LRIG1对人脑胶质瘤细胞增殖及放疗敏感性的影响及其机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:采用脂质体转染质粒的方法上调人脑胶质瘤细胞中LRIG1基因的表达,探讨LRIG1基因对人脑胶质瘤细胞细胞周期、凋亡率、DNA损伤修复、细胞增殖及放疗敏感性的影响及其可能的作用机制。
     方法:通过脂质体介导的方法转染含有LRIG1基因的质粒进入人脑胶质瘤U251细胞,得到高表达LRIG1的瞬时转染细胞。通过G418筛选并建立稳定表达LRIG1的细胞株。采用Western Blot及RT-PCR方法检测细胞中LRIG1、P27、Bax、 Bcl-2及Rad51基因或蛋白表达的变化。CCK-8法测定细胞生长抑制率。细胞染色后流式细胞仪测定其细胞周期分布及凋亡率。克隆形成实验检测细胞放疗敏感性。彗星分析试验检测细胞放疗前后DNA损伤的修复。
     结果:成功建立稳定表达LRIG1细胞株,荧光显微镜下可见细胞表达绿色荧光蛋白,其LRIG1蛋白表达量高于空载体对照组(P<0.05)。转染含LRIG1质粒后,人脑胶质瘤细胞LRIG1mRNA表达上调(P<0.05)。LRIG1基因显著抑制了人脑胶质瘤细胞的增殖,转染LRIG1基因72h后较未转染的U251细胞的细胞增殖抑制率为26.4%。LRIG1上调了细胞周期调控蛋白P27的表达(P<0.01),相对于对照组未转染细胞的处于GO/G1期的细胞比率(38.5±2.1)%, LRIG1高表达组处于GO/G1期的细胞比率增加到(61.2±3.1)%,差异具有统计学意义(P<0.01),从而LRIG1降低了细胞增殖指数。LRIG1上调了细胞中促凋亡蛋白Bax的表达(P<0.05),同时显著降低了凋亡抑制蛋白Bcl-2的表达(P<0.01), LRIG1高表达组的细胞凋亡率为(16.6±0.8)%,与对照组未转染细胞的(8.8±0.3)%相比,凋亡率显著增高(P<0.01)。而克隆形成实验证明LRIG1显著增强了人脑胶质瘤细胞的放疗敏感性,其放射增敏比为1.448。而在放疗前及放疗后LRIG1均显著抑制了细胞中DNA损伤修复蛋白Rad51的表达,其差异均具有统计学意义(P<0.01,P<0.01),而彗星分析显示放射治疗后LRIG1抑制了人脑胶质瘤细胞的DNA损伤修复(P<0.05)。
     结论:实验成功建立了稳定表达LRIG1蛋白的人脑胶质瘤U251细胞系。LRIG1通过上调细胞周期调控蛋白P27的表达,上调处于GO/G1期的人脑胶质瘤细胞比率,从而抑制细胞生长。LRIG1通过调控凋亡相关蛋白Bax, Bcl-2的表达,促进人脑胶质瘤细胞凋亡。LRIG1可降低人脑胶质瘤细胞放射治疗前后DNA损伤修复蛋白Rad51的表达,从而降低放疗前后细胞DNA损伤的修复,最终导致细胞死亡。因此,LRIG1能够抑制人脑胶质瘤细胞生长并增强其放疗敏感性,对人脑胶质瘤具有治疗作用,实验为LRIG1应用于人脑胶质瘤临床治疗提供了新的依据。
Objective:To up-regulate LRIG1gene expression in human glioma cells with liposomal transfection. To investigate the effect and mechanism of LRIG1gene on the cell cycle, apoptosis, DNA repair, cell proliferation and radiosensitivity of human glioma cells.
     Methods:Got the LRIG1overexpression human glioma U251cells by the method of liposome-mediated transiently transfection. Selected and set up a stable LRIG1overexpression cell line by G418. Detected the changes of LRIG1, P27, Bax, Bcl-2and Rad51expression in the cells with Western blot or RT-PCR. The cell growth inhibition rate was detected by CCK-8method. The cell cycle distribution and apoptosis rate were detected by flow cytometry after staining. The cell radiosensitivity was detected by clonogenic assay. The repairment of DNA damage before and after radiation were detected by comet assay method. Results:The LRIG1line was set up successfully. There was expression of green fluorescent protein in the LRIG1over-expression U251cells, observed by the fluorescence microscope. The expression of LRIG1protein in the stable LRIG1overexpression cell line was higher than the blank vector control cell line (P<0.05). Transiently transfected with plasmid encoding LRIG1protein, the expression of LRIG1mRNA in human glioma cells was increased (P<0.05). The over-expression of LRIG1significantly inhibited the proliferation of human glioma cells. After transfected with the LRIG1gene72hours, the inhibition rate of cell proliferation was up to26.4%. The over-expression of LRIG1up-regulated the expression of cell cycle inhibitor P27(P<0.01) and increasd the cell ratio of G0/G1phase from (38.5±2.1)%to (61.2±3.1)%(P<0.01). Thus the cell proliferation index was reduced by the over-expression of LRIG1. The over-expression of LRIG1increased the expression of pro-apoptotic protein Bax (P<0.05), while significantly reducd the expression of anti-apoptotic protein Bcl-2(P<0.01). Compared with (8.8±0.3)%of the control group, the cells apoptosis rate of the LRIG1over-expression group was up-regulated to (16.6±0.8)%(P<0.01). The radiosensitivity of human glioma cells was significantly enhanced by the over-expression of LRIG1in the clonogenic assay. The SER was1.448. DNA repair protein Rad51was significantly inhibited by LR1G1before and after radiation(P<0.01, P<0.01). The DNA damage repairment of human glioma cells was inhibited by LRIG1in the comet assay(P<0.05).
     Conclusion:The human glioma U251cell line stably expressing LRIG1protein was successfully set up in the experiment. The cell cycle inhibitor P27was up-regulated by the LRIG1overexpression. The the ratio of human glioma cells in the G0/G1phase was increased, and then cell growth was inhibited. The overexpression of LRIG1promoted the apoptosis of human glioma cells by the up-regulation of pro-apoptotic protein Bax and the down-regulation of anti-apoptotic protein Bcl-2. The expression of DNA repair protein Rad51was inhibited by the overexpression of LR1G1in human glioma cells before and after radiation, and then the repairment of DNA damage before and after radiotherapy was down-regulated. In summary, LRIG1can suppress the proliferation and enhance the radiosensitivity of human glioma cells. The research provided new evidences for the clinical application of LRIG1treating human gliomas.
引文
[1]Wara W, Bauman G, Sneed P, et al. Brain, brain stem and cerebellum[J]. Principles and practice of radiation oncology Philadelphia:Lippincott-Raven,1997:777"C828.
    [2]张永禄,杨天恩,殷蔚伯,等.神经系统肿瘤[B].肿瘤放射治疗学,1993.
    [3]Walker MD, Green SB, Byar DP, et al. Randomized comparisons of radiotherapy and nitrosoureas for the treatment of malignant glioma after surgery[J]. New England Journal of Medicine,1980,303(23):1323-1329.
    [4]Mahaley Jr MS, Mettlin C, Natarajan N, et al. National survey of patterns of care for brain-tumor patients[J]. Journal of neurosurgery,1989,71(6):826-836.
    [5]Shinojima N, Tada K, Shiraishi S, et al. Prognostic value of epidermal growth factor receptor in patients with glioblastoma multiforme[J]. Cancer research,2003,63(20):6962.
    [6]Hegi ME, Diserens AC, Gorlia T, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma[J]. New England Journal of Medicine,2005,352(10):997-1003.
    [7]Lamszus K, Laterra J, Westphal M, et al. Scatter factor/hepatocyte growth factor (SF/HGF) content and function in human gliomas[J]. International journal of developmental neuroscience, 1999,17(5-6):517-530.
    [8]Abounader R, Laterra J. Scatter factor/hepatocyte growth factor in brain tumor growth and angiogenesis[J]. Neuro-oncology,2005,7(4):436-451.
    [9]Ullrich A, Schlessinger J. Signal transduction by receptors with tyrosine kinase activity[J], Cell, 1990,61 (2):203-212.
    [10]Kang C, Zhang Z, Jia Z, et al. Suppression of EGFR expression by antisense or small interference RNA inhibits U251 glioma cell growth in vitro and in vivo[J]. Cancer gene therapy, 2006,13(5):530-538.
    [11]Kefas B, Godlewski J, Comeau L, et al. microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma[J]. Cancer research,2008, 68(10):3566.
    [12]Welsh JW, Mahadevan D, Ellsworth R, et al. The c-Met receptor tyrosine kinase inhibitor MP 470 radiosensitizes glioblastoma cells[J]. Radiation Oncology,2009,4(1):69.
    [13]Laederich MB, Funes-Duran M, Yen L, et al. The leucine-rich repeat protein LR1G1 is a negative regulator of ErbB family receptor tyrosine kinases[J]. J Biol Chem.2004,279(45): 47050-47056.
    [14]Yi W, Ye F, Guo D, et al. Expression and significance of LRIG1 gene in human astrocytomas[J]. The Chinese-German Journal of Clinical Oncology,2005,4(4):225-228.
    [15]Gur G, Rubin C, Katz M, et al. LRIG1 restricts growth factor signaling by enhancing receptor ubiquitylation and degradation[J]. The EMBO Journal,2004,23(16):3270-3281.
    [16]Shattuck DL, Miller JK, Laederich M, et al. LRIG1 is a novel negative regulator of the Met receptor and opposes Met and Her2 synergy[J]. Mol Cell Biol,2007,27(5):1934-1946.
    [17]叶飞,郭东升,牛洪泉,等.LRIG1 cDNA诱导人胶质瘤细胞系H4凋亡的分子机制[J].癌症,2004,23(10):1149-1154.
    [18]叶尽,王宝峰,谢蕊繁,等LRIG1过表达对神经胶质瘤细胞EGFR信号传导的抑制作用[J].中华神经外科杂志,2010,26(1):4.
    [19]Nieder C, Adam M, Molls M, et al. Therapeutic options for recurrent high-grade glioma in adult patients:recent advances[J]. Critical reviews in oncology/hematology,2006,60(3):181-193.
    [20]Aoki T, Hashimoto N, Matsutani M. Management of glioblastoma[J].2007.
    [21]Segatto O, Anastasi S, Alerna S. Regulation of epidermal growth factor receptor signalling by inducible feedback inhibitors[J]. J Cell Sci,2011,124(Pt 11):1785-1793.
    [22]Nilsson J, Vallbo C, Guo D, et al. Cloning, characterization, and expression of human LIG1[J]. Biochemical and Biophysical Research Communications,2001,284(5):1155-1161.
    [23]Hedman H, Henriksson R. LRIG inhibitors of growth factor signalling-double-edged swords in human cancer?[J]. European Journal of Cancer,2007,43(4):676-682.
    [24]Kapoor GS, O'Rourke DM. Receptor tyrosine kinase signaling in gliomagenesis:pathobiology and therapeutic approaches[J]. Cancer Biol Ther,2003,2(4):330-342.
    [25]Zhang Y, Wang J, Liu F, et al. EGFR inhibitor C 225 increases the radiosensitivity of human lung squamous cancer cells[J]. Cancer Cell International,2010,10(l):39.
    [26]Peng D, Fan Z, Lu Y, et al. Anti-epidermal growth factor receptor monoclonal antibody 225 up-regulates p27KIP1 and induces G1 arrest in prostatic cancer cell line DU145[J]. Cancer research,1996,56(16):3666.
    [27]Penne K, Bohlin C, Schneider S, et al. Gefitinib (Iressa, ZD1839) and tyrosine kinase inhibitors: the wave of the future in cancer therapy[J]. Cancer Nurs,2005,28(6):481-486.
    [28]Vara JAF, Casado E, de Castro J, et al. P13K/Akt signalling pathway and cancer[J]. Cancer treatment reviews,2004,30(2):193-204.
    [29]Brandes AA, Franceschi E, Tosoni A, et al. Epidermal growth factor receptor inhibitors in neuro-oncology:hopes and disappointments[J]. Clinical cancer research,2008,14(4):957-960.
    [30]McLendon RE, Halperin EC. Is the long-term survival of patients with intracranial glioblastoma multiforme overstated?[J]. Cancer,2003,98(8):1745-1748.
    [31]Deimling A, Ammon K, Schoenfeld D, et al. Subsets of glioblastoma multiforme defined by molecular genetic analysis[J]. Brain Pathology,1993,3(1):19-26.
    [32]Louis DN. The p53 gene and protein in human brain tumors[J]. Journal of neuropathology and experimental neurology,1994,53(1):11.
    [33]O'Brien SG, Guilhot F, Larson RA, et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia[J]. New England Journal of Medicine,2003,348(11):994-1004.
    [34]Kantarjian HM, Cortes JE, O'Brien S, et al. Imatinib mesylate therapy in newly diagnosed patients with Philadelphia chromosome-positive chronic myelogenous leukemia:high incidence of early complete and major cytogenetic responses[J]. Blood,2003,101(1):97-100.
    [35]Sibilia M, Kroismayr R, Lichtenberger BM, et al. The epidermal growth factor receptor:from development totumorigenesis[J]. Differentiation,2007,75(9):770-787.
    [36]O'Brien SG, Vieira SAD, Connors S, et al. Transient response to imatinib mesylate (ST1571) in a patient with the ETV6-ABL t (9; 12) translocation[J]. Blood,2002,99(9):3465-3467.
    [37]Roskoski Jr R. Protein prenylation:a pivotal posttranslational process[J]. Biochemical and Biophysical Research Communications,2003,303(1):1-7.
    [38]Robinson DR, Wu YM, Lin SF. The protein tyrosine kinase family of the human genome[J]. Oncogene,2000,19(49):5548-5557.
    [39]Cortes JE, Talpaz M, Kantarjian H. Chronic myelogenous leukemia:a review[J]. The American journal of medicine,1996,100(5):555-570.
    [40]Kantarjian HM, Talpaz M, O'Brien S, et al. Dose escalation of imatinib mesylate can overcome resistance to standard-dose therapy in patients with chronic myelogenous leukemia[J]. Blood, 2003,101(2):473-475.
    [41]Zundel W, Schindler C, Haas-Kogan D, et al. Loss of PTEN facilitates HIF-1-mediated gene expression[J]. Genes & development,2000,14(4):391-396.
    [42]Cheney IW, Johnson DE, Vaillancourt MT, et al. Suppression of tumorigenicity of glioblastoma cells by adenovirus-mediated MMAC1/PTEN gene transfer[J]. Cancer research, 1998,58(11):2331.
    [43]Deininger MWN, O'Brien SG, Ford JM, et al. Practical management of patients with chronic myeloid leukemia receiving imatinib[J]. Journal of Clinical Oncology,2003,21(8):1637-1647.
    [44]Ye F, Gao Q, Xu T, et al. Upregulation of LRIG1 suppresses malignant glioma cell growth by attenuating EGFR activity[J]. J Neurooncol,2009,94(2):183-194.
    [1]Wara W, Bauman G, Sneed P, et al. Brain, brain stem and cerebellum[J]. Principles and practice of radiation oncology Philadelphia:Lippincott-Raven,1997:777'C828.
    [2]张永禄,杨天恩,殷蔚伯,等.神经系统肿瘤[J].主编肿瘤放射治疗学,1993.
    [3]Mangiola A, Anile C, Pompucci A, et al. Glioblastoma therapy:going beyond Hercules Columns[J]. Expert review of neurotherapeutics,2010,10(4):507-514.
    [4]Hedman H, Nilsson J, Guo D, et al. Is LRIG1 a tumour suppressor gene at chromosome 3p 14.3?[J].Acta Oncol,2002,41 (4):352-354.
    [5]Nilsson J, Vallbo C, Guo D, et al. Cloning, characterization, and expression of human LIG1[J], Biochemical and Biophysical Research Communications,2001,284(5):1155-1161.
    [6]Gur G, Rubin C, Katz M, et al. LRIG1 restricts growth factor signaling by enhancing receptor ubiquitylation and degradation[J]. The EMBO Journal,2004,23(16):3270-3281.
    [7]Nilsson J, Starefeldt A, Henriksson R, et al. LRIG1 protein in human cells and tissues[J]. Cell Tissue Res,2003,312(1):65-71.
    [8]Thomasson M, Hedman H, Guo D, et al. LRIG1 and epidermal growth factor receptor in renal cell carcinoma:a quantitative RT--PCR and immunohistochemical analysis[J]. Br J Cancer, 2003,89(7):1285-1289.
    [9]Tanemura A, Nagasawa T, Inui S, et al. LRIG-1 provides a novel prognostic predictor in squamous cell carcinoma of the skin:immunohistochemical analysis for 38 cases[J]. Dermatol Surg,2005,31 (4):423-430.
    [10]叶飞,郭东升,牛洪泉,等.LRTG1 cDNA诱导人胶质瘤细胞系H4凋亡的分子机制[J].癌症,2004,23(10):1149-1154.
    [11]叶飞,郭东升,易伟,等.过度表达LRIG1基因逆转人胶质瘤侵袭性的机制[J].中华实验外科杂志,2005,22(002):200-202.
    [12]刘红朝,谢蕊繁,蔡明俊,等.LRIG1基因抑制胶质瘤细胞生长的机制[J].中华实验外科杂志,2009(005):615-617.
    [13]Kolibaba KS, Druker BJ. Protein tyrosine kinases and cancer[J]. Biochimica et biophysica acta, 1997,1333(3):F217.
    [14]Hanahan D, Weinberg RA. The hallmarks of cancer[J]. Cell,2000,100(1):57-70.
    [15]Maher EA, Furnari FB, Bachoo RM, et al. Malignant glioma:genetics and biology of a grave matter[J]. Genes & development,2001,15(11):1311-1333.
    [16]Sibilia M, Kroismayr R, Lichtenberger BM, et al. The epidermal growth factor receptor:from development to tumorigenesis[J]. Differentiation,2007,75(9):770-787.
    [17]Bigner SH, Humphrey PA, Wong AJ, et al. Characterization of the epidermal growth factor receptor in human glioma cell lines and x.enografts[J]. Cancer research,1990,50(24):8017.
    [18]Wong AJ, Bigner SH, Bigner DD, et al. Increased expression of the epidermal growth factor receptor gene in malignant gliomas is invariably associated with gene amplification[J]. Proceedings of the National Academy of Sciences,1987,84(19):6899.
    [19]Noble M, Murray K, Stroobant P, et al. Platelet-derived growth factor promotes division and motility and inhibits premature differentiation of the oligodendrocyte/type-2 astrocyte progenitor ceil[J].1988.
    [20]Richardson WD, Pringle N, Mosley MJ, et al. A role for platelet-derived growth factor in normal gliogenesis in the central nervous system[J]. Cell,1988,53(2):309-319.
    [21]von Deimling A, Eibl RH, Ohgaki H, et al. p53 mutations are associated with 17p allelic loss in grade II and grade III astrocytoma[J]. Cancer research,1992,52(10):2987-2990.
    [22]Chung R, Whaley J, Kley N, et al. TP53 gene mutations and 17p deletions in human astrocytomas[J]. Genes, Chromosomes and Cancer,1991,3(5):323-331.
    [23]Yung W, Zhang X, Steck P, et al. Differential amplification of the TGF-alpha gene in human gliomas[J]. Cancer communications,1990,2(6):201.
    [24]易伟.LRIG1基因在人星形细胞瘤中的表达下调与意义[J].中华实验外科杂志,2005,22(6):1.
    [25]Xu Y, Tan LJ, Grachtchouk V, et al. Receptor-type protein-tyrosine phosphatase-K regulates epidermal growth factor receptor function[J]. Journal of Biological Chemistry, 2005,280(52):42694.
    [26]Tarcic G, Boguslavsky SK, Wakim J, et al. An unbiased screen identifies DEP-1 tumor suppressor as a phosphatase controlling EGFR endocytosis[J]. Current Biology,2009,19(21): 1788-1798.
    [27]Sorkin A, Goh LK. Endocytosis and intracellular trafficking of ErbBs[J]. Experimental cell research,2009,315(4):683-696.
    [28]Madshus IH, Stang E. Internalization and intracellular sorting of the EGF receptor:a model for understanding the mechanisms of receptor trafficking[J]. Journal of cell science,2009,122(19): 3433.
    [29]Scita G, Di Fiore PP. The endocytic matrix[J]. Nature,2010,463(7280):464-473.
    [30]Marmor MD, Yarden Y. Role of protein ubiquitylation in regulating endocytosis of receptor tyrosine kinases[J]. Oncogene,2004,23(11):2057-2070.
    [31]Pepper C, Hoy T, Bentley D. Bcl-2/Bax ratios in chronic lymphocytic leukaemia and their correlation with in vitro apoptosis and clinical resistance[J]. British Journal of Cancer, 1997,76(7):935.
    [32]Wu X, Fan Z, Masui H, et al. Apoptosis induced by an anti-epidermal growth factor receptor monoclonal antibody in a human colorectal carcinoma cell line and its delay by insulin[J]. Journal of Clinical Investigation,1995,95(4):1897.
    [33]Mandal M, Adam L, Mendelsohn J, et al. Nuclear targeting of Bax during apoptosis in human colorectal cancer cells[J]. Oncogene,1998,17(8):999.
    [34]Liu B, Fang M, Schmidt M, et al. Induction of apoptosis and activation of the caspase cascade by anti-EGF receptor monoclonal antibodies in DiFi human colon cancer cells do not involve the c-jun N-terminal kinase activity[J]. British Journal of Cancer,2000,82(12):1991.
    [35]Wu X, Rubin M, Fan Z, et al. Involvement of p27KIP1 in G1 arrest mediated by an anti-epidermal growth factor receptor monoclonal antibody[J]. Oncogene,1996,12(7):1397.
    [36]Peng D, Fan Z, Lu Y, et al. Anti-epidermal growth factor receptor monoclonal antibody 225 up-regulates p27KIP1 and induces G1 arrest in prostatic cancer cell line DU145[J]. Cancer research,1996,56(16):3666.
    [37]Huang SM, Bock JM, Harari PM. Epidermal growth factor receptor blockade with C225 modulates proliferation, apoptosis, and radiosensitivity in squamous cell carcinomas of the head and neck[J]. Cancer research,1999,59(8):1935.
    [38]Mendelsohn J. Jeremiah Metzger Lecture. Targeted cancer therapy[J]. Transactions of the American Clinical and Climatological Association,2000,111:95.
    [39]Goldoni S, Iozzo R, Kay P, et al. Soluble LRIG1 inhibits cancer cell growth[J]. Matrix Biology, 2006,25:S40-S41.
    [40]Goldoni S, Iozzo RA, Kay P, et al. A soluble ectodomain of LRIG1 inhibits cancer cell growth by attenuating basal and ligand-dependent EGFR activity [J]. Oncogene,2007,26(3):368-381.
    [41]Yi W, Holmlund C, Nilsson J, et al. Paracrine regulation of growth factor signaling by shed leucine-rich repeats and immunoglobulin-like domains 1[J]. Exp Cell Res,2011,317(4): 504-512.
    [1]Hedman H, Henriksson R. LR1G inhibitors of growth factor signalling-double-edged swords in human cancer?[J]. European Journal of Cancer,2007,43(4):676-682.
    [2]叶飞,王宝峰,谢蕊繁,等.LRIG1过表达对神经胶质瘤细胞EGFR信号传导的抑制作用[J].中华神经外科杂志,2010,26(1):4.
    [3]Lammering G, Valerie K, Lin PS, et al. Radiosensitization of malignant glioma cells through overexpression of dominant-negative epidermal growth factor receptor[J]. Clin Cancer Res, 2001,7(3):682-690.
    [4]陈汉春,彭兴华.Rad51同系物与DNA重组修复[J].国外医学:遗传学分册,2003,26(4):194-197.
    [5]Shattuck DL, Miller JK, Laederich M, et al. LRIG1 is a novel negative regulator of the Met receptor and opposes Met and Her2 synergy[J]. Mol Cell Biol,2007,27(5):1934-1946.
    [6]Gur G, Rubin C, Katz M, et al. LRIG1 restricts growth factor signaling by enhancing receptor ubiquitylation and degradation[J]. The EMBO Journal,2004,23(16):3270-3281.
    [7]Ledda F, Bieraugel O, Fard SS, et al. Lrigl is an endogenous inhibitor of Ret receptor tyrosine kinase activation, downstream signaling, and biological responses to GDNF[J]. J Neurosci, 2008,28(1):39-49.
    [8]Ye F, Gao Q, Xu T, et al. Upregulation of LRIG1 suppresses malignant glioma cell growth by attenuating EGFR activity [J]. J Neurooncol,2009,94(2):183-194.
    [9]刘红朝,谢蕊繁,蔡明俊,等.LRIG1基因抑制胶质瘤细胞生长的机制[J].中华实验外科杂志,2009(005):615-617.
    [10]Thomasson M, Hedman H, Guo D, et al. LRIG1 and epidermal growth factor receptor in renal cell carcinoma:a quantitative RT--PCR and immunohistochemical analysis[J]. Br J Cancer, 2003,89(7):1285-1289.
    [11]Guo D, Nilsson J, Haapasalo H, et al. Perinuclear leucine-rich repeats and immunoglobulin-like domain proteins (LRIG1-3) as prognostic indicators in astrocytic tumors[J]. Acta Neuropathol, 2006,111(3):238-246.
    [12]Guo D, Holmlund C, Henriksson R, et al. The< i> LRIG gene family has three vertebrate paralogs widely expressed in human and mouse tissues and a homolog in Ascidiacea[J]. Genomics,2004,84(1):157-165.
    [13]叶飞,郭东生,谢蕊繁,等.LRIG1在星形细胞瘤肿瘤发生中的作用[J].中华实验外科杂志,2010(1):81-83.
    [14]纪振刚,刘宝辉,冀保卫,等.LRIG1与MnSOD, bcl-2在人脑星形胶质细胞瘤组织芯片中的表达[J].中华实验外科杂志,2011,28(3):476-476.
    [15]Lal B, Xia S, Abounader R, et al. Targeting the c-Met pathway potentiates glioblastoma responses to γ-radiation[J]. Clinical cancer research,2005,11(12):4479.
    [16]Camp ER, Summy J, Bauer TW, et al. Molecular mechanisms of resistance to therapies targeting the epidermal growth factor receptor[J]. Clinical cancer research.2005,11(1):397-405.
    [17]Chinnaiyan P, Huang S, Vallabhaneni G, et al. Mechanisms of enhanced radiation response following epidermal growth factor receptor signaling inhibition by erlotinib (Tarceva)[J]. Cancer research,2005,65(8):3328.
    [18]Ko JC, Hong JH, Wang LH, et al. Role of repair protein Rad51 in regulating the response to gefitinib in human non-small cell lung cancer cells[J]. Molecular cancer therapeutics, 2008,7(11):3632.
    [1]Kleihues P, Louis DN, Scheithauer BW, et al. The WHO classification of tumors of the nervous system[J]. Journal of Neuropathology & Experimental Neurology,2002,61(3):215.
    [21 Kleihues P, Burger PC, Scheithauer B W. The new WHO classification of brain tumours[J]. Brain Pathology,1993,3(3):255-268.
    [3]Cantley LC, Neel BG. New insights into tumor suppression:PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway[J]. Proceedings of the National Academy of Sciences,1999,96(8):4240.
    [4]Costello JF, Plass C, Arap W, et al. Cyclin-dependent kinase 6 (CDK6) amplification in human gliomas identified using two-dimensional separation of genomic DNA[J]. Cancer research, 1997,57(7):1250.
    [5]Frankel RH, Bayona W, Koslow M, et al. p53 mutations in human malignant gliomas: comparison of loss of heterozygosity with mutation frequency[J]. Cancer research,1992,52(6): 1427.
    [6]Giani C, Finocchiaro G. Mutation rate of the CDKN2 gene in malignant gliomas[J]. Cancer research,1994,54(24):6338.
    [7]Henson JW, Schnitker BL, Correa KM, et al. The retinoblastoma gene is involved in malignant progression of astrocytomas[J]. Annals of neurology,1994,36(5):714-721.
    [8]Reifenberger G, Liu L, Ichimura K, et al. Amplification and overexpression of the MDM2 gene in a subset of human malignant gliomas without p53 mutations[J]. Cancer research,1993,53(12): 2736.
    [9]Rollbrocker B, Waha A, Louis DN, et al. Amplification of the cyclin-dependent kinase 4 (CDK4) gene is associated with high cdk4 protein levels in glioblastoma multiforme[J]. Acta neuropathologica,1996,92(1):70-74.
    [10]Ullrich A, Schlessinger J. Signal transduction by receptors with tyrosine kinase activity[J]. Cell, 1990,61(2):203-212.
    [11]Kolibaba KS, Druker BJ. Protein tyrosine kinases and cancer[J]. Biochimica et biophysica acta, 1997,1333(3):F217.
    [12]Hanahan D, Weinberg RA. The hallmarks of cancer[J]. Cell,2000,100(1):57-70.
    [13]Maher EA, Furnari FB, Bachoo RM, et al. Malignant glioma:genetics and biology of a grave matter[J]. Genes & development,2001,15(11):1311-1333.
    [14]Yeh Y. Kang YM, Chaibi M, et al.1L-1 and transforming growth factor-beta inhibit platelet-derived growth factor-AA binding to osteoblastic cells by reducing platelet-derived growth factor-alpha receptor expression[J]. The Journal of Immunology,1993,150(12):5625.
    [15]Noble M, Murray K, Stroobant P, et al. Platelet-derived growth factor promotes division and motility and inhibits premature differentiation of the oligodendrocyte/type-2 astrocyte progenitor ceil[J].1988.
    [16]Richardson WD, Pringle N, Mosley MJ, et al. A role for platelet-derived growth factor in normal gliogenesis in the central nervous system[J]. Cell,1988,53(2):309-319.
    [17]Claesson-Welsh L. Signal transduction by the PDGF receptors[J]. Progress in growth factor research,1994,5(1):37-54.
    [18]Heldin CH, Westermark B. Platelet-derived growth factor:mechanism of action and possible in vivo function[J]. Cell regulation,1990,1(8):555.
    [19]Westermark B, Heldin CH, Nister M. Platelet-derived growth factor in human glioma[J]. Glia, 1995,15(3):257-263.
    [20]Chung R, Whaley J, Kley N, et al. TP53 gene mutations and 17p deletions in human astrocytomas[J]. Genes, Chromosomes and Cancer,1991,3(5):323-331.
    [21]von Deimling A, Eibl RH, Ohgaki H, et al. p53 mutations are associated with 17p allelic loss in grade Ⅱ and grade Ⅲ astrocytoma[J]. Cancer research,1992,52(10):2987-2990.
    [22]Dai C, Celestino JC, Okada Y, et al. PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo[J]. Genes & development,2001,15(15):1913-1925.
    [23]Betsholtz C, Karlsson L, Lindahl P. Developmental roles of platelet-derived growth factors[J]. Bioessays,2001,23(6):494-507.
    [24]Guha A, Dashner K, Mc Black PL, et al. Expression of PDGF and PDGF receptors in human astrocytoma operation specimens supports the existence of an autocrine loop[J]. International Journal of Cancer,1995,60(2):168-173.
    [25]Hermanson M, Funa K, Hartman M, et al. Platelet-derived growth factor and its receptors in human glioma tissue:expression of messenger RNA and protein suggests the presence of autocrine and paracrine loops[J]. Cancer research,1992,52(11):3213.
    [26]Vassbotn FS, Ostman A, Langeland N, et al. Activated platelet-derived growth factor autocrine pathway drives the transformed phenotype of a human glioblastoma cell line[J]. Journal of cellular physiology,1994,158(2):381-389.
    [27]Andrae J, Molander C, Smits A, et al. Platelet-derived growth factor-B and-C and active [alpha]-receptors in medulloblastoma cells[J]. Biochemical and Biophysical Research Communications,2002,296(3):604-611.
    [28]Black P, Carroll R, Glowacka D. Expression of platelet-derived growth factor transcripts in medulloblastomas and ependymomas[J]. Pediatric neurosurgery,1996,24(2):74-78.
    [29]Guo P, Hu B, Gu W, et al. Platelet-derived growth factor-B enhances glioma angiogenesis by stimulating vascular endothelial growth factor expression in tumor endothelia and by promoting pericyte recruitment[J]. The American journal of pathology,2003,162(4):1083-1093.
    [30]Lokker NA, Sullivan CM, Hollenbach SJ, et al. Platelet-derived growth factor (PDGF) autocrine signaling regulates survival and mitogenic pathways in glioblastoma cells[J]. Cancer research,2002,62(13):3729.
    [31]Bergsten E, Uutela M, Li X, et al. PDGF-D is a specific, protease-activated ligand for the PDGF β-receptor[J]. Nature cell biology,2001,3(5):512-516.
    [32]Gilbertson DG, Duff ME, West JW, et al. Platelet-derived growth factor C (PDGF-C), a novel growth factor that binds to PDGF a and P receptor[J]. Journal of Biological Chemistry, 2001,276(29):27406.
    [33]LaRochelle WJ, Jeffers M, McDonald WF, et al. PDGF-D, a new protease-activated growth factor[J]. Nature cell biology,2001,3(5):517-521.
    [34]Fantl WJ, Escobedo JA, Williams LT. Mutations of the platelet-derived growth factor receptor that cause a loss of ligand-induced conformational change, subtle changes in kinase activity, and impaired ability to stimulate DNA synthesis[J]. Molecular and cellular biology, 1989,9(10):4473-4478.
    [35]Kazlauskas A, Cooper JA. Autophosphorylation of the PDGF receptor in the kinase insert region regulates interactions with cell proteins[J]. Cell,1989,58(6):1121-1133.
    [36]Heldin CH, Ostman A, Ronnstrand L. Signal transduction via platelet-derived growth factor receptors[J]. Biochimica et Biophysica Acta (BBA)-reviews on cancer,1998,1378(1):F79-F113.
    [37]Salomon DS, Brandt R, Ciardiello F, et al. Epidermal growth factor-related peptides and their receptors in human malignancies[J]. Critical reviews in oncology/hematology,1995,19(3):183.
    [38]Bigner SH, Humphrey PA, Wong AJ, et al. Characterization of the epidermal growth factor receptor in human glioma cell lines and xenografts[J]. Cancer research,1990,50(24):8017.
    [39]Libermann TA, Nusbaum HR, Razon N, et al. Amplification, enhanced expression and possible rearrangement of EGF receptor gene in primary human brain tumours of glial origin[J].1985.
    [40]Wong AJ, Bigner SH, Bigner DD, et al. Increased expression of the epidermal growth factor receptor gene in malignant gliomas is invariably associated with gene amplification[J]. Proceedings of the National Academy of Sciences,1987,84(19):6899.
    [41]Kleihues P, Liibbe J, Watanabe K, et al. Genetic alterations associated with glioma progression[J]. Verhandlungen der Deutschen Gesellschaft fur Pathologie,1994,78:43.
    [42]Kleihues P, Ohgaki H. Primary and secondary glioblastomas:from concept to clinical diagnosis[J]. Neuro-oncology,1999,1 (1):44-51.
    [43]Ohgaki H, Kleihues P, Schauble B, et al. Genetic alterations associated with the evolution and progression of astrocytic brain tumours[J]. Virchows Archiv,1995,427(2):113-118.
    [44]Ahmed Rasheed B, Wiltshire RN, Bigner SH, et al. Molecular pathogenesis of malignant gliomas[J]. Current opinion in oncology,1999,11(3):162.
    [45]Ekstrand AJ, Sugawa N, James CD, et al. Amplified and rearranged epidermal growth factor receptor genes in human glioblastomas reveal deletions of sequences encoding portions of the N-and/or C-terminal tails[J]. Proceedings of the National Academy of Sciences, 1992,89(10):4309.
    [46]Kuan C, Wikstrand C, Bigner D. EGF mutant receptor vⅢ as a molecular target in cancer therapy[J]. Endocrine-related cancer,2001,8(2):83-96.
    [47]Nagane M, Lin H, Cavenee WK, et al. Aberrant receptor signaling in human malignant gliomas: mechanisms and therapeutic implications[J]. Cancer letters,2001,162:S17-S21.
    [48]O'Rourke DM, Nute E, Davis JG, et al. Inhibition of a naturally occurring EGFR oncoprotein by the p185neu ectodomain:implications for subdomain contributions to receptor assembly[J]. Oncogene,1998,16(9):1197.
    [49]Wikstrand C, Reist C, Archer G, et al. The class Ⅲ variant of the epidermal growth factor receptor (EGFRvⅢ):characterization and utilization as an immunotherapeutic target[J]. Journal of Neuro Virology,1998,4(2):148-158.
    [50]Wong AJ, Ruppert JM, Bigner SH, et al. Structural alterations of the epidermal growth factor receptor gene in human gliomas[J]. Proceedings of the National Academy of Sciences, 1992,89(7):2965.
    [51]Moscatello DK, Holgado-Madruga M, Godwin AK, et al. Frequent expression of a mutant epidermal growth factor receptor in multiple human tumors[J]. Cancer research, 1995,55(23):5536.
    [52]Olapade-Olaopa E, Moscatello D, MacKay E, et al. Evidence for the differential expression of a variant EGF receptor protein in human prostate cancer[J]. British Journal of Cancer, 2000,82(1):186.
    [53]Schlegel J, Stumm G, Brandle K, et al. Amplification and differential expression of members of theerbB-gene family in human glioblastoma[J]. Journal of Neuro-Oncology,1994,22(3): 201-207.
    [54]Feldkamp MM, Lala P, Lau N, et al. Expression of activated epidermal growth factor receptors, Ras-guanosine triphosphate, and mitogen-activated protein kinase in human glioblastoma multiforme specimens[J]. Neurosurgery,1999,45(6):1442.
    [55]Moscatello DK, Montgomery RB, Sundareshan P, et al. Transformational and altered signal transduction by a naturally occurring mutant EGF receptor[J]. Oncogene,1996,13(1):85.
    [56]Li DM, Sun H. PTEN/MMAC1/TEP1 suppresses the tumorigenicity and induces G1 cell cycle arrest in human glioblastoma cells[J]. Proceedings of the National Academy of Sciences, 1998,95(26):15406.
    [57]Holland EC, Hively WP, DePinho RA, et al. A constitutively active epidermal growth factor receptor cooperates with disruption of G1 cell-cycle arrest pathways to induce glioma-like lesions in mice[J]. Genes & development,1998,12(23):3675-3685.
    [58]Hills D, Rowlinson-Busza G, Gullick WJ. Specific targeting of a mutant, activated EGF receptor found in glioblastoma using a monoclonal antibody[J]. International Journal of Cancer, 1995,63(4):537-543.
    [59]Lorimer I. Mutant epidermal growth factor receptors as targets for cancer therapy[J]. Current cancer drug targets,2002,2(2):91-102.
    [60]Lorimer IAJ, Keppler-Hafkemeyer A, Beers RA, et al. Recombinant immunotoxins specific for a mutant epidermal growth factor receptor:targeting with a single chain antibody variable domain isolated by phage display[J]. Proceedings of the National Academy of Sciences, 1996,93(25):14815.
    [61]Nagane M, Levitzki A, Gazit A, et al. Drug resistance of human glioblastoma cells conferred by a tumor-specific mutant epidermal growth factor receptor through modulation of Bcl-XL and caspase-3-like proteases[J]. Proceedings of the National Academy of Sciences,1998,95(10): 5724.
    [62]Newcomb EW, Alonso M, Sung T, et al. Incidence of p14< sup> ARF gene deletion in high-grade adult and pediatric astrocytomas[J]. Human pathology,2000,31(1):115-119.
    [63]Holland EC, Hively WP, Gallo V, et al. Modeling mutations in the Gl arrest pathway in human gliomas:overexpression of CDK.4 but not loss of INK4a-ARF induces hyperploidy in cultured mouse astrocytes[J]. Genes & development,1998,12(23):3644-3649.
    [64]Biischges R, Weber RG, Actor B, et al. Amplification and expression of cyclin D genes (CCND1 CCND2 and CCND3) in human malignant gliomas[J]. Brain Pathology,1999, 9(3):435-442.
    [65]Ding H, Shannon P, Lau N, et al. Oligodendrogliomas result from the expression of an activated mutant epidermal growth factor receptor in a RAS transgenic mouse astrocytoma model[J]. Cancer research,2003,63(5):1106.
    [66]Hayashi Y, Ueki K, Waha A, et al. Association of EGFR gene amplification and CDKN2 (p16/MTS1) gene deletion in glioblastoma multiforme[J]. Brain Pathology,1997,7(3):871-875.
    [67]Sonoda Y, Ozawa T, Aldape KD, et al. Akt pathway activation converts anaplastic astrocytoma to glioblastoma multiforme in a human astrocyte model of glioma[J]. Cancer research, 2001,61(18):6674.
    [68]Reilly KM, Loisel DA, Bronson RT, et al. Nfl; Trp53 mutant mice develop glioblastoma with evidence of strain-specific effects[J]. Nature genetics,2000,26(1):109-113.
    [69]Holland EC, Celestino J, Dai C, et al. Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice[J]. Nature genetics,2000,25(1):55-57.
    [70]Uhrbom L, Dai C, Celestino JC, et al. Ink4a-Arf loss cooperates with KRas activation in astrocytes and neural progenitors to generate glioblastomas of various morphologies depending on activated Akt[J]. Cancer research,2002,62(19):5551.
    [71]Davies MA, Lu Y, Sano T, et al. Adenoviral transgene expression of MMAC/PTEN in human glioma cells inhibits Akt activation and induces anoikis[J]. Cancer research,1998,58(23):5285.
    [72]Fujisawa H, Kurrer M, Reis RM, et al. Acquisition of the glioblastoma phenotype during astrocytoma progression is associated with loss of heterozygosity on 10q25-qter[J]. The American journal of pathology,1999,155(2):387.
    [73]Haas-Kogan D, Shalev N, Wong M, et al. Protein kinase B (PKB/Akt) activity is elevated in glioblastoma cells due to mutation of the tumor suppressor PTEN/MMAC[J]. Current Biology, 1998,8(21):1195-1198, S1191.
    [74]Bachoo RM, Maher EA, Ligon KL, et al. Epidermal growth factor receptor and Ink4a/Arf: Convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis[J]. Cancer cell,2002,1(3):269-277.
    [75]Gilbertson RJ, Bentley L, Hernan R, et al. ERBB receptor signaling promotes ependymoma cell proliferation and represents a potential novel therapeutic target for this disease[J]. Clinical cancer research,2002,8(10):3054-3064.
    [76]Gilbertson RJ, Perry RH, Kelly PJ, et al. Prognostic significance of HER2 and HER4 coexpression in childhood medulloblastoma[J]. Cancer research,1997,57(15):3272.
    [77]YAN LUI VWA1, GRAND1S JR. EGFR-mediated cell cycle regulation[J]. Anticancer research, 2002,22(1A):1-11.
    [78]Chow N, Liu H, Lee E, et al. Significance of urinary epidermal growth factor and its receptor expression in human bladder cancer[J]. Anticancer research,1997,17(2B):1293.
    [79]Grandis JR, Melhem MF, Gooding WE, et al. Levels of TGF-a and EGFR protein in head and neck squamous cell carcinoma and patient survival[J]. Journal of the National Cancer Institute, 1998,90(11):824-832.
    [80]Turkeri LN, Erton ML, Cevik I, et al. Impact of the expression of epidermal growth factor, transforming growth factor alpha, and epidermal growth factor receptor on the prognosis of superficial bladder cancer[J]. Urology,1998,51(4):645-649.
    [81]Zwick ME, Cutler DJ, Chakravarti A. Patterns of genetic variation in Mendelian and complex traits[J]. Annual review of genomics and human genetics,2000,1(1):387-407.
    [82]Carraway 3rd K, Cantley LC. A neu acquaintance for erbB3 and erbB4:a role for receptor heterodimerization in growth signaling[J]. Cell,1994,78(1):5.
    [83]Massague J. Epidermal growth factor-like transforming growth factor. Ⅱ. Interaction with epidermal growth factor receptors in human placenta membranes and A431 cells[J]. Journal of Biological Chemistry,1983,258(22):13614-13620.
    [84]Shum L, Reeves SA, Kuo AC, et al. Association of the transmembrane TGF-alpha precursor with a protein kinase complex[J]. The Journal of cell biology,1994,125(4):903-916.
    [85]Yarden Y, Ullrich A. Growth factor receptor tyrosine kinases[J]. Annual review of biochemistry, 1988,57(1):443-478.
    [86]Tang P, Steck PA, Yung WKA. The autocrine loop of TGF-α/EGFR and brain tumors[J]. Journal of Neuro-Oncology,1997,35(3):303-314.
    [87]Derynck R, Goeddel DV, Ullrich A, et al. Synthesis of messenger RNAs for transforming growth factors α and β and the epidermal growth factor receptor by human tumors[J]. Cancer research,1987,47(3):707.
    [88]Ekstrand AJ, James CD, Cavenee WK, et al. Genes for epidermal growth factor receptor, transforming growth factor a, and epidermal growth factor and their expression in human gliomas in vivo[J]. Cancer research,1991,51(8):2164.
    [89]Schlegel U, Moots P, Rosenblum M, et al. Expression of transforming growth factor alpha in human gliomas[J]. Oncogene,1990,5(12):1839.
    [90]Yung W, Zhang X, Steck P, et al. Differential amplification of the TGF-alpha gene in human gliomas[J]. Cancer communications,1990,2(6):201.
    [91]Huber H, Eggert A, Janss A, et al. Angiogenic profile of childhood primitive neuroectodermal brain tumours/medulloblastomas[J]. European Journal of Cancer,2001,37(16):2064-2072.
    [92]El-Obeid A, Bongcam-Rudloff E, Sorby M, et al. Cell scattering and migration induced by autocrine transforming growth factor a in human glioma cells in vitro[J]. Cancer research, 1997,57(24):5598-5604.
    [93]Zhou R, Skalli O. TGF-[alpha] Differentially Regulates GFAP, Vimentin, and Nestin Gene Expression in U-373 MG Glioblastoma Cells:Correlation with Cell Shape and Motility[J]. Experimental cell research,2000,254(2):269-278.
    [94]El-Obeid A, Hesselager G, Westermark B, et al. TGF-α-driven tumor growth is inhibited by an EGF receptor tyrosine kinase inhibitor[J]. Biochemical and Biophysical Research Communications,2002,290(1):349-358.
    [95]Garrington TP, Johnson GL. Organization and regulation of mitogen-activated protein kinase signaling pathways[J]. Current opinion in cell biology,1999,11(2):211-218.
    [96]Wilkinson MG, MILLAR JBA. Control of the eukaryotic cell cycle by MAP kinase signaling pathways[J]. The FASEB Journal,2000,14(14):2147-2157.
    [97]Cox AD, Der CJ. Ras family signaling:therapeutic targeting[J]. Cancer biology & therapy, 2002,1(6):599.
    [98]Schlessinger J. Cell signaling by receptor tyrosine kinases[J]. Cell,2000,103(2):211.
    [99]Li W, Nishimura R, Kashishian A, et al. A new function for a phosphotyrosine phosphatase: linking GRB2-Sos to a receptor tyrosine kinase[J]. Molecular and cellular biology, 1994,14(1):509-517.
    [100]Yart A, Laffargue M, Mayeux P, et al. A critical role for phosphoinositide 3-kinase upstream of Gab1 and SHP2 in the activation of ras and mitogen-activated protein kinases by epidermal growth factor[J]. Journal of Biological Chemistry,2001,276(12):8856-8864.
    [101]Lorimer IAJ, Lavictoire SJ. Activation of extracellular-regulated kinases by normal and mutant EGF receptors[J]. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2001,1538(1):1-9.
    [102]Hamad NM, Elconin JH, Karnoub AE, et al. Distinct requirements for Ras oncogenesis in human versus mouse cells[J]. Genes & development,2002,16(16):2045.
    [103]Katz ME, McCormick F. Signal transduction from multiple Ras effectors[J]. Current opinion in genetics & development,1997,7(l):75-79.
    [104]Boulton TG, Nye SH, Robbins DJ, et al. ERKs:a family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF[J]. Cell, 1991,65(4):663-675.
    [105]Dent P, Haser W, Haystead T, et al. Activation of mitogen-activated protein kinase kinase by v-Raf in NIH 3T3 cells and in vitro[J]. Science,1992,257(5075):1404-1407.
    [106]Howe LR, Leevers SJ, Gomez N, et al. Activation of the MAP kinase pathway by the protein kinase raf[J]. Cell,1992,71 (2):335-342.
    [107]Kyriakis J, Force T, Rapp U, et al. Mitogen regulation of c-Raf-1 protein kinase activity toward mitogen-activated protein kinase-kinase[J]. Journal of Biological Chemistry,1993,268(21): 16009.
    [108]Fanton CP, McMahon M, Pieper RO. Dual growth arrest pathways in astrocytes and astrocytic tumors in response to Raf-1 activation[J]. Journal of Biological Chemistry, 2001,276(22):18871-18877.
    [109]Chambers A, Tuck A. Ras-responsive genes and tumor metastasis[J]. Critical reviews in oncogenesis,1993,4(2):95.
    [110]Guha A, Feldkamp MM, Lau N, et al. Proliferation of human malignant astrocytomas is dependent on Ras activation[J]. Oncogene,1997,15(23):2755.
    [111]Gutmann DH, Giordano MJ, Mahadeo DK, et al. Increased neurofibromatosis 1 gene expression in astrocytic tumors:positive regulation by p21-ras[J]. Oncogene,1996,12(10): 2121.
    [112]Chunduru S, Kawami H, Gullick R, et al. Identification of an alternatively spliced RNA for the Ras suppressor RSU-1 in human gliomas[J]. Journal of Neuro-Oncology,2002,60(3):201-211.
    [113]Ellis CA, Vos MD, Howell H, et al. Rig is a novel Ras-related protein and potential neural tumor suppressor[J]. Science's STKE,2002,99(15):9876.
    [114]Liu JJ, Chao JR, Jiang MC, et al. Ras transformation results in an elevated level of cyclin D1 and acceleration of Gl progression in NIH 3T3 cells[J]. Molecular and cellular biology, 1995,15(7):3654-3663.
    [115]Reed N, Gutmann DH. Tumorigenesis in neurofibromatosis:new insights and potential therapies[J]. Trends in molecular medicine,2001,7(4):157-162.
    [116]Zhu Y, Parada LF. A particular GAP in mind[J]. Nature genetics,2001,27(4):354-354.
    [117]Gutmann DH, Saporito-Irwin S, DeClue JE, et al. Alterations in the rap1 signaling pathway are common in human gliomas[J]. Oncogene,1997,15(13):1611.
    [118]Jin F, Wienecke R, Xiao GH, et al. Suppression of tumorigenicity by the wild-type tuberous sclerosis 2 (Tsc2) gene and its C-terminal region[J]. Proceedings of the National Academy of Sciences,1996,93(17):9154.
    [119]Lu Z, Hornia A. Joseph T, et al. Phospholipase D and Ra1A cooperate with the epidermal growth factor receptor to transform 3Y1 rat fibroblasts[J]. Molecular and cellular biology, 2000,20(2):462-467.
    [120]Ward Y, Wang W, Woodhouse E, et al. Signal pathways which promote invasion and metastasis: critical and distinct contributions of extracellular signal-regulated kinase and Ral-specific guanine exchange factor pathways[J]. Molecular and cellular biology,2001,21 (17):5958-5969.
    [121]Nishida K, Kaziro Y, Satoh T. Anti-apoptotic function of Rac in hematopoietic cells[J]. Oncogene,1999,18(2):407.
    [122]Ruggieri R, Chuang Y, Symons M. The small GTPase Rac suppresses apoptosis caused by serum deprivation in fibroblasts[J]. MOLECULAR MEDICINE-CAMBRIDGE MA THEN NEW YORK-,2001,7(5):293-300.
    [123]Senger DL, Tudan C, Guiot MC, et al. Suppression of Rac activity induces apoptosis of human glioma cells but not normal human astrocytes[J]. Cancer research,2002,62(7):2131.
    [124]Behrens A, Jochum W, Sibilia M, et al. Oncogenic transformation by ras and fos is mediated by c-Jun N-terminal phosphorylation[J]. Oncogene,2000,19(22):2657.
    [125]Chen N, Nomura M, She QB, et al. Suppression of skin tumorigenesis in c-Jun NH2-terminal kinase-2-deficient mice[J]. Cancer research,2001,61(10):3908.
    [126]Antonyak MA, Moscatello DK, Wong AJ. Constitutive activation of c-Jun N-terminal kinase by a mutant epidermal growth factor receptor[J]. Journal of Biological Chemistry, 1998,273(5):2817-2822.
    [127]Tsuiki H, Tnani M, Okamoto I, et al. Constitutively active forms of c-Jun NH2-terminal kinase are expressed in primary glial tumors[J]. Cancer research,2003,63(1):250.
    [128]Wu CJ, Qian X, O'Rourke DM. Sustained mitogen-activated protein kinase activation is induced by transforming erbB receptor complexes[J]. DNA and cell biology,1999,18(10):731-741.
    [129]Potapova O, Gorospe M, Bost F, et al. c-Jun N-terminal kinase is essential for growth of human T98G glioblastoma cells[J]. Journal of Biological Chemistry,2000,275(32):24767-24775.
    [130]Czech MP. Lipid rafts and insulin action[J]. Nature,2000,407(6801):147-148.
    [131]Rameh LE, Cantley LC. The role of phosphoinositide 3-kinase lipid products in cell function[J]. Journal of Biological Chemistry,1999,274(13):8347-8350.
    [132]Rodrigues GA, Falasca M, Zhang Z, et al. A novel positive feedback loop mediated by the docking protein Gab1 and phosphatidylinositol 3-kinase in epidermal growth factor receptor signaling[J]. Science's STKE,2000,20(4):1448.
    [133]Wu C, Chen Z, Ullrich A, et al. Inhibition of EGFR-mediated phosphoinositide-3-OH kinase (P13-K) signaling and glioblastoma phenotype by signal-regulatory proteins (SIRPs)[J]. Oncogene,2000,19(35):3999.
    [134]Wu CJ, O'Rourke DM, Feng GS, et al. The tyrosine phosphatase SHP-2 is required for mediating phosphatidylinositol 3-kinase/Akt activation by growth factors[J]. Oncogene,2001, 20(42):6018.
    [135]Alessi DR, Andjelkovic M, Caudwell B, et al. Mechanism of activation of protein kinase B by insulin and IGF-1 [J]. The EMBO Journal,1996,15(23):6541.
    [136]Cardone MH, Roy N, Stennicke HR, et al. Regulation of cell death protease caspase-9 by phosphorylation[J]. Science,1998,282(5392):1318-1321.
    [137]Brunet A, Bonni A, Zigmond MJ, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor[J]. Cell,1999,96(6):857-868.
    [138]Cross DAE, Alessi DR, Cohen P, et al. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B[J]. Nature,1995,378(6559):785-789.
    [139]Tamura M, Gu J, Danen EHJ, et al. PTEN interactions with focal adhesion kinase and suppression of the extracellular matrix-dependent phosphatidylinositol 3-kinase/Akt cell survival pathway[J]. Journal of Biological Chemistry,1999,274(29):20693-20703.
    [140]Hedman H, Nilsson J, Guo D, et al. Is LRIG1 a tumour suppressor gene at chromosome 3p14.3?[J]. Acta Oncol,2002,41(4):352-354.
    [141]Nilsson J, Starefeldt A, Henriksson R, et al. LRIG1 protein in human cells and tissues[J]. Cell Tissue Res,2003,312(1):65-71.
    [142]Thomasson M, Hedman H, Guo D, et al. LRIG1 and epidermal growth factor receptor in renal cell carcinoma:a quantitative RT--PCR and immunohistochemical analysis[J]. Br J Cancer, 2003,89(7):1285-1289.
    [143]Tanemura A, Nagasawa T, Inui S, et al. LRIG-1 provides a novel prognostic predictor in squamous cell carcinoma of the skin:immunohistochemical analysis for 38 cases[J]. Dermatol Surg,2005,31(4):423-430.
    [144]易伟.LRIG1基因在人星形细胞瘤中的表达下调与意义[J].中华实验外科杂志,2005,22(6):1.
    [145]曾令成,欧一博,雷霆,等.LRIG1在脑膜瘤中的表达及与其生物学行为的关系[J].中国临床神经外科杂志,2007,12(010):601-604.
    [146]Zongqiang X, Yingguang C, Dongsheng G, et al. Expression of EGFR and LRIG-1 in human trigeminal neurinoma[J]. Journal of Huazhong University of Science and Technology--Medical Sciences--,2006,26(1):86-88.
    [147]叶飞,郭东升,牛洪泉,等.LRIG1 cDNA诱导人胶质瘤细胞系H4凋亡的分子机制[J]. 癌症,2004,23(10):1149-1154.
    [148]叶飞,郭东升,易伟,等.过度表达LRIG1基因逆转人胶质瘤侵袭性的机制[J].中华实验外科杂志,2005,22(002):200-202.
    [149]姚声涛,唐文渊,郭川.LRIG1诱导人胶质瘤细胞凋亡与表皮生长因子受体基因关系[J].第三军医大学学报,2008,30(002):157-160.
    [150]刘红朝,谢蕊繁,蔡明俊,等LRIG1基因抑制胶质瘤细胞生长的机制[J].中华实验外科杂志,2009(005):615-617.
    [151]杨为民,严泽军,叶章群,等.抑癌基因LRIG1对膀胱癌细胞BIU87生物学特性的影响[J].中华实验外科杂志,2006,22(12):1543-1545.
    [152]叶章群,严泽军,杨为民,等.LRIG1基因对膀胱癌细胞侵袭力的影响[J].中华外科杂志,2007,45(4):258-261.
    [153]Gur G, Rubin C, Katz M, et al. LRIG1 restricts growth factor signaling by enhancing receptor ubiquitylation and degradation[J]. EMBO J,2004,23(16):3270-3281.
    [154]Jensen KB, Watt FM. Single-cell expression profiling of human epidermal stem and transit-amplifying cells:Lrigl is a regulator of stem cell quiescence[J]. Proc Natl Acad Sci U S A,2006,103(32):11958-11963.
    [155]Laederich MB, Funes-Duran M, Yen L, et al. The leucine-rich repeat protein LRIG1 is a negative regulator of ErbB family receptor tyrosine kinases[J]. J Biol Chem, 2004,279(45):47050-47056.
    [156]Miller JK, Shattuck DL, Ingalla EQ, et al. Suppression of the negative regulator LRIG1 contributes to ErbB2 overexpression in breast cancer[J]. Cancer Res,2008,68(20):8286-8294.
    [157]朱晓楠,陈谦学,刘宝辉,等.LRIG1对人脑胶质瘤放疗敏感性的作用及机制[J].中华实验外科杂志,2012,29(1):92-94.
    [158]Yi W, Holmlund C, Nilsson J, et al. Paracrine regulation of growth factor signaling by shed leucine-rich repeats and immunoglobulin-like domains 1[J]. Exp Cell Res,2011,317(4):504-512.
    [159]Nilsson J, Vallbo C, Guo D, et al. Cloning, characterization, and expression of human LIG1[J]. Biochemical and Biophysical Research Communications,2001,284(5):1155-1161.
    [160]Shattuck DL, Miller JK, Laederich M, et al. LRIG1 is a novel negative regulator of the Met receptor and opposes Met and Her2 synergy[J]. Mol Cell Biol,2007,27(5):1934-1946.
    [161]Ledda F, Bieraugel O, Fard SS, et al. Lrigl is an endogenous inhibitor of Ret receptor tyrosine kinase activation, downstream signaling, and biological responses to GDNF[J]. J Neurosci, 2008,28(1):39-49.
    [162]Bai L, McEachern D, Yang CY, et al. LRIG1 modulates cancer cell sensitivity to Smac mimetics by regulating TNFα expression and receptor tyrosine kinase signaling[J]. Cancer research,2012,72(5):1229-1238.
    [163]Bhattacharjee A, Richards WG, Staunton J, et al. Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses[J]. Proc Natl Acad Sci USA,2001,98(24):13790-13795.
    [164]Overholser JP, Prewett MC, Hooper AT, et al. Epidermal growth factor receptor blockade by antibody IMC-C225 inhibits growth of a human pancreatic carcinoma xenograft in nude mice[J]. Cancer,2000,89(1):74-82.
    [165]Mamot C, Drummond DC, Greiser U, et al. Epidermal growth factor receptor (EGFR)-targeted immunoliposomes mediate specific and efficient drug delivery to EGFR-and EGFRvⅢ-overexpressing tumor cells[J]. Cancer research,2003,63(12):3154.
    [166]Barth RF, Wu G, Yang W, et al. Neutron capture therapy of epidermal growth factor (+) gliomas using boronated cetuximab (IMC-C225) as a delivery agent[J]. Appl Radiat Isot, 2004,61(5):899-903.
    [167]Wu G, Barth RF, Yang W, et al. Site-specific conjugation of boron-containing dendrimers to anti-EGF receptor monoclonal antibody cetuximab (IMC-C225) and its evaluation as a potential delivery agent for neutron capture therapy [J]. Bioconjug Chem,2004,15(1):185-194.
    [168]Wu G, Barth RF, Yang W, et al. Targeted delivery of methotrexate to epidermal growth factor receptor-positive brain tumors by means of cetuximab (IMC-C225) dendrimer bioconjugates[J]. Mol Cancer Ther,2006,5(1):52-59.
    [169]Schindler T, Bornmann W, Pellicena P, et al. Structural mechanism for ST1-571 inhibition of abelson tyrosine kinase[J]. Science's STKE,2000,289(5486):1938.
    [170]Wu P, Hu YZ. P13K/Akt/mTOR pathway inhibitors in cancer:a perspective on clinical progress[J]. Current medicinal chemistry,2010,17(35):4326-4341.
    [171]Verheijen JC, Zask A. Phosphatidylinositol 3-kinase (P13K) inhibitors as anticancer drugs[J]. Drugs Future,2007,32(6):537-547.
    [172]Kong D, Yamori T. Advances in development of phosphatidylinositol 3-kinase inhibitors[J]. Current medicinal chemistry,2009,16(22):2839-2854.
    [173]Druker BJ, Talpaz M, Resta DJ, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia[J]. New England Journal of Medicine, 2001,344(14):1031-1037.
    [174]McLaughlin ME, Robson CD. Kieran MW, et al. Marked regression of metastatic pilocytic astrocytoma during treatment with imatinib mesylate (STI-571, Gleevec):a case report and laboratory investigation[J]. Journal of pediatric hematology/oncology,2003,25(8):644.
    [175]Wakeling AE. Epidermal growth factor receptor tyrosine kinase inhibitors[J]. Current opinion in pharmacology,2002,2(4):382-387.
    [176]Fukuoka M, Yano S, Giaccone G, et al. Multi-institutional randomized phase Ⅱ trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer[J]. Journal of Clinical Oncology,2003,21(12):2237-2246.
    [177]Lai B, Xia S, Abounader R, et al. Targeting the c-Met pathway potentiates glioblastoma responses to γ-radiation[J]. Clinical cancer research,2005,11(12):4479.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700