. Fatty acid compositions of gonadal material and diets of the sea urchin, Psammechinus miliaris: trophic and nutritional implications. J Exp Mar Biol Ecol. 255: 261-274.
    Cramp, R., Franklin, C., 2003. Is re-feeding efficiency compromised by prolonged starvation during aestivation in the green striped burrowing frog, Cyclorana alboguttata? J. Exp. Zool. A 300: 126-132.
    Cramp, R.L., Franklin, C.E., 2005. Arousal and re-feeding rapidly restores digestive tract morphology following aestivation in green-striped burrowing frogs. Comp. Biochem. Physiol A 142: 451-460.
    David, V.M.M., MacDonald, B.A., 2002. Seasonal biochemical composition of tissues from Cucumaria frondosa collected in the bay of Fundy, Canada: feeding activity and reproduction. J. Mar. Biol. Ass. U.K., 82: 141-147.
    Diamond, J., Hammond, K., 1992. The matches, achieved by natural selection, between biological capacities and their natural loads. Cell. Mol. Life Sci. 48: 551-557.
    Dong F M. The nutritional value of shellfish. 2001. www.wsg.washington.edu/pubs/nutritional.pdf.
    Dou, Y., Gregersen, S., Zhao, J., Zhuang, F., Gregersen, H., 2001. Effect of refeeding after starvation on biomechanical properties in rat small intestine. Med. Eng. Phys. 23: 557-566.
    Dunstan, G.A., Volkman, J.K., Barrett, S.M., Leroi, J.M., Jeffrey, S.W. 1994.
    Essential polyunsaturated fatty acids from 14 species of diatom (Bacillariophyceae). Phytochem 35:155–161
    Ebert, T.A., 1996. Adaptive aspects of phenotypic plasticity in echinoderms. Oceanol. Acta. 19, 347-355.
    Ellis, B.A., Mills, J.N., Kennedy, J.T., Maiztegui, J.I., Childs, J.E., 1994. The relationship among diet, alimentary tract morphology, and life history for five species of rodents from the central Argentine pampa. Acta. Theriol. 39: 345–355.
    Essink, K., Tydeman, P., de Koning, F., Kleef, H.L., 1989. On the adaptation of the mussel Mytilus edulis L. to different environmental suspended matter concentration. In: Proc 21st Eur Mar Biol Symp. Polish Academy of Sciences-Institute of Oceanology, Gdansk, p 41–51
    Farías A, Bell J G, Uriarte I, Sargent J R. 2003. Polyunsaturated fatty acids in total lipid and phospholipids of Chilean scallop Argopecten purpuratus (L.) larvae: effects of diet and temperature. Aquaculture, 228: 289-305.
    Fankboner, P., Cameron, J., 1985. Seasonal atrophy of the visceral organs in a sea cucumber. Can. J.Zool. 63: 2888-2892.
    FAO/WHO. 1973. Energy and protein requirements. Rome: Food and Agricultural Organization of the United Nations.
    Favarov, V. V. and V. E.Vaskovsky, 1971. Alginases of marine invertebrates.Comp. Biochem. Physiol., 38B: 689-696.
    Féral J.P., 1989. Activity of the principal digestive enzymes in the detritivorous apodous holothuroid Leptosynapta galliennei and two other shallow-water holothuroids. Mar. Biol. 101: 367-379.
    Ferguson,J.C., 1969. Feeding, digestion and nutrition in Echinodermata. In: M. Florkin & B.T. Scheer(eds.), Chemical Zoology, Vol.3, pp. 71-100. Academic Press, New York.
    Fu, X., Xue, C., Miao, B., Li, Z., Gao, X., Hirata, T., 2006. Distribution and seasonal activity variation of proteases in digestive tract of sea cucumber. Stichopus japonicus Fisheries Sci. 72: 1130-1132.
    Fu, X., Xue, C., Miao, B., Li, Z., Gao, X., Yang, W., 2005a. Characterization of proteases from the digestive tract of sea cucumber (Stichopus japonicus): High alkaline protease activity. Aquaculture 246: 321– 329.
    Fu, X., Xue, C., Miao, B., Li, Z., Yang, W., Wang, D., 2005b. Study of a highly alkaline protease extracted from digestive of sea cucumber (Stichopus japonicus). Food Research International 38: 323-329
    Fukuda, Y., Naganuma, T. 2001. Potential dietary effects on the fatty acid composition of the common jellyfish Aurelia aurita. Mar. Biol. 138:1029–1035
    Gerking, S. D., 1994. Feeding ecology of fish. Academic Press, San Diego, pp415
    German, D.P., and Horn, M.H., 2006. Gut length and mass in herbivorous and carnivorous prickleback fishes (Teleostei: Stichaeidae): ontogenetic, dietary, and phylogenetic effects. Mar. Biol. 148: 1123–1134.
    German, D.P., Horn, M.H., Gawlicka, A., 2004. Digestive enzyme activities in herbivorous and carnivorous prickleback fishes (Teleostei: Stichaeidae): ontogenetic, dietary, and phylogenetic effects. Physiol. Biochem. Zool. 77: 789-804.
    Gildberg, A., 2004. Digestive enzyme activities in starved pre-slaughter farmed and wild-captured, Atlantic cod (Gadus morhua). Aquaculture. 238:343-356.
    Guler, G.O., Kiztanir B., Aktumsek A., Citil O.B., Ozparlak H., 2008. Determination of the seasonal changes on total fatty acid composition and ω3/ω6 ratios of carp (Cyprinus carpio L.) muscle lipids in Beysehir Lake (Turkey). Food Chemistry 108: 689–694
    Gurr, M.I., Harwood, J.L. 1991. Lipid biochemistry, 4th edn. Chapman & Hall, London.
    Hamel, J F., Hidalgo, R.Y., Mercier, A., 2003. Larval development and juvenile growth of the Galapagos sea cucumber Isostichopus fuscus, Bechedemer Inf Bull.18: 3-8
    Hammond, K. A., Konarzewski, M., Torres, R., Diamond, J. 1994. Metabolic ceilings under a combination of peak energy demands. Physiol. Zool. 68: 1479–1506.
    Hammond, K.A., Szewack, J., Król, E., 2001. Effects of altitude and temperature on the morphology of gastrointestinal tracts of two microtine rodents. J. Exp. Biol. 204:1991–2000.
    Hammond, K.A., Wunder, B.A., 1995. Effects of cold temperatures on the morphology of gastrointestinal tracts of two microtine rodents. J. Mammal. 76: 232–239.
    Harris, R.P., Samain, J.F., Moal, J., Martin-Jézéquel, V., Poulet, S.A., 1986. Effects of algal diet enzyme activity in Calanus helgolandicus. Mar. Biol. 90: 353-361.
    Hassett, R.P., Landry, M.R., 1990a. Effects of diet and starvation on digestive enzyme activities and feeding behavior of the marine copepod Calanus pacificus. J. Plankton Res. 15(5): 991-1010.
    Hassett, R.P., Landry, M.R., 1990b. Seasonal changes in feeding rate, digestive enzyme activity and assimilation efficiency of Calanus pacificus. Mar. Ecol. Prog. Ser. 62: 203-210.
    Hauksson, E. 1979. Feeding biology of Stichopus tremulus a deposit feeding holothurian. Sarsia, 64: 155-160
    Henderson, R. J., Tocher, D. R., 1987. The lipid composition and biochemistry of freshwater fish. Progress in Lipid Research, 26(4): 281–347.
    Hirche, H., 1989. Spatial distribution of digestive enzyme activities of Calanus finmarchicus and C. hyperboreus in Farm/Greenland sea. J. Plankton Research. 11(3): 431-443.
    Honkoop, P., Bayne, B., Drent, J., 2002. Flexibility of size of gills and palps in the Sydney rock oyster Saccostrea glomerata (Gould, 1850) and the Pacific oyster Crassostrea gigas (Thunberg, 1793). J. Exp. Mar. Biol. Ecol. 282: 113-133.
    Horn, M.H., 1989. Biology of marine herbivorous fishes. Oceanogr Mar Biol Annu Rev 27:167–272.
    Howell, K.L., Pond, D.W., Billett, D.S.M., Tyler, P.A., 2003. Feeding ecology of deep-sea seastars (Echinodermata: Asteroidea): a fatty-acid biomarker approach. Mar Ecol Prog Ser. 255: 193–206.
    Hume, I.D., Beiglbock, C., Ruf, T., Frey-Roos, F., Bruns, U., Arnold, W., 2002. Seasonal changes in morphology and function of the gastrointestinal tract of free-living alpine marmots (Marmota marmota). J. Comp. Physiol. B 172: 197-207.
    Jangoux, M., Lawrence, J.M., 1982. Echinoderm nutrition. A.A. Balkema publishers, Rotterdam, Netherlands.
    Jaya Sree, V., Parulekar, A.H., Wahidulla, S., Kamat, S.Y. 1994. Seasonal changes in chemical composition of Holothuria leucospilota (Echinodermata). Indian J. Mar. Sci., 23: 117-119.
    Johnston, D., Ritar, A., Thomas, C., 2004. Digestive enzyme profiles reveal digestive capacity and potential energy sources in fed and starved spiny lobster (Jasus edwardsii) phyllosoma larvae. Comp. Biochem. Physiol. B 138: 137-144.
    Jones, R.M., 1980. Metabolic consequences of accelerated urea synthesis during seasonal dormancy of spadefoot toads, Scaphiopus couchii and Scaphiopus multiplicatus. J. Exp. Zool. 212: 255–267.
    Jostensen, J.P., Landfald, B., 1997. High prevalence of polyunsaturated fatty acid producing bacteria in arctic invertebrates. FEMS Microbiol Lett 151: 95–101
    Judd, J.R., 2001. The physiological ecology of digestion in Arenicola brasiliensis, a deposit-feeding polychaete (Annelida). Dissertation of doctor’s degree, University of California, Berkeley. pp.16-40.
    Juszczyk, W.K., Obrzut, Z., Zamachowski, W., 1966. Morphological changes in the alimentary canal of the common frog (Rana temporaria L.) in the annual cycle. Acta Biol. Crac., Ser. Zool., Cracow IX, 239-246.
    Karasov, W. H., 1992. Daily energy expenditure and the cost of activity in mammals. Am. Zool. 32: 238-248.
    Karasov, W.H., Diamond, J.M., 1988. Interplay between physiology and ecology in digestion. Bioscience 38: 602-611.
    Karasov, W.H., Hume, I.D., 1997. Vertebrate Gastrointestinal System. In: Dantzler, W.H. (Ed.), Handbook of Comparative Physiology, Vol.1. American Physiological Society, Bethseda, MD, USA, pp407-480.
    Karasov, W.H., Martinez Del Rio, C., 2007. Physiologial ecology: how animals process energy, nutrients, and toxins. Princeton University Press, Princeton, NJ, USA.
    Kariya, Y.,Watabe, S., Kyogashima, M., Ishihara, M., Ishii, T., 1997. Structure of fucose branches in the glycosaminoglycan from the body wall of the sea cucumber, Stichopus japonicus. Carbohydr. Res., 297: 273-279.
    Katzman, R.L., Jeanloz, R.W., 1970. The carbohydrate chemistry of invertebrate connective tissue. The Chemistry and Molecular Biology of the Intercellular Matrix (Balazas, E. A. ed.) Academic press, 1: 2171
    Kharlamenko V.I., Zhukova, N.V., Khotimchenko, S.V., Svetashev, V.I., Kamenev, G.M., 1995. Fatty acids as markers of food sources in a shallow-water hydrothermal ecosystem (Kraternaya Bight, Yankich Island, Kurile Islands). Mar. Ecol. Prog. Ser. 120: 231-241.
    Khotimchenko, S.V., Vaskovsky, V.E., Titlyanova, T.V. 2002. Fatty acids of marine algae from the Pacific coast of North California. Botanica Marina 45:17-22
    King, P.A., Fives, J.M., McGrath, D., 1994. Reproduction, growth, and feeding of the dragonet Callionymus lyra (Teleostei: Callionymidae), in Galway Bay, Ireland. J. Mar. Biol. Assoc. UK. 74: 513-526.
    King R H, Rayner C J, Keri M, Gorfine H K, McShane P E. 1996. The composition and amino acid balance of abalone (Haliotis rubra) tissue. Aquaculture, 140(1-2): 109-113.
    Kinsella, J. E., Lokesh, B., Stone, R. A. 1990. Dietary n-3 polyunsaturated fatty acids and amelioration of cardiovascular disease: Possible mechanism. American Journal of Clinical Nutrition, 52: 1–28.
    Kolakowska, A., Szczygielski, M., Bienkiewicz, G., Zienkowicz, L. 2000. Some of f?sh species as a source of n-3 polyunsaturated fatty acids. Acta Ichthyologica Piscatoria, 30(2): 59–70.
    Konarzewski, M., Diamond, J. 1994. Peak sustained metabolic rate and its individual variation in cold-stressed mice. Physiol. Zool. 67: 1186–1212.
    Korn, H., 1992. Intestine lengths of Southern African savanna rodents and insectivores: intra- and interspecific comparisons. J. Zool. 228:455-460.
    Koteja, P., 1996. Limits to the energy budget in a rodent, Peromyscus maniculatus: does gut capacity set the limit? Physiol. Zool. 69: 994– 1020.
    Kramer, D.L., Bryant, M.J. 1995. Intestine length in the fishes of a tropical stream: 2. Relationships to diet-the long and the short of a convoluted issue. Environ. Biol. Fish. 42:129-141.
    Krogdahl, A., Bakke-McKellep, A.M., 2005. Fasting and refeeding cause rapid changes in intestinal tissue mass and digestive enzyme capacities of Atlantic salmon (Salmo salar L.). Comp. Biochem. Physiol. A 141, 450-460.
    Lee, R.F., Nevenzel, J.C., Paffenhofer, G.A. 1971. Importance of wax esters and other lipids in the marine food chain: phytoplankton and copepods. Mar. Biol. 9:99–108
    Leibson, N.J., 1992. Regeneration of digestive tube in holothurians Stichopus japonicus and Eupentacta fraudatrix (Holothuroides, Dendrochirota). In: Keys for Regeneration ( Monographs in Developmental Biology, vol.23). C. H. Taban and B. Boilly, eds. Karger, Basel, 23:51-60.
    Lewis, R.W., 1967. Fatty acid composition of some marine animals from various depths. J Fish Res Board Can 24: 1101–1115
    Li, X., Fan, X., Han, J., Lou, X., 2002. Fatty acids of some algae from the Bohai Sea. Phytochemistry 59: 157-161.
    Lloret, J., Planes, S., 2003. Condition, feeding, and reproductive potential of white seabream Diplodus sargus as indicators of habitat quality and the effect of reserve protection in the northwest Mediterranean. Mar. Ecol. Prog. Ser. 248: 197-208.
    Lo, N., Watanabe, H., Sugimura, M., 2003. Evidence for the presence of a cellulase gene in the last common ancestor of bilaterian animals. Proc. R. Soc. B (Suppl.) 270: 69-72.
    Mai, K., Mercer, J.P., Donlon, J., 1994. Comparative studies on the nutrition of two species of abalone, Haliotis tuberculata L. and Haliotis discus hannai Ino. Ⅱ Amino acid composition of abalone and six species of macroalgae with an assessment of their nutritional value. Aquaculture, 128: 115-130.
    Mayer, L.M., Schick, L.L., Self, R.F.L., Jumars, P.A., Findlay, R.H., Chen, Z., Sampson, S., 1997. Digestive environments of benthic macroinvertebrate guts: enzymes, surfactants and dissolved organic matter. J. Mar. Res. 55: 785-812.
    McClanahan, L., 1967. Adaptations of the spadefoot toad, Scaphiopus couchii, to desert environments. Comp. Biochem. Physiol. 20: 73–79.
    McElroy, S., 1990. Beche-de-mer species of commercial value-an update. Beche-de-mer Inf. Bul1., (2): 2-7.
    McWilliams, S.R., Karasov, W.H., 2001. Phenotypic flexibility in digestive system structure and function in migratory birds and its ecological significance. Comp. Biochem. Physiol., A 128: 579-593.
    Meziane T., Bodineau L., Retiere C., Thoumelin G., 1997. The use of lipid markers to define sources of organic matter in sediment and food web of the intertidal salt-marsh-flat ecosystem of Mont-Saint-Michel Bay, France. Journal of Sea Research 38: 47-58
    Michio, K., Kengo, K., Yasunori, K., Hitoshi, M., Takayuki, Y., Hideaki, Y., Hiroshi, S., 2003. Effects of deposit feeder Stichopus japonicus on algal bloom and organic matter contents of bottom sediments of the enclosed sea. Mar. Pollut. Bull. 47: 118-125.
    Mitsukuri, K., 1903. Notes on the habits and life history of Stichopus japonicus Selenka, Annot. Zool. Japan 5: 1-21.
    Monje, H., Viana, M., 1998. The effect of cellulose on the growth and cellulolytic activity of abalone Haliotis fulgens when used as an ingredient in formulated artificial diets. J. Shellfish. Res. 17: 667-671.
    Moriarty, D. J. W., 1978. Bacterial biomass in coral reef sediments ingested by holothurians. Abstract Third International Echinoderm Conference, Sydney, Australia.
    Naughton, J.M., O’Dea, K., Sinclair, A.J., 1986. Animal foods in traditional Australian aboriginal diets: polyunsaturated and low fat. Lipids, 21: 684-690.
    Naya, D.E., Maneyro, R., Camargo, A., Da Rosa, Canavero, I.A., 2003. Annual changes in gut length of South American common frog (Leptodactylus ocellatus). Biociencias 11: 47- 52.
    Nespolo, R.F., Bacigalupe, L.D., Sabat, P., Bozinovic, F., 2002. Interplay among energy metabolism, organ mass and digestive enzyme activity in the mouse-opossum Thylamys elegans: the role of thermal acclimation. J. Exp. Biol. 205: 2697-2703.
    Nichols, D.S., Nichols, P.D., McMeekin, T.A., 1993. Polyunsaturated fatty acids in Antarctic bacteria. Antarct Sci 5:149–160
    Pace, M.L., Carpenter, S.R., Cole, J.J., Coloso, J.J., Kitchell, J.F., Hodgson, J.R., Middelburg, J.J., Preston, N.D., Solomon, C.T., Weidel, B.C., 2007. Does terrestrial organic carbon subsidize the planktonic food web in a clear-water lake? Limnol. Oceanogr., 52(5): 2177–2189
    Pernet F, Tremblay R. 2004, Effects of varying levels of dietary essential fatty acid during early ontogeny of sea scallop Placopecten magellanicus. J Exp Mar Biol Ecol, 310: 73-86.
    Péquignat, E., 1966. Skin digestion and epidermal absorption in irregular and regular urchins and their probable relation to the outflow of spherule-coelomocytes. Nature. Lond., 210: 397-399.
    Péquignat, E., 1972. Some new data on skin digestion and absorption in sea urchins and sea stars (Asterias and Hericia). Mar. Biol., 12: 28-41.
    Piersma, T., Drent, J., 2003. Phenotypic flexibility and the evolution of organismal design. Trends. Ecol. Evol. 18: 228-233.
    Piersma, T., Lindstrom, A., 1997. Rapid reversible changes in organ size as a component of adaptive behavior. Trends Ecol. Evol. 12, 134-138.
    Pond, D.W., Bell, M.V., Harris, R.P., Sargent, J.R., 1998. Microplanktonic Polyunsaturated Fatty Acid Markers: a Mesocosm Trial. Estuarine, Coastal and Shelf Science 46 (Supplement A):61-67
    Prim, P., Lawrence, J. M., Turner, R.L., 1976. Protein, carbohydrate, and lipid levels of the adult body wall of Actinopyga agassizi,Synaptula hydriformi and Pentacta phymaea (Echinodermata: Holothuroidea). Comp. Biochem. Physiol., 55B: 307-309.
    Rahman, S. A., Huah, T. S., Hassan, O., Daud, N. M.,1995. Fatty acid composition of some Malaysian freshwater fish. Food Chemistry, 54: 45–49.
    Rees, B.B., Hand, S.C., 1993. Biochemical correlates of estivation tolerance in the mountain snail Oreohelix (Pulmonata: Oreohelicidae). Biol. Bull. 184: 230–242.
    Reichenbach, H. Dworkin, M. 1991. The order Cytophagales. In: The prokaryotes (Balows, A., Truper, H.G., Dworkin, M., Harder, W. and Schleifer, K.H., Eds.), pp. 356-379. Springer-Verlag, New York.
    Reuss, N., Poulsen, L.K. 2002. Evaluation of fatty acids as biomarkers for a natural plankton community: a field study of a spring bloom and a post-bloom period off West Greenland. Mar. Biol. 141: 423-434.
    Reyes-Bonilla, H., Herrero-Pérezrul, M.D., 2003. Population parameters of an exploited population of Isostichopus fuscus (Holothuroidea) in the southern Gulf of California, México. Fish. Res., 59(3): 423-430.
    Ribble, D.O., Smith, M.H., 1983. Relative intestine length and feeding ecology of freshwater fishes. Growth 47: 292-300.
    Ricklefs, R.E., 1996. Morphometry of digestive tracts of some passerine birds. Condor 98: 279-292.
    Robards, D. M., Anthony, J. A., Rose, G. A., & Piatt, J. F. 1999. Changes in proximate composition and somatic energy content for Pacific sand lance (Ammodytes hexapterus) from Kachemak. J Exp Mar Biol Ecol, 242: 245–258.
    Rosa, R., Nunes, M. L., & Sousa Reis, C. 2002. Seasonal changes in the biochemical composition of Octopus vulgaris, Cuvier, 1797, from three areas of the Portuguese coast. Bull Mar Sci, 71: 739–751.
    Russell, N.J., Nichols, D.S. 1999. Polyunsaturated fatty acids in marine bacteria--a dogma rewritten. Microbiology (UK) 145:767–779.
    Sabat, P., Riveros, J.M., López-Pinto, C. 2005. Phenotypic flexibility in the intestinal enzymes of the African clawed frog Xenopus laevis. Comp. Biochem. Physiol. A 140: 135-139.
    Sánchez-Machado D I, López-Cervantes J, López-Hernández J, Paseiro-Losada P., 2004. Fatty acids, total lipid, protein and ash contents of processed edible seaweeds. Food Chem, 85: 439-444.
    Sargent, J., Parkes, R.J., Mueller-Harvey, I., Henderson, R.J. 1987. Lipid biomarkers in marine ecology. In: Sleigh MA (ed) Microbes in the sea. Ellis Harwood, Chichester, pp 119–138.
    Sargent, J.R and Falk-Petersen, S. 1988. The lipid biochemistry of calanoid copepods. Hydrobiologia 167/168: 101-114.
    Sellos, D., Van Wormhoudt, A., 2002. Structure of the of alpha-amylase genes in crustaceans and molluscs: evolution of the exon/intron organization. Biologia 57: 191-196.
    Shihabi, Z.K., and Bishop, C. 1971. Simplified turbidimetric assay for lipase activity. Clin Chem. 17(12):1150-1153.
    Shirai N., Terayama M., Takeda H., 2002. Effect of season on the fatty acid composition and free amino acid content of the sardine Sardinops melanostictus. Comp Biochem Physiol B, 131: 387–393.
    Sibley, R.M., Calow, P., 1986. Physiological ecology of animals, an evolutionary approach. Blackwell, Oxford.
    Sibly, R.M., 1981. Strategies of digestion and defecation. In: Towsend, C.R., Calow, P. (Eds.), Physiological Ecology: An Evolutionary Approach to Resource Use. Sinauer, Sunderland, MA, pp109-139.
    Simopoulos A. 2002a. The importance of the ratio omega-6/omega-3 essential fatty acids. Biomed Pharmacotherapy, 56(8): 365-379.
    Simopoulos A. 2002b. Omega-3 fatty acids in inflammation and autoimmune diseases. J Am Coll Nutr, 21(6): 495-505.
    Singh, R., MacDonald, B. A., Lawton, P. & Thomas, M. L. H., 1998. Feeding response of the dendrochirote sea cucumber Cucumaria frondosa (Echinodermata: Holothuroidea) to changing food concentrations in the laboratory. Canada J. Zool.. 76: 1842-1949.
    Skea, G., Mountfort, D., Clements, K.D., 2005. Gut carbohydrases from the New Zealand marine herbivorous fishes Kyphosus sydneyanus (Kyphosidae), Aplodactylus arctidens (Aplodactylidae), and Odax pullus (Labridae). Comp. Biochem.Physiol. B 140: 259-269.
    Skea, G., Mountfort, D., Clements, K.D., 2007. Contrasting digestive strategies in four New Zealand herbivorous fishes as reflected by carbohydrase activity profiles. Comp. Biochem.Physiol. B 146: 63-70.
    Sloan, N.A., 1984. Echinoderm Fisheries of the World: A review. Proceedings of the Fifth International Echinoderm Conference, pp109–124.
    Smith, T.B., Keegan, B.F. 1984. Seasonal torpor in Neopentadactyla mixta (?stergren) (Holothuroidea: Dendrochirotida). Proceedings of the Fifth international Echinoderm Conference, Galway, 24-29.
    Sokolowski, A., Wolowicz, M., Hummel, H., 2003. Free amino acids in the clam Macoma balthica L. (Bivalvia, Mollusca) from brackish waters of the southern Baltic Sea. Comp. Biochem.Physiol. A 134: 579–592.
    Sova,V.V., Elyakova,L.A. Vaskovsky, V.E. 1970. The distribution of laminarins in marine invertebrates. Comp. Biochem. Physiol., 32: 459-464.
    Stark, J.M., 1999. Structural flexibility of the gastro-intestinal tract of vertebrates-implications for evolutionary morphology. Zool. Anz. 238, 87-101.
    Starck, J.M., 2005. Structural flexibility of the digestive system of tetrapods: patterns and processes at the cellular and tissue level. In: Starck JM, Wang T (eds) Physiological and ecological adaptations to feeding in vertebrates. Science Publishers Inc., Enfield, pp 175-200.
    Stevens, C.E., Hume, I.D., 1995. Comparative physiology of the vertebrate digestive system. Press Syndicate, University of Cambridge, Melbourne.
    Stryer, L. 1995. Biochemistry, 4th edn. WH Freeman, New York
    Stübing, D., Hagen, W. 2003. On the use of lipid biomarkers in marine food web analyses: An experimental case study on the Antarctic krill, Euphausia superba. Limnol Oceanogr 48:1685-1700
    Su, X.Q., Antonas, K., Li, D., Nichols, P., 2006. Seasonal variations of total lipid and fatty acid contents in the muscle of two Australian farmed abalone species. J. Food. Lipids, 13(4): 411-423.
    Svetashev, V.I., Levin, V.S., Cham N. L., Do T. N. 1991. Lipid and fatty acid composition of holothurians from tropical and temperate waters. Comp. Biochem. Physiol., 96B, 489–494.
    Takagi, T., Eaton, C.A., Ackman, R.G. 1980. Distribution of fatty acids in lipids of the common atlantic sea urchin Strongylocentrotus droebachiensis. Can J Fish Aquat Sci 37:195–202.
    Tanaka, T., Yasunami, S., Ohtani, K., Nakano, J., Tani, S., 1999. Regulation of gastric mucosal pepsinogen and intrinsic factor contents, and their mRNA levels during starvation and refeeding in rats. Biol. Pharmaceut. Bull. 22: 1293-1295.
    Tanaka, Y., 1958a. Seasonal changes occurring in the gonad of Stichopus japonicus. Bulletin Fac. Fish., Hokkaido University 9: 29-36.
    Tanaka, Y., 1958b. Feeding and digestive processes of Stichopus japonicus. Bull Fac. Fish., Hokkaido University, 9: 14-28.
    Tokuhisa, S. 1915. On Stichopus japonicus in Nanao Bay. Suisan Kenkyushi. 10(2): 33-37. (in Jananese)
    Toloza, E. M., Lam, M. and Diamond, J. 1991. Nutrient extraction by coldexposed mice: a test of digestive safety margin. Am. J. Physiol. 261: 608–620.
    Traer, K. 1980. The consumption of Posidonia oceanica Delile by echinoids at the Isle of Ischia. In: M. Jangoux(ed.),Echinoderms: Present and Past, pp. 241-244. Balkema, Rotterdam.
    Umezurike, G., 1976. The β-glucosidase in the gut contents of the snail Achatina achatina. Biochem. J. 157: 381-387.
    Valle, J.C, Manames, A.A.L., Busch, C. 2004. Phenotypic flexibility of digestive morphology and physiology of the South American omnivorous rodent Akodon azarae (Rodentia: Sigmodontinae). Comp. Biochem. Physiol., A 139: 503-512.
    Vannuccini, S., 2003. Sea cucumbers - A compendium of fishery statistics. Workshop on advances in sea cucumber aquaculture and management (ASCAM) Dalian.
    Ventrella V., Pirini M., Pagliarani A., Trombetti F., Manuzzi M.P., Borgatti A.P., 2008. Effect of temporal and geographical factors on fatty acid composition of M. galloprovincialis from the Adriatic sea. Comp Biochem Physiol B Biochem Mol Biol. 149(2): 241-250.
    Vieira-Matos, A.N., Tenenhouse, A., 1977. The effect of fasting on the in vitro synthesis of amylase in rat exocrine pancreas. Can. J. Physiol. Pharmacol. 55: 90–97.
    Viso, A.C., Marty, J.C. 1993. Fatty acids from 28 marine microalgae. Phytochemistry (Oxf) 34:1521–1533.
    Volkman, J.K., Johns, R.B., Gillan, F.T., Perry, G.J., Bavor, H.J.J. 1980. Microbial lipids of an intertidal sediment - I. Fatty acids and hydrocarbons. Geochirnica et Cosmochimica Acta 44:1133-1143.
    Voltura, M.B., Wunder, B.A., 1998. Effects of ambient temperature, diet quality, and food restriction on body composition dynamics of the prairie vole, Microtus ochrogaster. Physiol. Zool. 71: 321– 328.
    Wang, T., Hung, C., Randall, D.J., 2006. The comparative physiology of food deprivation: from feast to famine. Annu. Rev. Physiol. 68: 223-251.
    Wang, Y., Xu, Z., 2006. Effect of probiotics for common carp (Cyprinus carpio) based on growth performance and digestive enzyme activities. Animal Feed Science and Technology. 127: 283-292.
    Wang, Y., Zhang, C., Rong, X., Chen, J. 2003. Diseases of cultured sea cucumber Apostichopus japonicus in China. Proceedings of Workshop on Advances in Sea Cucumber Aquaculture and Management, FAO, October 14-18, 2003, Dalian, China.
    Watanabe, H., Tokuda, G., 2001. Review: Animal cellulases. Cell. Mol. Life Sci. 58: 1167-1178.
    Webster, P.D., Singh, M., Tucker, P.C., Black, O., 1972. Effects of fasting and feeding on the pancreas. Gastroenterology 62: 600-605.
    West-Eberhard, M.J., 1989. Phenotypic plasticity and the origins of diversity. Annu. Rev. Ecol. Syst. 20: 249-278.
    Worthington, V., 1993. Worthington Enzyme Manual. Enzymes and Related Biochemicals Worthington Chemical, New Jersey, USA.
    Yamanouchi, T. 1939. Ecological and physiological studies on the holothurians in the coral reef of Palao Islands. Stud. Palao trop.biol. Sta., 4: 603-636.
    Yanar, Y., and Celik, M., 2006. Seasonal amino acid profiles and mineral contents of green tiger shrimp (Penaeus semisulcatus De Haan, 1844) and speckled shrimp (Metapenaeus monoceros Fabricus, 1789) from the Eastern Mediterranean. Food Chemistry 94: 33–36.
    Yang, H., Yuan, X., Zhou, Y., Mao, Y., Zhang, T., Liu, Y., 2005. Effects of body size and water temperature on food consumption and growth in the sea cucumber Apostichopus japonicus (Selenka) with special reference to aestivation. Aquac. Res. 36: 1085-1092.
    Yang, H., Zhou, Y., Zhang, T, Yuan, X., Li, X., Liu, Y., Zhang, F., 2006. Metabolic characteristics of sea cucumber Apostichopus stichopus (Selenka) during aestivation. J. Exp. Mar. Biol. Ecol. 330: 505– 510.
    Yano Y, Nakayama A, Yoshida K. 1997. Distribution of polyunsaturated fatty acids in bacteria present in intestines of deep-sea fish and shallow-sea poikilothermic animals. Appl Environ Microbiol 63:2572–2577.
    Yingst, J. Y. 1976. The utilization of organic matter in shallow marine sediments by an epibenthic deposit feeding holothurian. J. exp. Mar. Biol. Ecol. 23: 55-69. Yokoe,Y., Yasumasu, I. 1964. The distribution of cellulose in invertebrates. Comp. Biochem. Physiol. 13: 323-338.
    Yoshida, K.I., Minami, Y., Nemoto, H., Numata, K., Yamanaka, E., 1992. Structure of DHG, a depolymerized glycosaminoglycan from sea cucumber, Stichopus japonicus. Tetrahedron Letts. 30: 4959-4962.
    Zhou, Y., Yang, H., Liu, S., Yuan, X., Mao, Y., Liu, Y., Xu, X., Zhang, F. 2006. Feeding and growth on bivalve biodeposits by the deposit feeder Stichopus japonicus Selenka (Echinodermata: Holothuroidea) co-cultured in lantern nets. Aquaculture 256: 510-520.
    Zihler, F., 1982. Gross morphology and configuration of digestive tracts of Cichlidae (Teleostei: Perciformes): Phylogenetic and functional significance. Neth. J. Zool. 32: 544-571.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700