活性碳纤维的制备及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
活性碳纤维(Activated Carbon Fibers,ACFs)以其微小的孔径尺寸、狭窄的孔径分布、大的比表面积和表面含氧、氮或其它官能团等优异的性能在污水处理、水深度净化、有机溶剂回收、气体净化、大容量双层电容器和燃料电池等方面得到了广泛的研究,被认为是新世纪最有发展前景的吸附功能材料。本文利用水蒸气钴盐催化活化制备活性碳纤维,通过改变活性碳纤维的制备工艺条件控制其孔径分布,分析了不同工艺条件对活性碳纤维电极电容器的性能影响;建立了活性碳纤维对甲苯动态吸附的测试方法,研究了不同孔径分布的活性碳纤维对甲苯的动态吸附性能以及脱附再生性能。主要工作如下:
     1、以通用级沥青碳纤维为原料经催化活化制备不同孔径分布的活性碳纤维。对比了未浸渍钴盐活化、浸渍钴盐活化并用稀酸清洗前后活性碳纤维的表面形态和孔结构及其孔径分布,分析了活化剂用量和活化时间对孔结构及其孔径分布的影响。研究结果表明,与未浸渍钴盐活化工艺相比,浸渍钴盐活化使得活性碳纤维表面大孔和中孔结构明显增加;经稀酸清洗后,表面孔隙结构更加丰富;改变活化剂用量可以控制孔径分布;延长活化时间在一定程度上可以提高比表面积,孔径分布保持不变。
     2、采用直流循环充放电、循环伏安(cyclic voltammogram,CV)以及交流阻抗表征了活性碳纤维电极电化学性能。组装成硬币式两电极模拟电容器测试其循环性能和漏电性能。电极性能的测试结果表明,浸渍钴盐活化并用稀酸清洗所得活性碳纤维电极的比电容高达197F·g~(-1),较未浸渍钴盐活化样品提高50%。在1500mA·g~(-1)的条件下充放电,其比电容为163F·g~(-1);经2000次循环后电容量提高了23%。
     3、采用连续进样气相色谱法测定活性碳纤维对甲苯的动态吸附。研究了相同条件下不同比表面积活性碳纤维开始穿透时间、饱和吸附量与比表面积之间的关系,并与间歇进样气相色谱法进行了比较。研究结果表明,活性碳纤维对甲苯的吸附量与其比表面积之间有很好的相关性。开始穿透时间和活性碳纤维比表面积之间也存在相关性,在一定程度上可作为表征活性碳纤维比表面积差异的指标之一。与间歇进样气相色谱法相比,连续进样气相色谱法操作简单,可高效、快速测定活性碳纤维的穿透曲线,而且更能精确的描述穿透曲线。
     4、研究了不同孔径分布的活性碳纤维动态吸附甲苯的性能和活性碳纤维对不同浓度甲苯的吸附性能,分析了活性碳纤维孔径分布开始穿透时间和动态吸附量的影响。研究结果表明,甲苯分压很低时,活性碳纤维对甲苯动态吸附量可以达到最大吸附量的80%以上;活性碳纤维对甲苯的动态吸附量与活性碳纤维的比表面积有很好的一致性;钴盐催化活化所制得的活性碳纤维对甲苯最高吸附量达1250mg·g~(-1),20次循环吸附脱附再生时对甲苯动态吸附量仍保持在900mg·g~(-1)以上。
Activated carbon fibers (ACFs) are widely used in sewage treatment, water purification, organic solvent recycling, gas purification, electrode of super-capacitor, fuel cell and so on, due to their small pore size and narrow pore-size distribution, high specific surface area and abundant functions, and so ACFs are thought as promising materials in the domain of adsorption and separation in this century. In this study, ACFs were prepared from general pitch-based carbon fibers by catalytic activation method, and how to control the pore-size by varing preparation process conditions was researched. The capacitance proformance of the resultant ACFs were studied, and a method was introduced to test the dynamic adsorption of toluene on ACFs. The adsorption and regeneration properties of different pore-size ACFs were analized. The major work is as following:
     1. Activated carbon fibers were prepared from general pitch-based carbon fibers by catalytic activation method. The surface morphology of resultant activated carbon fibers before and after diluted acid washing as well as activated carbon fibers without cobalt immersion was observed with SEM, and their difference was investigated. The results showed that the surface of carbon fibers activated with cobalt immersion have more mesopores and macropores than the one without cobalt immersion. More abundant pore structure was obtained by washing the fibers with diluted acid. The specific surface area of activated carbon fibers was increased by prolonging the activate time, but the pore-size of ACFs was not broadened.
     2. Electrochemical performance of activated carbon fibers as electrodes of super capacitors were characterized by galvanostatic measurements, cyclic voltammograms and AC impedance spectrum analysis. The electrode performance showed that the specific capacitance of activated carbon fibers washed with diluted acid was 197F·g~(-1), 50% higher than that of the one without cobalt immersion. At the current density of 1500mA·g~(-1), specific capacitance reached 163F·g~(-1), and after 2000 DC charge/discharge cycles, the specific capacitance increased by 23%. Carbon fibers activated with cobalt immersion and washed with diluted acid would be promising electrode materials for super-capacitors.
     3. Continuous sample introduction on GC method was used to test dynamic adsorption of toluene on ACFs. The relationship of breakthrough time, adsorption amount of toluene and specific surface area of activated carbon fibers under the same adsorption condition was analyzed, and comparison was made with interval sample introduction method. The results showed that the adsorption amount of toluene was well related with the specific surface area of activated carbon fibers. The breakthrough time also had a good relationship with specific surface area of activated carbon fibers, and it could be used as one index to characterize the difference of specific surface area. Compared with interval sample introduction method, continuous sample introduction method was very simple to operate, and it was a high efficienct and quick way to test the breakthrough curve of activated carbon fibers, which could describe the breakthrough curve finely.
     4. The dynamic adsorption of toluene on differnt ACFs and the dynamic adsorption of toluene under different concentration were researched. The results showed that the dynamic adsorption of toluene was 80% of the saturation under low toluene concentration. The adsorption amount of toluene was well related with the specific surface area of activated carbon fibers. The dynamic adsorption of toluene was as high as 1250mg·g~(-1) on the ACFs which was preparation by catalytic activation method. The dynamic adsorption of toluene can keep 900mg·g~(-1) after 20 cycles.
引文
[1]Conway B E.Transition from "supercapacitor" to "battery" behavior in electrochemical energy storage[J].J Electrochem Soc,1991,138(7):1539-1543.
    [2]Sarangapan I S,Tilak B V,Chen C P.Materials for electrochemical capacitors[J].J Electrochem Soc,1996,143(11):3791-3799.
    [3]Rudge A,Raistrick I,Gofl Esfelds,et al.A study of the electrochemical properties of conducting polymers for application in electrochemical capacitors[J].Electrochimica Acta,1994,39(2):273-283.
    [4]Rudge A,Devey J,Raistrick,et al.Conducting polymers as active materials in electrochemical capacitors[J].J Power Sources,1994,47(1-2):89-107.
    [5]Zheng J P,Huang J,Jow T R.The limitations of energy density for electrochemical capacitors [J].J Electrochem Soc,1997,144(6):2026-2031.
    [6]Conway B E,Birss V,Woj Towicz J.The role and untilizations of pseudocapacitors for energy storage by supercapacitors[J].J Power Sources,1997,66(4):1-14
    [7]Zheng J P,Cygan P J,Jow T R.Hydous ruthenium oxide as an electrode material for electrochemical capacitors[J].J Electrochem Soc,1995,142(8):2699-2703.
    [8]Liu K C,Anderson M A.Porous nickel oxide/nickel films for electrochemical capacitors[J].J Electrochem Soc,1996,143(1):124-130.
    [9]Bars A J,Faul Kner L R.Electrochemical methods-fundamentals and applications[M].New York:John Wiley & Sons Inc,1980:100-103.
    [10]Raistrick D.Electrochemistry of semiconductors and electronics-processes and devices[M].Park Ridge:Noyes Publications,1992:297-298.
    [11]Zheng J P,Jow T R.A new charge storage mechanism for electrochemical capacitors[J].J Electrochem Soc,1995,142(1):L6-L8.
    [12]Li-Ming Huang,Hong-Ze Lin,Ten-Chin Wen,A Gopalan.Highly dispersed hydrous ruthenium oxide in poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid)for supercapacitor electrode[J].Electrochimica Acta,2008,52(3):1058-1063.
    [13]Mayer S T,Pekala R W,Kaschimitter J L.The Aerocapacitor:an electrochemical double layer energy-storage device[J].J Electrochem Soc,1993,140(2):446-451.
    [14]Chu X,Kinoshitak K.Modifications of carbonaceous materials for supercapacitors in electrochemical capacitors/1995[J].The Electrochemical Society Proceedings Series[C].1996,40(2):170-175.
    [15]杨红生,周啸,冯天富,汤孝平.电化学电容器最新研究进展[J].电子元件与材料,2003,22(2):14-18.
    [16]Elzbieta F,Francois B.Carbon materials for the electrochemical storage of energy[J].Carbon,2001,39(2):937-950.
    [17]Matsuda Y.Materials and electrochemical performance of electric double layer capacitors[J].Function & Materials,1999,19(8):43-49.
    [18]Junji T,Yukari K,Mitsuyoshi K.Development of high-power electric double-layer capacitor[J].NEC Res& Delvelop,1995,36(1):193-198.
    [19]Deyang Qu,Hang shi.Studies of activated carbons used in double-layer capacitors[J].J of Power Sources,1998,109(2):99-107.
    [20]A lvarez,S,et al.Electrochemical capacitor performance of mesoporous carbons obtained by temp rating technique[J].Carbon,2005,43(4):866-870.
    [21]Nishino A.Activated carbon fibers used in double-layer capacitors[J].TANSO,1988,132(2):57-72.
    [22]Hsieh Chiento,Teng Hsisheng.Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics[J].Carbon,2002,40(5):667-674.
    [23]孟庆函,刘玲,等.超级电容器用复合碳极板电极的电化学性能[J].电源技术,2004,(7):405-407.
    [24]Yang Chun-Mo,el at.,Electrochemical performances of electric double layer capacitor with UV-cured gel polymer electrolyte based on poly-poly blend[J].ectrochimica Acta,2005,3(1):1813-1819.
    [25]Qu D,Shi H.Studies of activated carbons used in double-layer capacitors[J].J Power Sources,1998,74(2):99-107.
    [26]Kinoshita Kim,Xi Chu.Carbon for supercapacitors in electrochemical capacitors/1995[A].The Electrochemical Society Proceedings Series[C].Pennington,1996,(11):135-140.
    [27]Gamby J.Studies and characterization of various activated carbons used for carbon/carbon supercapacitors[J].J of Power Sources,2001,101(2):109-116.
    [28]胡刘平,邓梅根,杨朝帮,张治安.高吸附性能的活性炭研制及其在双电层电容器中的应用[J].四川林业科技,2004,28(2):78-81.
    [29]Jinwoo Lee,Onghun Taechwan Hyeon,et al.Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors[J].Chem.Comm.[C],1999.(11):2177-2178.
    [30]Sochi Shiraishi,Hideyuki Kurihara,Asaooya.Preparation and electric double layer capacitance of mesoporous carbon[J].Carbon.,2001,1(3):133-137.
    [31]Nakagawa H,Shudo A,Miura k.High-capacity electric double-layer capacitor with high-density-activated carbon fibers electrodes[J].J Electroche mical society,2000,147(1):38-42.
    [32]Takeda T,Endo M.Development and application of electric double-layer capacitor with sulfuric acid electrolyte[J].TANSO,1999,189(2):179-187.
    [33]邓梅根,张治安,胡永达,等.双电层电容器电极材料最新研究进展[J].碳素技术,2003,(4):25-30.
    [34]Urhaniczky C,Lundstrornk.The influence of paste composition in electrode capacity and kinetics[J].J Electronal.Chem.,1984,176(1-2):169-182.
    [35]Yau-Ren Nian,Hsisheng Teng.Nitric acid modification of activated carbon electrodes for improvement of electrochemical capacitance[J].ESC,2002,149(8):A1008-A1014.
    [36]刘亚敏,付智娟.可挥发有机物治理技术及研究进展[J].江西化工,2006,(1):23-26.
    [37]汪明光,陈湛.活性碳纤维吸附甲苯废气的中试研究[J].化工设计通讯,2000,26(1):36-40.
    [38]古可隆.活性炭的应用(一)[J].林产化工通讯,1999,(4):37-40.
    [39]王鹏,张海禄.表面化学改性吸附用活性炭的研究进展[J].碳素技术,2003,(3):23-28.
    [40]Chiang H L,Huang C P,Chiang P C,et al.Effect of metal additives on the Physico-chemical characteristics of activated carbon exemplified by benzene and acetic acid adsorption[J].Carbon,1999,37(12):1919-1928.
    [41]丛广民,曾汉民,邝旋英,等.表面酸性含氧官能团的含量对活性碳纤维性能的影响[J].合 成纤维工业,1985,(2):1-4.
    [42]张丽丹,赵晓鹏,马群,王琪,郭坤敏.改性活性炭对苯废气吸附性能的研究[J].新型炭材料,2002,17(2):41-44.
    [43]朱水兰,周立.活性炭对四氯化碳蒸气吸附机理的研究[J].林产化工通讯.1995,(4):19-21.
    [44]刘福生,彭同江.工业蛭石的酸处理、热处理及其有机气体吸附[J].中国非金属矿工业导报,1998,(1):21-23.
    [45]Pires Joao,Pinto Moises,Cvaralho Ana,Brotasde CavralhoM.Adsoprtion of acetone,methyl ethyl ketone,1,1,1-trichloroehtane,and trichloroethylene in granular actived carbons[J].J of Chemical and Engineering Data,2003,48(2):416-420.
    [46]罗宏慧,朱质彬,申永浩.活性炭共吸附现象对有机蒸气穿透容量的影响[J].哈尔滨工业大学学报,1997,29(5):101-104.
    [47]高华生,王大晕,叶芸春.空气湿度对低浓度有机蒸气在活性炭上吸附平衡的影响[J].环境科学学报,2002,22(2):194-198.
    [48]Cal Mark P,Rood Mark J,Larson Susan M.Removal of VOCs from humidified gas streams using activated carbon cloth[J].Gas Separation & Purification,1996,10(2):117-121
    [49]李立清.活性炭C40/4吸附甲苯和丙酮吸附性能研究[J].湖南大学学报.2003,30(5):47-50.
    [50]王玉红.PTA生产中挥发性有机物在活性炭上的动态吸附研究[D].南京工业大学:南京工业大学化工学院,2003.
    [51]Huang Meiehiung.Pore-size effects on activated-carbon capacities for volatile organic compound adsorption[J].AIChE J,2002,48(8):1804-1810
    [52]胡涛,马正飞,姚虎卿.吸附热预测吸附等温线[J].南京工业大学,2002,24(3):34-38.
    [53]高尚愚,陈维译.活性炭基础与应用[M].碳素材料学会编:中国林业出版社,1984:178-207.
    [54]宁平,陈亚雄,谷俊杰.固定床吸附器水蒸气解吸过程研究[J].化学工程,2000,28(5):15-17.
    [55]David L T.Polit Seale study and Design of a granular activated carbon regeneration process using supercritical fluids[J].Environ Porg,1993,12(3):208-211.
    [56]Dobrevski I.Biologieal regeneration of activated carbon[J].Wat Sci Teeh,1998,21(3):141-143.
    [57]秦玉春,王海涛,朱海哲.活性炭的再生方法[J].碳素技术,2001,(6):29-31.
    [58]G M Jenkins,K Kawamura.Polymer Carbon-Carbon Fibers,Glass and Char[M].England:Cambridge university press,1976:167-184.
    [59]H Teng,J-A Ho,Y-F Hsu.Preparation of activated carbon from bituminous coals with CO_2activation-Influence of coal oxidation[J].Carbon,1997,35(2):175-283.
    [60]T Wigrnans.Industrial aspects of production and use of activated carbons[J].Carbon,1989,27(1):13-22.
    [61]P L Walker.Production of activated carbons:use of CO_2 versus H_2O as activating agent[J].Carbon,1996,34(10):1297-1299.
    [62]J M Valente Nabais,A Mouquinho,C Galacho,P J M Carrott,M M L Pobeiro Carrott.In vitro adsorption study of fluoxetine in activated carbons and activated carbon fibres[J].Fuel Processing Technology,2008,89(5):167-184.
    [63]Lance P,POst,Douglas P Harrison.Surface area and pore development during lignite activation [J].Fuel,1985,64(3):291-296.
    [64]A Linares-Solano,C Salinas-Martinez de Lecea,D Cazorla-Amoros,I Martin-Gullon.Porosity development during CO_2 and steam activation a fluidized bed reactor[J].Energy & Fuels,2001, 14(1):142-149.
    [65]H Kuhl,M M Kashani-Motlagh,H-J Muhlen and K H van Heek.Controlled gasification of different carbon material and development of pore structure[J].Fule,1992,71(8):879-882.
    [66]F Rodriguez-Reinoso,M Molina-Sabio,M T Gonzalez.The use of steam and CO_2 as activating agents in the preparation of activated carbons[J].Carbon,1995,33(1):15-23.
    [67]Walker P L Jr,Austin L G;Nandi N P,Chemistry and physics of carbon[M].EDSPA Thrower,New York:Marcel Dekker,Ine,1966:257.
    [68]S K Ryu,H JinD Gondy,N Pusset,P Ehrburger.Activation of carbon fibers by steam and carbon dioxide[J].Carbon,1993,31(5):841-842.
    [69]王增辉,高晋生.碳素材料[M].上海:华东化工学院出版社,1991:227.
    [70]Ishii C,Suzuki T,Shindo N,Kaneko K.J porous Mater[J],1997,4(3):181-187.
    [71]J C Bokros,R J Price.Deformation and fracture of pyrolytic carbons deposited in a fluidized bed [J].Carbon,1966,3(4):503-504.
    [72]H A Mackay.The influence of polymer structure on the conversion of synthetic resins to carbon-coke[J].Carbon,1970,8(1):517-526.
    [73]S K Verma,P L walker.Preparation of carbon molecular sieves by propylene pyropysis over microporous carbon[J].Carbon,1992,30(6):829-836.
    [74]S N Vyas,S R patwardhan,Bathula gangadhar.Carbon molecular sieves from bituminous coal by controlled coke deposition[J].Carbon,1992,30(40):605-612.
    [75]Yuji Kawabuchi,Hidetoshi Oka,Shizuo Kawano,Isao Mochida,Noriko Yoshizawa.The modification of pore size in activated carbon fibers bu chemical vapor deposition and its effects on molecular sieve selectivity[J].Carbon,1998,36(3):377-382.
    [76]Y Kawabuchi,S Kawano,I Mochida.Molecular sieving selectivity of active carbons and active arbon fibers Improved by chemical vapour deposition of benzene[J].Carbon,1996,34(5):711-717.
    [77]Liu Zhichang,Ling Licheng,Qiao Wenming,Lu chunxiang,Liu lang.Preparation of pitch-based spherical activated carbon with high ratio of mesoporous using chemical vapor deposition method[J].J Mter Sci lett,2000,19(2):87-90.
    [78]H Marsh,B Rand.The process of activation of carbon by gasification with CO_2-Ⅱ the role of catalytic impurities[J].Carbon,1971,9(1):63-72.
    [79]Marsh H,Diez MA,Kuo K.Fundamental issues in control of carbon gasification reactivity[M].In:Lahaye J,Ehrburgor P,Editor,Kluwer Academic,Netherlands,1991:205.
    [80]Freeman J J,Gimblett F G R,Roberts R A.Studies of cativated charcoal cloth mesopore development induced by phosphate impregnates[J].Carbon,1988,26(3):7-13.
    [81]A Oya,S Yoshida.Formation of mesopores in phenolic resin-derived carbon fibers by catalytic activation using cabalt[J].Carbon,1995,33(8):1085-1090,
    [82]A Oya,S Yoshida.Preparation and properties of an antibacterial activated carbon fibers containing mesopores[J].Carbon,1996,34(1):53-57.
    [83]N Yoshizawa,Y Yamada,T Furuta,M Shiraishi,S Kojima,H Tamai,H Yasuda.Coal-based activated carbons prepared with organometallics and their mesoporous structure[J].Energy &Fuels,1997,11(2):327-330.
    [84]K P Gadkaree,M Jaroniec.Pore structure development in activated carbon honeycombs[J].Carbon,2000,38(7):983-993.
    [85]Zhichang Liu,Licheng Ling,Wenming Qiao,Lang Liu.Preparation of pitch-based spherical activated carbon with developed mesopore by the ferrocene[J].Carbon,1999,37(4):663-667.
    [86]Zhichang Liu,Licheng Ling,Wenming Qiao,Chunxiang Lu,Dong Wu,Lang Liu.Effects of various metals and their loading methods on the mesopore formation in pitch-based spherical activated carbon[J].Carbon,1999,37(8):1333-1335.
    [87]Zhonghua Hu,M P Srinivasan,Yarning Ni.Novel activation process for preparing highly microporous and mesoporous activated[J].Carbon,2001,39(6):877-886.
    [88]Ozaki J,EndoN,OhizumiW,IgarashiK,Nakahara M,Oya A.Novel preparation method for the production of mesoporous carbon fibers from polymer blend[J].Carbon,1997,35(7):1031-1033.
    [89]Jun-bing Yang,Li-cheng Ling,Lang Liu,Fei-yu Kang,Zheng-hong Huang,Hui Wu.Preparation and properties of phenolic resin-based activated carbon spheres with controlled pore size distribution[J].Carbon,2002,40(6):911-916.
    [90]Kamegawa K,Yoshida H.Preparation and characterization of swelling porous carbon beads[J].Carbon,1997,35(5):631-639.
    [91]Hsising Teng,Sheng-Chi Wang.Preparation of porous carbon from phenol-formaldehyde resins with chemical and physical activation[J].Carbon,2000,38(6):817-824.
    [92]A G Pandolfo,A F Hollenkarnp.Carbon properties and their role in supereapacitors[J].J of Power Sources,2006,157(1):11-27.
    [93]田艳红,王海滨.由碳还原KMnO_4制备氧化锰/碳超级电容材料[J].北京化工大学学报,2007,34(2):150-153.
    [94]张学军,范国强,韩春旭,等.活性碳纤维的氧化处理研究[J].环境污染治理技术与设备,2005,6(10):57-61.
    [95]Doron Kaplan,Ido Nir,Liora Shmueli.Effects of high relative humidity on the dynamic adsorption of dimethyl methylphosphonate(DMMP)on activated carbon[J].Carbon,2006,44(8):3247-3254.
    [96]Franc,oise Couenne,Christian Jallut,Melaz Tayakout-Fayolle.On minimal representation of heterogeneous mass transfer for simulation and parameter estimation:Application to breakthrough curves exploitation[J].Computers and Chemical Engineering,2005,30(1):42-53.
    [97]Ruth Ubago-Perez,Francisco Carrasco-Marin,David Fairen-Jimenez,Carlos Moreno-Castilla.Granular and monolithic activated carbons from KOH-activation of olive stones[J].Microporous and Mesoporous Materials,2006,92(1-3):64-70.
    [98]Vivekanand Gaur,Ashutosh Sharma,Nishith Verma.Catalytic oxidation of toluene and m-xylene by activated carbon fibers impregnated with transition metals[J].Carbon,2005,43(15):3041-3053.
    [99]S Lucas,M P Calvo,C Palencia,M J Cocero.Mathematical model of supercritical CO_2adsorption on activated carbon Effect of operating conditions and adsorption scale-up[J].J of Supercritical Fluids,2004,32(1-3):193-201.
    [100]A Claudino,J L Soares,R F P M Moreira,H J Jose.Adsorption equilibrium and breakthrough analysis for NO adsorption on activated carbons at low temperatures[J].Carbon,2004,42(8-9):1483-1490.
    [101]R Murillo,T Garcia,E Ayl6n,M S Callen,M V Navarro,J M Lepez,A M Mastral.Adsorption of phenanthrene on activated carbons:Breakthrough curve modeling[J].Carbon,2004,42(8-9):2009-2017.
    [102]贾晓东,金锡鹏.我国有机溶剂危害的现状和预防[J].中华劳动卫生职业病杂志,2000,18 (2):65-67.
    [103]Wypychg.溶剂手册[M].北京:中国石化出版社,2002:169-187.
    [104]刘守新,王岩,郑文超.活性炭再生技术研究进展[J].东北林业大学学报,2001,29(3):61-63.
    [105]田振英.单点校正法在气相色谱分析中的应用[J].山西化工,2006,26(5):65-66
    [106]姚允斌,解涛,高英敏.物理化学手册[M].上海科学技术出版社,1985,614-631

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700