运动地P53调节能量代谢信号通路相关基因表达的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞能量代谢异常和内外稳态环境紊乱是肿瘤和糖尿病发生的重要原因。骨骼肌是人体最大的运动和内分泌器官,骨骼肌细胞能量代谢相关基因表达对长期运动的适应是运动预防肿瘤发生、胰岛素抵抗和Ⅱ型糖尿病非常重要的因素。P53作为肿瘤抑制蛋白、细胞周期调控检查点、能量代谢的调节者、氧化应激的平衡者,位于多个细胞信号转导通路的核心位置,是生物体内部多个信号通路的调节者、平衡者、整合者,对调节细胞能量代谢、保持细胞氧化应激信号稳态和保持生物体内稳态效应都具有非常重要的作用,保持P53基因的稳态表达是预防肿瘤和延缓衰老的策略之一。体育锻炼能促进机体新陈代谢,延缓细胞衰老,减少细胞癌变几率,适宜的运动能够通过影响P53调节的能量代谢信号通路延续P53信号稳态。
     目的:本研究分别建立长期耐力训练模型、间歇性冲刺训练模型和一次急性运动模型,耐力训练模型以长时间、低强度为特征,间歇性冲刺训练模型以短时间、大强度、间歇性为特征,分别探讨、比较运动影响下SD大鼠、糖尿病GK大鼠骨骼肌的基因表达应答,期望能从基因表达水平上揭示骨骼肌细胞适应不同运动类型保持能量代谢和氧化应激平衡的分子机制,为运动保持骨骼肌正常生理功能和促进病理状态的改善和恢复提供一定的科学参考。
     方法:清洁级Sprague-Dawley雄性大鼠40只,约4周龄,体重100±5g,随机分为4组,即安静组(CON, n=10),耐力组(ET,n=10),冲刺组(SIT, n=10),急性组(AE,n=10);糖尿病雄性大鼠12只,约8周龄,体重250±5g,随机分为2组,即GK安静组(GKC, n=6),GK耐力组(GKE, n=6)。耐力训练:正常SD大鼠和糖尿病GK大鼠均进行每天30-60min低强度(≤16.7m/min)的持续跑台运动;每周训练6天,训练6周。间歇性冲刺训练:正常SD大鼠每天9-10次10s最大强度(≥42m/min)的跑台运动,间歇时间30-60s,训练6周。最后一次训练结束后24h,所有大鼠依次断颈处死。一次急性运动:正常SD大鼠6周期间饲养环境等各方面均与安静组相同,进行一次60min低强度(≤16.7m/min)急性跑台运动后断颈处死。心脏取血,检测血清血糖、胰岛素、脂联素、甘油三酯、总胆固醇、糖化血清蛋白和红细胞糖化血红蛋白;取腓肠肌检测乳酸、GSH、GSSG含量;用实时荧光定量PCR法检测腓肠肌P53、SCO2、SCO1、COXⅡ、TIGAR、HKⅡ、PGM2、PDK4、PFKm、CPT1-β、AMPKa2、GLUT4的基因转录水平;用Western blot测定腓肠肌细胞P53、TIGAR、SCO2、SCO1、COXⅡ的蛋白表达水平。
     结果:(1)在正常生理条件下,一次急性运动、耐力训练和间歇性冲刺训练并没有从整体水平上影响机体血糖稳态和胰岛素抵抗指数,都显著降低了总胆固醇、甘油三酯和糖化血清蛋白水平,耐力训练还显著增加了脂联素分泌。在糖尿病病理条件下,耐力训练表现出良好的降低血糖、糖化血清蛋白、胰岛素抵抗指数、总胆固醇和升高脂联素的效果。
     (2)在正常生理条件下,一次急性运动、耐力训练、间歇性冲刺训练对P53基因转录和蛋白表达均没有产生显著性影响。在病理条件下,耐力训练对P53基因表达的影响与正常生理状态下不同,P53基因转录和蛋白表达均显著降低。
     (3)在正常生理条件下,一次急性运动显著增加了SCO2基因转录,对SCO2蛋白表达、SCO1和COXⅡ基因表达均没有产生影响。耐力训练显著增加了SCO2、SCO1基因转录,对COXⅡ基因转录影响不大,但却显著增加了SCO2、COXⅡ蛋白表达水平。间歇性冲刺训练对SCO2基因转录没有影响,非常显著增加了SCO1、COXⅡ基因转录水平,同时显著增加了SCO2和COXⅡ的蛋白表达水平。三种运动方式都显著升高了GSH/GSSG比率。在病理条件下,耐力训练没有影响SCO2、SCO1基因表达,而且还极大降低了COXⅡ蛋白表达水平。但GSH/GSSG比率却显著上调。
     (4)在正常生理条件下,一次急性运动显著增加了TIGAR、PGM2基因转录,对TIGAR蛋白表达、HKⅡ和PFKm基因转录、乳酸含量均没有产生影响。耐力训练显著增加了TIGAR基因转录和蛋白表达水平,但对PGM2、HKⅡ、PFKm和乳酸含量均没有产生影响。间歇性冲刺训练非常显著增加了PFKm基因转录和乳酸含量,但对TIGAR基因表达、PGM2、HKⅡ、PFKm基因转录没有产生影响。在病理条件下,耐力训练显著增加了HKⅡ、PFKm、GLUT4、AMPKα2基因转录,但对TIGAR基因表达、PGM2基因转录和乳酸含量没有影响。
     (5)在正常生理条件下,一次急性运动非常显著降低了PDK4基因转录水平,对CPT-1β则没有影响。耐力训练在非常显著降低PDK4基因转录水平的同时非常显著升高了CPT-1β基因转录水平。间歇性冲刺训练使PDK4、CPT-1β基因转录水平均显著升高。在糖尿病病理条件下,耐力训练显著降低了GK大鼠PDK4水平,但是,耐力训练并没有像在正常生理条件下一样对大鼠CPT-1β基因表达产生影响。
     结论:(1)在正常生理条件下,从血液指标来看,运动并没有从整体水平上影响机体的正常生理稳态,机体的整体生理调节尚处于稳态范围内,运动对改善健康机体整体水平糖脂代谢能力具有一定效果。在糖尿病病理条件下,从整体水平上来讲,耐力训练可能是改善糖尿病高血糖症状的有效方式。
     (1)在正常生理条件下,运动对P53没有产生显著性影响,而是促进P53充分发挥其调节、检查、平衡、整合的稳态效应以保持机体发挥正常生理功能。在病理条件下,耐力训练使P53基因表达能力下降,可能是受糖尿病病程的影响,P53无法继续保持机体生理功能在正常稳定状态,其基因表达能力的下降极有可能是为了促进细胞的生存,也许是为了延缓GK大鼠病态细胞的凋亡和衰老进程。
     (2)在正常生理条件下,从SCO2、COXⅡ基因表达结果可以看出,耐力训练和间歇性冲刺训练对长期训练能产生很好的运动适应,都呈现出促进线粒体有氧呼吸效应,一次急性运动则没有使有氧呼吸链组分改善达到期望效果。SCO1基因表达似乎对运动方式不敏感,其基因转录水平的极显著性升高不能排除最后一次训练短时的应激反应。从对GSH/GSSG比率的影响来看,运动可能都改善了机体的氧化还原环境。在糖尿病病理条件下,似乎耐力运动对线粒体有氧呼吸轴并没有产生积极而有效的影响,综合P53和GSH/GSSG结果来看,也许是P53促生存功能所致。在病理条件下,也许细胞更重要的功能不是提高运动能力,而是积蓄一切力量,促使细胞生存。
     (3)在正常生理条件下,耐力训练诱导的TIGAR基因表达水平显著上调必将有利于机体能量代谢转向更经济高效的有氧呼吸通路,是机体对耐力训练产生的一种良好的运动适应现象。运动没有对骨骼肌摄取糖的能力造成大的冲击,这种对血糖稳态的有力控制对保持机体正常生理功能的发挥具有重要的意义。运动诱导的P53基因的稳态表达似乎也保持了糖酵解通路其直接靶基因的稳态表达,耐力训练对线粒体有氧呼吸通路具有较好的促进作用,但对糖酵解通路影响不是太大。冲刺训练诱导的乳酸产生与PFKm基因转录水平呈现一致性升高,可在一定程度上印证间歇性冲刺训练能量产生很可能以无氧代谢为主,这与其运动方式能量代谢需求特点相吻合。耐力训练降低了糖尿病大鼠的氧化应激能力,这也许是耐力训练对糖尿病大鼠细胞生存能力的一大贡献。
     (5)在糖尿病病理条件下,耐力训练极有可能通过能量敏感性通路AMPK-GLUT4葡萄糖转运机制极大地促进了骨骼肌糖摄取能力,对于改善GK大鼠高血糖症状是一种非常有效的方式。但结合P53基因表达水平显著下调结果来看,GLUT4和HKⅡ好像失去了P53对其直接抑制作用,朝向促进糖酵解的方向发展,下调的P53亦不能通过TIGAR来抑制糖酵解通路。这些变化虽然降低了血糖,但也有可能为恶性病变埋下隐患,可能是机体对运动并没有很好适应的一种表现。也许在病理状态下,细胞分子之间的信号转导通路可能会发生一定的改变,本实验耐力训练方式未必对糖尿病大鼠完全有利,运动对糖尿病的重要意义也许重在防而不是治。
     (6)在正常生理条件下,耐力训练非常显著减弱了PDK4对PDC的磷酸化抑制,加强了骨骼肌线粒体丙酮酸氧化能力,同时非常显著增加了CPT-1β表达,也加强了脂肪酸氧化能力,表明耐力训练是激活线粒体呼吸的有效运动方式。间歇性冲刺训练极有可能加强了PDK4对PDC的磷酸化抑制,其供能可能以糖酵解为主,但其同时也升高了CPT-1β表达,表明间歇性冲刺训练也有可能是激活线粒体呼吸的一种有效运动方式。在糖尿病病理条件下,耐力训练显著性降低了GK大鼠PDK4水平,对促进糖尿病大鼠有氧呼吸能力是有利的,也是运动能改善糖尿病症状的一种分子水平上的依据,但是,耐力训练并没有像在正常生理条件下一样对大鼠CPT-1β基因表达产生良好的适应性反应。
     (7)综合结果显示,在正常生理条件下,不同的训练方式对机体不同组分产生的影响也各不相同,长期运动训练更能使机体产生较好的运动适应。冲刺训练与耐力训练相比,在诱导肌肉运动适应方面具有相似性,可能是一种更有效的时间节省化方式。
     (8)在运动影响下的P53调节能量代谢通路中,并不是每一个因子都遵循其能量产生需求方式,尤其在糖尿病病理状态下,耐力训练糖尿病大鼠各因子变化有些甚至是明显的无氧供能特征。可能在病理状态下,运动确实影响了能量代谢途径,有些有利于机体的恢复与健康,而有些指标的改变却对机体产生了不良的影响。运动对机体的影响非常复杂,我们不能仅从一个方面或很少的几个方面来简单地下结论,运动对机体是有益还是有害,而是应该综合地观察其效果,毕竟整体水平机能的改善才是我们追求的终极目标。
Cellular energy metabolism abnormality and the steady-state disorder of internal and external environment are the important reasons leading to cancer and diabetes. As the body's largest sports and endocrine organs,the adaptation of genes-related expression of energy metabolism signal pathway to long-term exercise in skeletal muscle is considered to a very important factor for preventing the development of tumor, insulin resistance and type II diabetes.As a tumor suppressor,cell-cycle checkpoint,the regulator of energy metabolism,and the balancer of oxidative stress, P53 lies in the center of many Cellular signaling pathway,and is their regulator,balanc-er,and integrator.Therefore,P53 has a very important role in regulating cellular energy metabolism,keeping oxidative stress balance and the steady-state of organism.One of the strategies is to maintain the gene expression steady-state of P53 for preventing cancer and premature aging.exercise can promote the body's metabolism,delay cellular senescence,reduce chances of cancerous cells,therefore,appropriate exercise may continue the P53 signal steady-state by regulating the signaling pathway of energy metabolism.
     Purpose:Training program of endurance training and sprint interval training and an acute endurance training were founded in the study,Endurance training model is based on a long,low-intensity and Sprint interval training model is based on short-term, high-intensity.one of the purposes is to determine the gene expression to training program in physiological and pathological conditions,expected to reveal the molecular mechanism of skeletal muscle cell's adaption to training program, and to explore the cause of keeping the balance of energy metabolism and oxidative stress from the level of gene expression,and to provide some evidences that exercise can improve the physiological function of skeletal muscle and promote the improvement and recovery of DM.
     Methods:40 male Sprague-Dawley rats were distributed into four groups:sedentary(CON,n=10),an acute endurance training(AE,n=10),endurance training(ET,n=10),sprint interval training(SIT,n=10).Endurance training consisted of 30-60min of continuous threadmill exercise at a lower intensity(<16.7m/min)per day,6 days/wk.Sprint interval training consisted of 9-10 repeats of a 10s"all ouf"threadmill test(≥42m/min)with 30-60s recovery between repeats,6 days/wk. After 6 weeks of either sprint interval or endurance training,the rats of group CON,ET and SIT were decapitated 24h after the last threadmill test.Group AE were administered similarly to Group CON in the 1-6wk,After an acute endurance training of 60min of continuous threadmill exercise at a lower intensity(<16.7m/min),the rats of Group AE were decapitated too.Blood was collected from heart,blood glucose,insulin, adiponectin,triglyceride,total cholesterol,glycated serum protein and glycolated hemoglobin were detected.The content of lactate,GSH and GSSG in gastrocnemius homogenate were measured by spectrophotometric assays.Real-time PCR was used to determine the mRNA content of P53,SCO2,SCO1,COXⅡ,TIGAR,HKII,PGM2, PDK4,PFKm,CPT1-β,AMPKa2,GLUT4 in gastrocnemius.Western blot was used to determine the protein content of P53,TIGAR,SCO2,SCO1,COXⅡin gastrocnemius.
     Results:(1) In the normal physiological conditions,AE,ET and SIT did not affect the blood glucose homeostasis and insulin resistance index from the overall level,but significantly downregulated the levels of total cholesterol,triglyceride,and glycosylated serum protein,ET also significantly increased adiponectin secretion.In the pathological conditions of diabetes,ET showd the sound effect in increasing adiponectin and reducing blood glucose,glycosylated serum protein,insulin resistance index and total cholesterol.
     (2) In the normal physiological conditions,AE,ET and SIT have no significant impact in both gene transcription and protein expression of P53.However,it Shows a different result in the pathological conditions,P53 gene transcription and protein expression were all significantly reduced.
     (3) In the normal physiological conditions,AE significantly increased SCO2 gene transcription,but had no effect in its protein expression,and had no effect in gene expression of SCO1 and COXⅡ.ET obviously upregulated the gene expression of SCO2 and SCOl,but had no effect in COXⅡ,however,ET clearly increased the protein expression of SCO2 and COXII.SIT had no effect in SCO2 gene transcription,but very significantly increased the gene transcription of SCO1 and COXII,in addition,SIT obviously upregulated the protein expression of SCO2 and COXⅡ.All AE,ET and SIT clearly elevated the ratio of GSH/GSSGIn the pathological conditions,ET have no effect in gene expression of SCO2 and SCOl,and significantly reduced the COXII protein expression,but the ratio of GSH/GSSG clearly elevated.
     (4)In the normal physiological conditions,AE significantly increased the gene transcription of TIGAR,PGM2,but had no effect in TIGAR protein expression and the content of lactate and the gene transcription of HKII and PFKm.ET clearly upregulated TIGAR gene expression from both gene transcription and protein expression,but had no effect in the content of lactate and the gene transcription of PGM2,HKII and PFKm.SIT very significantly increased the gene transcription of PFKm and the content of lactate,but had no effects in TIGAR gene expression and the gene transcription of PGM2,HKII and PFKm.In the pathological conditions,ET significantly increased the gene transcription of HKII,PFKm,GLUT4 and AMPKa2,but had no effect in gene expression of TIGAR,gene transcription of PGM2 and the content of lactate.
     (5) In the normal physiological conditions,AE very significantly reduced the gene transcription of PDK4,and had no effect in CPT-1β.ET very significantly reduced the gene transcription of PDK4 but very significantly increased the leval of CPT-1β.SIT clearly upregulated the gene transcription of both PDK4 and CPT-1β.In the pathological conditions,ET obviously downregulated the leval of PDK4,but had no effect in CPT-1β.
     Conclusions:(1) In the normal physiological conditions,in terms of the blood indicators,Exercise did not affect the body's normal physiological steady-state from the overall leval,and has a certain effect in improving the glucose and lipid metabolism.In the pathological conditions,ET may be an effective way to improve the high blood sugar symptoms of diabetes.
     (2) In the normal physiological conditions,exercise has no obvious effect in P53, its important role might be to promote the functions of regulation, inspection, balance, integration of P53,all of these were to maintain the normal physiological function.In the pathological conditions,ET downregulated the gene expression of P53.Might be affected by DM,the body's normal steady-state couldn't be maintained by P53,the downregulation might be to promote cell survival and delay the cell's apoptosis and aging of GK rats.
     (3) In the normal physiological conditions,the improvement of mitochondrial aerobic respiration induced by ET and SIT might be a good adaption to long-term training,but AE did the opposite.SCO1 gene expression seemed insensitive to training programe,the significant upregulation of gene transcription level might be the short-term stress response of the last training.As to the rise of GSH/GSSG under three exercise modes,exercise might have improved the environment of the body's redox.In the pathological conditions,ET seemed have no effective influence in mitochondrial aerobic respiration,speculating from the comprehensive results,its important role might be to promote the cell's survival.Therefore,we could make a conclusion that the important function of P53 is riot to enhance exercise ability but to save all forces to promote cell survival under the pathological conditions.
     (4) In the normal physiological conditions,the significant upregulation of TIGAR gene expression induced by ET Will help the body's energy metabolism shift to the more cost-effective aerobic respiration pathway,and is a good adaptation to ET. Training hadn't cause the adverse effects to the uptaking of glucose,the effective control of blood glucose homeostasis will have an important significance in maintaining normal physiological function of the body.The P53 steady-state induced by training seems keep the steady-state of P53 target gene in the glycolytic pathway, ET has a role in promoting mitochondrial respiration but has little impact on the glycolytic pathway.Lactic acid generation and PFKm gene transcription shows obvious increase,To some extent,the energy production induced by SIT is mainly likely to anaerobic metabolism,and this is consistent with its energy metabolism characteristics.ET downregulated the GK rats' ability of oxidative stress,this may be an contribution to diabetic rat cells'survival.
     (5) In the pathological conditions,ET may be significantly contribute to the glucose uptake ability of skeletal muscle through AMPK-GLUT4 glucose transport mechanism that is the energy-sensitive pathway,and this is a effective way to improve the high blood sugar.But considered the obvious downregulation of P53 gene expression,GLUT4 and HKII seem to have lost the direct inhibition by P53,and developed towards glycolysis,P53 also can not suppress glycolysis pathway by TIGAR.Although these changes reduced the blood sugar,it still may be induce the malignant lesions,it shows that the body is not well adapted to the training.the transduction pathway may occur some changes under the pathological conditions,in this study,ET may not be entirely beneficial to DM rats,the important significance of exercise to diabetes may be lies in prevention rather than treatment.
     (6) In the normal physiological conditions,ET significantly diminished the phosphorylation of PDK4 on the PDC,strengthened the pyruvate oxidation of skeletal muscle.At the same time,CPT-1βexpression very significantly increased,also strengthened the capacity of fatty acid oxidation.All these shows that ET is an effective way to activate mitochondrial respiratory. SIT may strengthen the phosphorylation of PDK4 on the PDC,which main energy supply is likely to glycolysis,but simultaneously increased the CPT-1βexpression.All these shows that SIT might be an effective way to activate mitochondrial respiratory too.In the pathological conditions,ET obviously reduced the PDK4 leval of GK rats,it was beneficial to GK rat's aerobic respiration,and is also a molecular basis that exercise can improve symptoms of diabetes.however,the CPT-1βgene expression hasn't occurred the same good adaptation to ET as the same as in the normal physiological conditions.
     (7)A11 comprehensive results shows that different training programe has the different effect,long-term exercise enables the body to produce the better adaptation. Compared with ET and SIT,both has a similar adaptation,thus,SIT may be a more effective way of saving time.
     (8)When organism is in training,not every factor follows its own necessary energy generation way in energy metabolism pathway regulated by P53,Especially in the pathological conditions of DM,some changes of GK rats induced by ET show the obvious characteristics of anaerobic energy supply,exercise does affected the energy metabolism pathway,some may be beneficial to body's retrieval and healthy,but others may be adverse.The impact induced by exercise is very complex,we couldn't make the simple conclusion that exercise is beneficial or harmful to the body from a few aspects but should consider from the comprehensive aspects.After all,the improvement of function from the overall leval is our ultimate goal.
引文
[1]Achanta G,Sasaki R,Feng L,et al.Novel role of P53 in maintaining mitochondrial genetic stability through interaction with DNA Pol gamma[J].EMBO J,2005,24:3482-3492.
    [2]Alkhalaf M,Hamoda H,Abdella N.Polymorphism of P53 gene codon 72 in Kuwaiti with coronary artery disease and diabetes[J].International Journal of Cardiology,2007,115:1-6.
    [3]Anderson S,Banker A T,Barrell B G,et al.Sequence and organization of the human mitochondri-al genomel[J].Nature,1981,290(5806):457-465.
    [4]Andruzzi L,Nakano M,Nilges MJ,et al.SpectroSCOpic studies of metal binding and metal sele-ctivity in Bacillus subtilis BSCO, a Homologue of the Yeast Mitochondrial Protein SCOlp[J].J Am Chem Soc,2005,127(47):16548-16558.
    [5]Araki N,Morimasa T,Sakai T,et al.Comparative analysis of brain proteins from P53-deficient mice by two-dimensional electrophoresis[J].Electrophoresis,2000,21:1880-9.
    [6]Baar K.Training for endurance and strength:lessons from cell signaling[J].Med Sci Sports Exerc,2006,38:1939-1944.
    [7]Bajotto QMurakami T,Nagasaki.Downregulation of the skeletal muscle pyruvate dehydrogenase complex in the Otsuka Long-Evans Tokushima Fatty rat both before and after the onset of diabetes mellitus[J].Life Sci,2004,75:2117-2130.
    [8]Bakhanashvili M,Grinberg S,Bonda E,et al.P53 in mitochondria enhances the accuracy of DNA synthesis[J].Cell Death Differ,2008,15:1865.
    [9]Banci L,Bertini I,Calderone V,et al. A hint for the function of human SCO1 from different stru-ctures [J].Proc Natl Acad Sci USA,2006,103:8595-8600.
    [10]Bao H,Kasten SA.Pyruvate dehydrogenase kinase isoform 2 activity stimulated by speeding up the rate of dissociation of ADP[J].Biochemistry,2004,43:13442-13451.
    [11]Barros MH,Johnson A,Tzagoloff A.COX23,a homologue of COX17,is required for cytochro-me oxidase assembly[J].J Biol Chem,2004,279:31943-31947.
    [12]Bauer DE,Harris MH,Plas DR,et al.Cytokine stimulation of aerobic glycolysis in hematopoietic cells exceeds proliferative demand[J].FASEB J,2004,18:1303-5.
    [13]Bell S,Klein C,Muller L,et al.P53 contains large unstructured regions in its native state[J] J Mol Biol,2002,322:917-927.
    [14]Bensaad K,Tsuruta A,Selak MA, et al.TIGAR,a P53-inducible regulator of glycolysis and apoptosis[J].Cell,2006,126:107-20.
    [15]Bensaad K,Vousden KH.P53:new roles in metabolism[J].Trends in Cell Biology,2007, 17:286-291.
    [16]Bezaire V,Heigenhauser GJ,Spriet LL.Regulation of CPT-1 activity in intermyofibrillar and subsarcolemmal mitochondria from human and rat skeletal muscle[J].Am J Physiol Endocrinol Metab,2004,286(1):E85-91.
    [17]Bonfigli A,Colafarina S,Falone S,et al.High levels of antioxidant enzymatic defence assure good protection against hypoxic stress in spontaneously diabetic rats [J].The International Journal of Biochemistry & Cell Biology,2006,38(12):2196-2208.
    [18]Bourdon JC,Fernandes K,Murray-Zmijewski F,et al.P53 isoforms can regulate P53 transcriptional acivity[J].Genes Dev,2005,19(18):2122-37.
    [19]Braithwaite AW, Royds JA,Paul Jackson.The P53 story:layers of complexity[J].Carcinogenes-is,2005,26(7):1161-1169.
    [20]Brand KA,Hermfisse U.Aerobic glycolysis by proliferating cells:a protective strategy against reactive oxygen species[J].FASEB J,1997,11:388-395.
    [21]Brown JP,Wei W,Sedivy JM.Bypass of senescence after disruption of p21CIP1/WAF1 gene in normal diploid human fibroblasts[J].Science,1997,277:831-833.
    [22]Budanov AV,Sablina AA,Feinstein E,et al.Regeneration of peroxiredoxins by P53-regulated sestrins,homologs of bacterial AhpD[J].Science,2004,304:596-600.
    [23]Bunz F,Dutriaux A,Lengauer C,et al.Requirement for P53 and p21 to sustain G2 arrest after DNA damage[J].Science,1998,282:1497-1501.
    [24]Canadillas JM,Tidow H,Freund SM,et al.Solution structure of P53 core domain:Structural basis for its instability[J]. Proc Natl Acad Sci,2006,103:2109-2114.
    [25]Cao L,Li W,Kim S,et al.Senescence, aging, and malignant transformation mediated by P53 in mice lacking the Brca1 full-length isoform[J].Genes Dev,2003,17(2):201-213.
    [26]Cappiello M,Amodeo P,Mendez BL,et al.Modulation of aldose reductase activity through S-thiolation by physiological thiols[J].Chem Biol Interact,2001,130-132:597-608.
    [27]Chen J,Ruan H,Ng SM,et al.Loss of function of def selectively up-regulates {Delta} 113P53 expression to arrest expansion growth of digestive organs in zebrafish[J].Genes Dev,2005, 19(23):2900-2911.
    [28]Chen LH,Chen JD.Mdm2-Arf complex regulates P53 sumoylation[J].Oncogene,2003, 22:5348-5357.
    [29]Chen Y,Jungsuwadee P,Vore M,et al.Collateral damage in cancer chemotherapy:oxidative stress in nontargeted tissues[J].Mol Intervent,2007,7:147-156.
    [30]Chinenov YV.Cytochrome c oxidase assembly factors with a thioredoxin fold are conserved among prokaryotes and eukaryotes[J].J Mol Med,2000,78:239-242.
    [31]Chipuk JE,Bouchier-Hayes L,Kuwana T,et al.PUMA couples the nuclear and cytoplasmic proapoptotic function of P53[J].Science,2005,309:1732-1735.
    [32]Chipuk JE,Kuwana T,Bouchier-Hayes L,et al.Direct activation of Bax by P53 mediates mitochondrial membrane permeabilization and apoptosis[J].Science,2004,303(5660):1010-4.
    [33]Coppola S,Ghibelli L.GSH extrusion and and the mitochondrial pathway of apoptotic signalling[J].Biochem Soc Trans,2000,28:56-61.
    [34]Courtois S,Verhaegh G,North S,et al.DeltaN-P53,a natural isoform of P53 lacking the first transactivation domain,counteracts growth suppression by wild-type P53[J].Oncogene,2002, 21:6722-6728.
    [35]Creer A,Gallagher P,Slivka D,et al.Influence of muscle glycogen availability on ERK1/2 and Akt signaling after resistance exercise in human skeletal muscle[J].J Appl Physiol,2005, 99(3):950-6.
    [36]Cristofalo VJ,Pignolo RJ.Replicative senescence of human fibroblast-like cells in cuture[J]. Physiological Reviews,1993,73:617-638.
    [37]DeBerardinis RJ,Lum JJ,Hatzivassiliou G,et al.The biology of cancer:metabolic reprogramming fuels cell growth and proliferation[J].Cell Metab,2008,7:11-20.
    [38]Desaint S,Luriau S,Aude JC,et al.Mammalian antioxidant defenses are not inducible by H2O2[J].J Biol Chem,2004,279:31157-31163.
    [39]De Souza-Pinto NC,Harris CC,Bohr VA.P53 functions in the incorporation step in DNA base excision repair in mouse liver mitochondria[J].Oncogene,2004,23:6559-6568.
    [40]Dhar SK,Xu Y,Chen Y,et al.Specificity protein 1-dependent P53-mediated suppression of human manganese superoxide dismutase gene expression[J].J Biol Chem,2006,281:21698-21709.
    [41]Dickinson EK,Adams DL,Schon EA,et al.A human SCO2 mutation helps define the role of SCOlp in the cytochrome oxidase assembly pathway[J].J Biol Chem,2000,275:26780-26785.
    [42]Dolle ME,Snyder WK,Dunson DB,et al.Mutational fingerprints of aging[J].Nucleic Acids Res, 2002,30 (2):545-549.
    [43]Donahue RJ,Razmara M,Hoek JB,et al.Direct influence of the P53 tumor suppressor on mitoc-hondrial biogenesis and function[J].FASEB J,2001,15:635-644.
    [44]Dumble M,Moore L,Chambers SM,et al.The impact of altered P53 dosage on hematopoietic stem cell dynamics during aging.Blood[J].2007,109(4):1736-1742.
    [45]Elstrom RL,Bauer DE,Buzzai M,et al.Akt stimulates aerobic glycolysis in cancer cells[J]. Cancer Res,2004,64:3892-3899.
    [46]Essmann F,Pohlmann S,Gillissen B,et al.Irradiation-induced translocation of P53 to mitochondria in the absence of apoptosis[J].J Biol Chem,2005,280:37169-37177.
    [47]Fabbro M,Henderson BR.Regulation of tumor suppressors by nuclear-cytoplasmic shuttling[J].Exp Cell Res,2003,282(2):59-69.
    [48]Fantin VR,St-Pierre J,Leder P.Attenuation of LDH-A expression uncovers a link between glycolysis,mitochondrial physiology,and tumor maintenance[J].Cancer Cell,2006,9:425-434.
    [49]Feng Z,Hu W,De SE,et al.The regulation of AMPK betal,TSC2,and PTEN expression by P53: stress, cell and tissue specificity,and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways[J].Cancer Res,2007,67:3043.
    [50]Feng Z,Hu W,Teresky AK,et al.Declining P53 function in the aging process:a possible mechanism for the increased tumor incidence in older populations[J].Proc Natl Acad Sci USA, 2007,104 (42):16633-16638.
    [51]Feng Z,Zhang H,Levine AJ,et al.The coordinate regulation of the P53 and mTOR pathways in cells[J].Proc Natl Acad Sci USA,2005,102:8204-8209.
    [52]Fields J,Hanisch JJ,Choi JW,et al.How does P53 regulate mitochondrial respiration[J].IUBMB Life,2007,59(10):682-4.
    [53]Folmes CD,Lopaschuk GD.Role of malonyl-CoA in heart disease and the hypothalamic control of obesity[J].Cardiovasc Res,2007,73(2):278-287.
    [54]Forman HJ.Use and abuse of exogenous H2O2 in studies of signal transduction[J].Free Radic Biol Med,2007,42:926-932.
    [55]Fuster G,Busquets S,Ametller E,et al.Are peroxisome proliferator-activated receptors involved in skeletal muscle wasting during experimental cancer cachexia?Role of beta2-adrenergic agonists[J].Cancer Res,2007,67(13):6512-9.
    [56]Galvao DA, Newton RU,Taaffe DR.Anabolic responses to resistance training in older men and women:A brief review[J].Journal of Aging And Physical Activity,2005,133:343-358.
    [57]Garcia-Cao I,Garcia-Cao M,Martin-Caballero J,et al."Super P53" mice exhibit enhanced DNA damage response,are tumor resistant and age normally[J].EMBO J,2002,21(22):6225-6235.
    [58]Gaster M.Fibre type dependent expression of glucose transporters in human skeletal muscles[J].APMIS Suppl,2007,115(121):6-47.
    [59]Gentry A,Venkatachalam S.Complicating the role of P53 in aging[J].Aging Cell,2005, 4(3):157-160.
    [60]George Tsirpanlis MD.Cellular Senescence, Cardiovascular Risk, and CKD:A Review of Established and Hypothetical Interconnections[J].American Journal of Kidney Diseases, 2008,51(1):131-144.
    [61]Gillies RJ,Gatenby RA.Adaptive landscapes and emergent phenotypes:why do cancers have high glycolysis[J].J Bioenerg Biomembr.2007,39:251-7.
    [62]Giorgio M,Migliaccio E,Orsini F,et al.Electron transfer between cytochrome c and p66(Shc) generates reactive oxygen species that trigger mitochondrial apoptosis[J].Cell,2005,122:221-233.
    [63]Giral P,Jacob N,Dourmap C,et al.Elevated gamma-glutamyltransferase activity and perturbed thiol profile are associated with features of metabolic syndrome[J].Arterioscler ThrombVasc Biol, 2008,28:587-593.
    [64]Glass DJ.Signaling pathways that mediate skeletal muscle hypertrophy and atrophy[J].Nat Cell Biol,2003,5:87-90.
    [65]Glerum DM,Shtanko A,Tzagoloff A.SCO1 and SCO2 act as high copy suppressors of a mitochondrial copper recruitment defect in Saccharomyces cerevisiae[J].J Biol Chem,1996a, 271:20531-20535.
    [66]Gobert C,Skladanowski A,Larsen AK.The interaction between P53 and DNA topoisomerase I is regulated differently in cells with wild-type and mutant P53[J].Proc Natl Acad Sci,1999, 96:10355-10360.
    [67]Green DR,Chipuk JE.P53 and metabolism:inside the TIGAR[J].Cell,2006,126:30-32.
    [68]Guttridge DC.Signaling pathways weigh in on decisions to make or break skeletal muscle[J]. Curr Opin Clin Nutr Metab Care,2004,7:443-450.
    [69]Hanahan D,Weinberg RA.The hallmarks of cancer[J].Cell,2000,100:57-70.
    [70]Hatoko M,Tanaka A,Kuwahara M.Difference of molecular response to ischemia-reperfusion of rat skeletal muscle as a function of ischemic time:study of the expression of P53,p21(WAF-1), Bax protein,and apoptosis[J].J E quine Vet J Suppl,2002,34:275-278.
    [71]Hawley JA,Lessard SJ.Exercise training-induced improvements in insulin action[J].Acta Physiol,2008,192:127-135.
    [72]Hayflick L,Moorehead PS.The serial cultivation of human diploid cell strains[J].Exp Cell Res, 1961,25:585-621.
    [73]Holloway GP,Bezaire V,Heigenhauser GJ,et al.Mitochondrial long chain fatty acid oxidation,fatty acid translocase/CD36 content and carnitine palmitoyl-transferase I activity in human skeletal muscle during aerobic exercise[J].J Physiol,2006,571(1):201-210.
    [74]Hood DA.Invited review:contractile activity-induced mitochondrial biogenesis in skeletal muscle[J].J Appl Physiol,2001,90:1137.
    [75]Hood DA,Irrcher I,Ljubicic V,et al.Coordination of metabolic plasticity in skeletal muscle[J].J Exp Biol.2006,209(Pt 12):2265-2275.
    [76]Hood DA,Saleem A.Exercise-induced mitochondrial biogenesis in skeletal muscle[J].Nutr Metab Cardiovasc Dis,2007,17:332.
    [77]Horng YC,Cobine PA,Maxfield AB,et al.Specific copper transfer from the COX 17 metallo-chaperone to both SCO1 and COX11 in the assembly of yeast cytochrome C oxidase[J]J Biol Chem,2004,279:35334-35340.
    [78]Horng YC,Leary SC,Cobine PA,et al.Human SCO1 and SCO2 function as copper-binding proteins[J].J Biol Chem,2005,280:34113-34122.
    [79]Huang SH,Czech MP.The GLUT4 glucose transporter[J].Cell metabolism,2007,5(4):237-252.
    [80]Hunter GR,McCarthy JP,Bamman MM.Effects of resistance training on older adults[J].Sports Med,2004,34:329-348.
    [81]Hussain SP,Amstad P,He P,et al.P53-induced up-regulation of MnSOD and GPx but not catalase increases oxidative stress and apoptosis[J].Cancer Res,2004,64:2350-2356.
    [82]Imriskova-Sosova I,Andrews D,Yam K,et al.Characterization of the redox and metal binding activity of BsSCO,a protein implicated in the assembly of cytochrome c oxidase[J].Biochemistry, 2005,44:16949-16956.
    [83]Jan-philipp K,Wei G.P53 aerobics:the major tumor suppressor fuels your workout[J].Cell Metabolism,2006,4:1-4.
    [84]Jeffers JR,Parganas E,Lee Y,et al.PUMA is an essential mediator of P53-dependent and-independent apoptotic pathways[J].Cancer Cell,2003,4:321-328.
    [85]Jen KY,Cheung VG,et al.Identification of novel P53 target genes in ionizing radiation response[J].Cancer Res,2005,65:7666-7673.
    [86]Jiang HF,Guan WJ,Pinney D,et al.Relaxation of yeast mitochondrial functions after whole-genome duplication[J].Genome Res,2008,18(9):1466-1471.
    [87]Jin H, Wu Z, Tian T,et al.Apoptosis in atrophic skeletal muscle induced by brachial plexus injury in rats[J].J Trauma,2001,50:31-35.
    [88]Jin S.P53,Autophagy and tumor suppression[J].Autophagy,2005,1:171-173.
    [89]Jones DP.Disruption of mitochondrial redox circuitry in oxidative stress[J].Chem Biol Interact, 2006,163:38-53.
    [90]Jones RG,Plas DR,Kubek S,et al.AMP-activated protein kinase induces a P53-dependent metabolic checkpoint[J].Mol Cell,2005,18:283-293.
    [91]Jung EJ,Liu G,Zhou W,et al.Myosin VI is a mediator of the P53-dependent cell survival pathway[J].Mol Cell Biol,2006,26:2175-2186.
    [92]Kaneto H,Katakami N,Kawamori D,et al.Involvement of oxidative stress in the pathogenesis of diabetes[J].Antioxid Redox Signal,2007,9:355-366.
    [93]Kato M,Li J,Chuang JL,et al.Distinct structural mechanisms for inhibition of pyruvate dehydrogenase kinase isoforms by AZD7545,dichloroacetate,and radicicol[J].Structure,2007, 15(8):992-1004.
    [94]Kemp M,Go YM,Jones DP.Nonequilibrium thermodynamics of thiol/disulfide redox systems:a perspective on redox systems biology[J].Free Radic Biol Med,2008,44:921-937.
    [95]Kerner J,Hoppel C.Fatty acid import into mitochondria[J].Biocham Biophys Acta,2000, 1486:1-17.
    [96]Kim E,Giese A,Deppert W.Wild-type P53 in cancer cells:When a guardian turns into a blackguard [J].Biochemical Pharmacology,2009,77(1):11-20.
    [97]Kim JS,Cross JM,Bamman MM.Impact of resistance loading on myostatin expression and cell cycle regulation in young and older men and women[J].Am J Physiol Endocrinol Metab 2005, 288:E1110-9.
    [98]Kim JW, Dang CV.Cancer's molecular sweet tooth and the Warburg Effect[J].Cancer Res, 2006,66(18):8927-8930.
    [99]Komeili A,O'Shea EK.Nuclear transport and transcription[J].Curr Opin Cell Biol,2000, 12:355-360.
    [100]Kondoh H,Lleonart ME,Gil J, et al.Glycolytic enzymes can modulate cellular life span[J]. Cancer Res,2005,65:177-85.
    [101]Kou CH,Broening KS,Ivy JL.Regulation of GLUT4 protein expression and glycogen storage after prolonged exercise[J].Acta Physiologica Scandinavica,1999,165(2):193-201.
    [102]Krummeck G,Rodel G.Yeast SCO1 protein is required for a post-translational step in the accumulation of mitochondrial cytochrome c oxidase subunits Ⅰ and Ⅱ[J].Curr Genet,1990, 18:13-15.
    [103]Lagranha CJ,Hirabara SM,Curi R,et al.Glutamine supplementation prevents exercise-induced neutrophil apoptosis and reduces p38 MAPK and JNK phosphorylation and P53 and caspase 3 expression[J].Cell Biochemistry and Function,2007,25(5):563-569.
    [104]Lake AN,Bedford MT.Protein methylation and DNA repair[J].Mutat Res Fundam Mol Mech Mutagen,2007,618:91-101.
    [105]Lane DP.P53:the guardian of the genome.Nature,1992,358(6381):15-16.
    [106]Leary SC,Cobine PA,Kaufman BA,et al.The human cytochrome c oxidase assembly factors SCO1 and SCO2 have regulatory roles in the maintenance of cellular copper homeostasis[J].Cell Metab,2007,5:9-20.
    [107]Leary SC,Kaufman BA,Pellecchia G,et al.Human SCO1 and SCO2 have independent,coop-erative functions in copper delivery to cytochrome c oxidase[J].Hum Mol Genet,2004,13:1839-48.
    [108]Lee SH,Blair IA.Oxidative DNA damage and cardiovascular disease[J].Trends Cardiovasc Med,2001,11:148-55.
    [109]Levine B,Kroemer G.Autophagy in the pathogenesis ofdisease[J].Cell,2008,132:27-42.
    [110]Li H,Jogl G.Structural and Biochemical Studies of TIGAR(TP53-induced Glycolysis and Apoptosis Regulator)[J] J Biol Chem,2009,284(3):1748-1754.
    [111]Liu Z,Lu H,Shi H,et al.PUMA overexpression induces reactive oxygen species generation and proteasome-mediated stathmin degradation in colorectal cancer cells [J].Cancer Res,2005, 65:1647-1654.
    [112]Ljubicic V,Hood DA.Diminished contraction-induced intracellular signaling towards mitochondrial biogenesis in aged skeletal muscle[J].Aging Cell,2009,8:394.
    [113]Lode A,Kuschel M,Paret C,et al.Mitochondrial copper metabolism in yeast:interaction between SCOlp and COX2p[J].FEBS Lett,2000,485(1):19-24.
    [114]Los Reyes AD, Bagchi D,Preuss HGOverview of resistance training, diet, hormone replacement and nutritional supplements on age-related sarcopenia-a minireview[J].Res Commun Mol Pathol Pharmacol,2003,113-114:159-170.
    [115]Lyakhov IG,Krishnamachari A,Schneider TD.DiSCOvery of novel tumor suppressor P53 response elements using information theory[J].Nucleic Acids Res,2008,36:3828-33.
    [116]Lynette M,Xiongbin Lu,Nader G,et al.Aging-associated truncated form of P53 interacts with wild-type P53 and alters P53 stability,localization,and activity[J].Mechanisms of Ageing and Development,2007,128:717-730.
    [117]Maier B,Gluba W,Bernier B,et al.Modulation of mammalian life span by the short isoform of P53[J].Genes Dev,2004,18(3):306-319.
    [118]Marchenko ND,Wolff S,Erster S,et al.Monoubiquitylation promotes mitochondrial P53 translocation[J].EMBO J,2007,26:923-934.
    [119]Marine JC,Jochemsen AG. Mdmx as an essential regulator of P53 activity[J].Biochem Biophys Res Commun,2005,331:750-760.
    [120]Marnett LJ.Oxyradicals and DNA damage[J].Carcinogenesis,2005,21:361-70.
    [121]Matoba S,Kang JQPatino WD,et al.P53 regulates mitochondrial respiration[J].Science,2006, 312:1650-1653.
    [122]Matsumoto K,Ishihara K,Tanaka K,et al.An adjustable current swimming pool for the evaluation of endurance capacity of mice[J]. J Appl,Physiol,1996,81:1843.
    [123]Matthews C,Gorenne I,SCOtt S,et al.Vascular smooth muscle cells undergo telomere-based senescence in human atherosclerosis:effects of telomerase and oxidative stress[J].Circ Res,2006, 99(2):156-164.
    [124]Ma W,Sung HJ,Park JY,et al.A pivotal role for P53:balancing aerobic respiration and glycolysis[J].J Bioenerg Biomembr,2007,39:243-6.
    [125]Maximo V,Sobrinho-Simoes M.Hurthle cell tumours of the thyroid.A review with emphasis on mitochondrial abnormalities with clinical relevance[J].Virchows Arch,2000,437:107-115.
    [126]Mayers RM,Leighton B,Butlin.PDK kinase inhibitors:a novel therapy for Type II diabetes[J]. Biochem Soc Trans,2005,33:367-370.
    [127]McGarry JD.Dysregulation of fatty acid metabolism in the etiology of type 2 diabetes[J]. Diabetes,2002,51(1):7-18.
    [128]McGarry JD.Travels with carnitine palmitoytransferase Ⅰ:from liver to germ cell with stops in between[J].Biochemical Society Transactions,2001,(29):241-245.
    [129]Mendrysa SM,Mcelwee MK,Michalowski J,et al.Mdm2 is critical for inhibition of P53 during lymphopoiesis and the response to ionizing radiation[J].Mol Cell Biol,2003,23:462-473.
    [130]Mendrysa SM,O'leary KA,Mcelwee MK,et al.Tumor suppression and normal aging in mice with constitutively high P53 activity[J].Genes&Dev,2006,20:16-21.
    [131]Menon SG,Goswami PC.A redox cycle within the cell cycle:ring in the old with the new[J]. Oncogene,2007,26:1101-1109.
    [132]Mercurio F,Manning AM.NF-κB as a primary regulator of the stress response[J].Oncogene, 1999,18:6163-6171.
    [133]Michel H,Behr J,Harrenga A,et al.Cytochrome c oxidase:structure and spectroSCOpy[J]. Annu Rev Biophys Biomol Struct,1998,27:329-356.
    [134]Michael P,Stefania L,Roger A.Skeletal muscle lipid deposition and insulin resistance:effect of dietary fatty acids and exercise[J].Am J Clin Nutr,2007,85:662-77.
    [135]Mieyal JJ,Gallogly MM,Qanungo S,et al.Molecular mechanisms and clinical implications of reversible protein S-glutathionylation[J].Antioxid Redox Signal,2008,10:1941-1988.
    [136]Migliorini D,Denchi EL,Danovi D,et al.Mdm4(Mdmx)regulates P53-induced growth arrest and neuronal cell death during early embryonic mouse development[J].Mol Cell Biol,2002, 22:5527-5538.
    [137]Millau JF, Bastie N, Drouin R.P53 transcriptional activities:A general overview and some thoughts[J].Mutat Res,2009,681(2-3):118-133.
    [138]Mills AA.P53:link to the past,bridge to the future[J].Genes&Dev,2005,19:2091-2099.
    [139]Modica-Napolitano JS.Singh KK.Mitochondria as targets for detection and treatment of cancer[J].Exp Rev Mol Med,2002,4:1-19.
    [140]Moiseeva O,Mallette FA,Mukhopadhyay UK,et al.DNA damage signaling and P53-depend-ent senescence after prolonged beta-interferon stimulation[J].Mol Biol Cell,2006,17:1583-92.
    [141]Moll UM,Marchenko N,Zhang XK.P53 and Nur77/TR3—transcription factors that directly target mitochondria for cell death induction[J].Oncogene,2006,25:4725-4743.
    [142]Moll UM,Ostermeyer AG,Haladay R,et al.Cytoplasmic sequestration of wild-type P53 protein impairs the G1 checkpoint after DNA damage[J].Mol Cell Biol,1996,16:1126-1137.
    [143]Morris SM.A role for P53 in the frequency and mechanism of mutation[J].Mutat Res, 2002,511:45-62.
    [144]Muoio DM,Koves TR.Skeletal muscle adaptation to fatty acid depends on coordinated actions of the PPARs and PGC1 a implications for metabolic disease[J].J Appl Physiol Nutr Metab,2007,32:874-883.
    [145]Nader GA,Esser KA.Intracellular signaling specificity in skeletal muscle in response to different modes of exercise[J].J Appl Physiol,2001,90:1936.
    [146]Nakahara T, Hashimoto K, Hirano M,et al.Acute and chronic effects of alcohol exposure on skeletal muscle c-myc, P53, and Bcl-2 mRNA expression[J].Am J Physiol Endocrinol Metab,2003, 285:E1273-E1281.
    [147]Nemajerova A,Erster S,Moll UM.The post-translational phosphorylation and acetylation modification profile is not the determining factor in targeting endogenous stress-induced P53 to mitochondria[J].Cell Death Differ,2005,12:197-200.
    [148]Nie L,Sasaki M,Maki CG.Regulation of P53 nuclear export through sequential changes in conformation and ubiquitination[J].J Biol Chem,2007,282:14616-14625.
    [149]O'Brate A,Giannakakou P.The importance of P53 location:nuclear or cytoplasmic zip code[J].Drug Resist Updat,2003,6:313-322.
    [150]Odetti P,Pesce C,Traverso N,et al.Comparative trial of N-acetyl-cysteine,taurine,and oxerutin on skin and kidney damage in long-term experimental diabetes[J].Diabetes,2003,52:499-505.
    [151]Ohnishi T, Takahashi A, Wang X, et al.Accumulation of a tumor suppressor P53 protein in rat muscle during a space flight[J].Mutat Res,1999,430:271-274.
    [152]Okar DA,Manzano A,Navarro-Sabate A,et al.PFK-2/FBPase-2:maker and breaker of the essential biofactor fructose-2,6-bisphosphate[J].Trends Biochem Sci,2001,26:30-35.
    [153]Olovnikov IA,Kravchenko JE,Chumakov PM.Homeostatic functions of the P53 tumor suppressor:Regulation of energy metabolism and antioxidant defense[J].Seminars in Cancer Biology,2009,19:32-41.
    [154]O'Keefe K,Li HP,Zhang YP.Nucleocytoplasmic shuttling of P53 is essential for MDM2-mediated cytoplasmic degradation but not ubiquitination[J].Mol Cell Biol,2003,23(18):6396-6405.
    [155]Pan JG,Mak TW.Metabolic targeting as an anticancer strategy:dawn of a new era[J].Sci STKE,2007,381(4):14-15.
    [156]Papadopoulou LC,Sue CM,Davidson MM,et al.Fatal infantile cardioencephalomyo-pathy with COX deficiency and mutations in SCO2,a COX assembly gene[J].Nature genetics,1999, 23:333-337.
    [157]Patel MS,Korotchkina LGRegulation of the pyruvate dehydrogenase complex[J].Biochem Soc Trans,2006,34(4):217-22.
    [158]Pecina P,Houstkova H,Hansikova H,et al.Genetic defects of cytochrome c oxidase assembly[J].Physiological research,2004,53(suppl.l):S213-S223.
    [159]Pfeiffer T,Schuster S,Bonhoeffer S.Cooperation and competition in the evolution of ATP-producing pathways[J].Science,2001,292:504-7.
    [160]Pietrowski D,Bettendorf H,Riener EK,et al.Recurrent pregnancy failure is associated with a polymorphism in the P53 tumour suppressor gene[J].Hum Reprod,2005,20:848-51.
    [161]Pilegaard H,Neufer PD.Transcriptional regulation of pyruvate dehydrogenase kinase 4 in skeletal muscle during and after exercise[J].Proc Nutr SCO,2004,63(2):221-226.
    [162]Pilegaard H,Ordway GA,Saltin B,et al.Transcriptional regulation of gene expression in human skeletal muscle during recovery from exercise[J].Am J Physiol Endocrinol Metab,2000, 279:E806-E814.
    [163]Pilegaard H,Osada T,Andersen LT,et al.Substrate availability and transcriptional regulation of metabolic genes in human skeletal muscle during recovery from exercise[J].Metabolism,2005, 54:1048.
    [164]Polyak K,Xia Y,Zweier JL,et al.A model for P53-induced apoptosis[J].Nature,1997, 389:300-5.
    [165]Potthoff MJ,Olson EN,Bassel-Duby R.Skeletal muscle remodeling[J].Curr Opin Rheumatol, 2007,19(6):542-549.
    [166]Poyurovsky MV,Prives C.Unleashing the power of P53:lessons from mice and men[J]. GENES&DEVELOPMENT,2006,20:125-131.
    [167]Ramanathan A,Wang C,Schreiber SL.Perturbational profiling of a cell-line model of tumorigenesis by using metabolic measurements[J].Proc Natl Acad Sci USA,2005,102:5992-7.
    [168]Ren B,Yee KO,Lawler J,et al.Regulation of tumor angiogenesis by thrombospondin-1[J]. Biochim Biophys Acta,2006,1765:178-88.
    [169]Reznick RM,Zong H,Li J,et al.Aging-associated reductions in AMP-activated protein kinase activity and mitochondrial biogenesis[J].Cell Metab,2007,5:151.
    [170]Riley KJL,Maher LJ.P53RNA interactions:New clues in an old mystery[J].RNA,2007, 13(11):1825-1833.
    [171]Rivera A,Maxwell SA.The P53-induced gene-6 (proline oxidase) mediates apoptosis through a calcineurin-dependent pathway[J].J Biol Chem,2005,280:29346-29354.
    [172]Rodier F,Campisi J,Bhaumik D.Two faces of P53:aging and tumor suppression[J].Nucleic Acids Res,2007,35(22):7475-7484.
    [173]Rosso A,Balsaano A,Gambino R, et al.P53 Mediates the accelerated onset of senescence of endothelial progenitor cells in diabetes [J].The Journal of Biological Chemistry,2006, 281(7):4339-47.
    [174]Rouse J,Jackson SP.Interfaces between the detection,signaling,and repair of DNA damage[J].Science,2002,297:547-551.
    [175]Rubaiyat Rahman-Roblick, Roblick UJ, Hellman U,et al. P53 targets identified by protein expression profiling[J].PNAS,2007,104(13):5401-5406.
    [176]Ruiz-Lozano P,Hixon ML,Wagner MW,et al.P53 is a transcriptional activator of the muscle-specific phosphoglycerate mutase gene and contributes in vivo to the control of its cardiac expression[J].Cell Growth Differ,1999,10:295-306.
    [177]Sablina AA,Budanov AV,lyinskaya GV,et al. The antioxidant function of the P53 tumor suppressor gene[J].Nat Med,2006,11(12):1306-1313.
    [178]Saleem A,Adhihetty PJ,Hood DA.Role of P53 in mitochondrial biogenesis and apoptosis in skeletal muscle[J].Physiol Genomics,2009,37:58.
    [179]Sariban-sohraby S,Magrath IT,Balaban RS.Comparison of energy metabolism in human normal and neoplastic (Burkitt's lymphoma) lymphoid cells[J].Cancer Res,1983,43:4662-4664.
    [180]Sayan BS,Sayan AE,Knight RA,et al.P53 Is Cleaved by Caspases Generating Fragments localizing to Mitochondria[J].THE JOURNAL OF BIOLOGICAL CHEMISTRY,2006, 281(19):13566-13573
    [181]Schenk S,Horowitz JF.Coimmunoprecipitation of FAT/CD36 and CPT-1 in skeletal muscle increases proportionally with fat oxidation after endurance exercise training[J].Am J Physiol Endocrinol Metab,2006,291(2):E254-260.
    [182]Schulz TJ,Thierbach R,Voigt A,et al.Induction of oxidative metabolism by mitochondrial frataxin inhibits cancer growth:Otto Warburg revisited[J].J Biol Chem,2006,281:977-981.
    [183]Schwartzenberg-Bar-Yoseph F,Armoni M,Karnieli E.The tumor suppressor P53 down regul-ates glucose transporters GLUT1 and GLUT4 gene expression[J].Cancer Res,2004,64:2627-33.
    [184]Seifried HE.Oxidative stress and antioxidants:a link to disease and prevention[J].J Nutr Biochem,2007,18:168-171.
    [185]Serrano M,BlaSCO MA.Cancer and ageing:convergent and divergent mechanisms[J].Nat Rev Mol Cell Biol,2007,8(9):715-722.
    [186]Shaulsky G,Ben-Ze'ev A, Rotter V.Subcellular distribution of the P53 protein during the cell cycle of Balb/c 3T3 cells[J].Oncogene,1990,5:1707-1711.
    [187]Shefer G, Partridge TA, Heslop L,et al.Low-energy laser irradiation promotes the survival and cell cycle entry of skeletal muscle satellite cells[J].J Cell Sci,2002,115:1461-1469.
    [188]Shilo Y.ATM and related protein kinases:safeguarding genomic integrity[J].Nat Rev Cancer,2003,3:155-168.
    [189]Shoubridge EA.Cytochrome c oxidase deficiency[J].Am J Med Genet,2001,106:46-52.
    [190]Siu PM,Always SE.Id2 and P53 participate in apoptosis during unloading-induced muscle atrophy[J].Am J Physiol Cell Physiol,2005,288:C1058-C1073.
    [191]Siu PM,Always SE.Subcellular responses of P53 and Id2 in fast and slow skeletal muscle in response to stretch-induced overload[J].J Appl Physiol,2005,99:1897-1904.
    [192]Smith TA.Mammalian hexokinases and their abnormal expression in cancer[J].Br J Biomed Sci,2000,57:170-8.
    [193]Stambolsky P,Weisz L,Shats I,et al.Regulation of AIF expression by P53[J].Cell Death Differ,2006,13:2140-2149.
    [194]Stambolic V.MacPherson D,Sas D,et al.Regulation of PTEN transcription by P53[J].Mol Cell,2001,8:317-325.
    [195]Stiburek L,Vesela K,Hansikova H,et al.Tissue-specific cytochrome c oxidase assembly defects due to mutations in SCO2 and SURF1 [J].Biochem J,2005,392:625-632.
    [196]Sugden MC,Bulmer K,Holness MJ.Fuel-sensing mechanisms integrating lipid and carbohydrate utilization[J].Biochem Soc Trans,2001,29:272-278.
    [197]Sugden MC,Holness MJ.Mechanisms underlying regulation of the expression and activities of the mammalian pyruvate dehydrogenase kinases[J].Arch Physiol Biochem,2006,112(3):139-49.
    [198]Suh Y.Cell signaling in aging and apoptosis[J].Mech Ageing Dev,2002,123 (8):881-890.
    [199]Sun XZ,Vinci C,Makmura L,et al.Formation of disulfide bond in P53 correlates with inhibition of DNA binding and tetramerization[J].Antioxid Redox Signal,2003,5:655-665.
    [200]Szoke D,Molnar B,Solymosi N,et al.Polymorphisms of the ApoE, HSD3B1, IL-1β and P53 genes are associated with the development of early uremic complications in diabetic patients: Results of a DNA resequencing array study[J].International Journal of Molecular Medicine,2009, 23(2):217-227
    [201]Tanaka Y,Tran PO,Harmon J,et al.A role for glutathione peroxidase in protecting pancreatic beta cells against oxidative stress in a model of glucose toxicity[J].Proc Natl Acad Sci USA,2002, 99:12363-12368.
    [202]Terada LS.Specificity in reactive oxidant signaling:think globally act locally[J].J Cell Biol, 2006,174:615-623.
    [203]Tomko Jr RJ,Bansal P,Lazo JS.Airing out an antioxidant role for the tumor suppressor P53[J].Mol Intervent,2006,6:23-25.
    [204]Tyner SD,Venkatachalam S,Choi J,et al.P53 mutant mice that display early ageing-associated phenotypes [J].Nature,2002,415:45-53.
    [205]Vahsen N,Cande C,Briere JJ,et al.AIF deficiency compromises oxidative phosphorylation[J]. EMBO J,2004,23:4679.
    [206]Varela I,Cadinanos J,Pendas AM,et al.Accelerated ageing in mice deficient in Zmpste24 protease is linked to P53 signalling activation[J].Nature,2005,437 (7058):564-568.
    [207]Vaseva AV,Moll UM.The mitochondrial P53 pathway[J] Biochimica et Biophysica Acta(BBA)-Bioenergetics,2009,1787(5):414-420.
    [208]Velu CS,Niture SK,Doneanu CE,et al.Human P53 is inhibited by glutathionylation of cysteines present in the proximal DNA-binding domain during oxidative stress[J].Biochemistry, 2007,46:7765-7780.
    [209]Vijg J,Suh Y.Genetics of longevity and aging[J].Annu Rev Med,2005,56:193-212.
    [210]Virag L.Szabo E,Gergely P,et al.Peroxynitrite-induced cytotoxicity:mechanism and opportunities for intervention[J].Toxicol Lett,2003,140-141:113-124.
    [211]Vogelstein B, Lane D, Levine AJ. Surfing the P53 network[J].Nature,2000,408:307-310.
    [212]Von MA.The nuclear ubiquitin-proteasome system[J].J Cell Sci,2006,119(Pt10):1977-1984.
    [213]Vousden KH,Lane DP.P53 in health and disease[J].Nat Rev Mol Cell Biol,2007,8:275.
    [214]Wang L,Wu Q,Qiu P,et al.Analyses of P53 Target Genes in the Human Genome by Bioinformatic and Microarray Approaches [J].J Biol Chem,2001,276:43604-43610.
    [215]Warburg O.On the origin of cancer cells[J].Science,1956,123:309-14.
    [216]Wei CL,Wu Q,Vega VB,et al.A global map of P53 transcription-factor binding sites in the human genome[J].Cell,2006,124:207-219.
    [217]Wende AR,Huss JM.PGC-1alpha coactivates PDK4 gene expression via the orphan nuclear receptor ERRalpha:a mechanism for transcriptional control of muscle glucose metabolism [J]. Molecular and Cellular Biology,2005,25(24):10684-10694.
    [218]Wenzhe MA,Sung HJ,Park JY,et al.A pivotal role for P53:balancing aerobic respiration and glycolysis[J] J Bioenerg Biomembr,2007,39:243-246.
    [219]Williams JC,Sue C,Banting GS,et al.Crystal structure of human SCO1:Implications for redox signaling by a mitochondrial cytochrome c oxidase "assembly" protein[J].J Biol Chem,2005, 280:15202-15211.
    [220]Winder WW,Taylor EB,Thomson DM.Role of AMP-activated protein kinase in the molecular adaptation to endurance exercise[J].Med Sci Sports Exerc,2006,38(11):1945-1949.
    [221]Wu WS,Heinrichs S,Xu D,et al.Slug antagonizes P53-mediated apoptosis of hematopoietic progenitors by repressing PUMA[J].Cell,2005,123:641-653.
    [222]Xu J,Han J, Epstein Pn,et al.Regulation of PDKmRNA by high fatty acid and glucose in pancreatic islets[J].Biochem Biophys Res Commun,2006,344(3):827-33.
    [223]Ye Q,Imriskova-Sosova I,Hill BC,et al.Identification of a disulfide switch in BsSCO,a mem-ber of the SCO family of cytochrome c oxidase assembly proteins[J].Biochemistry,2005, 44:2934-42.
    [224]Yeung SJ,Pan J,Lee MH.Roles of P53,Myc and HIF-1 in regulating glycolysis—the Seventh Hallmark of cancer[J].Cell Mol Life Sci,2008,65(24):3981-3999.
    [225]Yin Y,Stephen CW,Luciani MG,et al.P53 stability and activity is regulated by Mdm2-mediated induction of alternative P53 translation products [J].Nat Cell Biol,2002,4:462-467.
    [226]Yoon KA,Nakamura Y,Arakawa H.Identification of aldh4 as a P53-inducible gene and its protective role in cellular stresses[J].J Hum Genet,2004,49:134-140.
    [227]Yoshida Y,Izumi H,Torigoe T,et al. P53 physically interacts with mitochondrial transcription factor A and differentially regulates binding to damaged DNA[J].Cancer Res,2003,63:3729-3734.
    [228]Zhou S,Kachhap S,Singh KK.Mitochondrial impairment in P53-deficient human cancer cells[J].Mutagenesis,2003,18:287-92.
    [229]Zhao Y,Chaiswing L,Velez JM,et al.P53 translocation to mitochondria precedes its nuclear translocation and targets mitochondrial oxidative defense protein-manganese superoxide dismutase[J].Cancer Res,2005,65:3745-3750.
    [230]Zinna EM,Yarasheski KE.Exercise treatment to counteract protein wasting of chronic diseases[J].Curr Opin Clin Nutr Metab Care,2003,6:87-93.
    [231]丁树哲,陈彩珍,漆正堂等。运动对大鼠骨骼肌P53和COX Ⅰ的mRNA以及蛋白表达影响[J]。中国运动医学杂志,2008,27(4):454-457。
    [232]高璐,于德民。GLUT4与胰岛素抵抗[J]。国外医学内分泌学分册,2002,22(5):308-310。
    [233]贺杰;漆正堂;丁树哲。低氧-膳食-运动与丙酮酸脱氢酶复合体的活性调控[J]。中国体育科技,2008,44(2):111-115
    [234]贺杰;漆正堂;丁树哲。运动与肉碱棕榈酰转移酶-Ⅰ研究进展[J]。中国运动医学杂志,2008,27(6):794-797
    [235]刘鹏启,丁树哲,邵月。P53对线粒体的能量调控与运动适应的可能机制[J]。广州体育学院学报,2008,28(3):87-89。
    [236]漆正堂。骨骼肌线粒体对不同训练方式的适应及其基因应答机制的研究[J]。华东师范大学博士学位论文,2009。
    [237]邵月,陈胜强,漆正堂等。不同训练方式对骨骼肌P53调节线粒体有氧呼吸轴P53、SCO2、COXⅡ基因表达的影响[J]。体育科学,2010,30(3):46-52。
    [238]邵月,刘鹏启,丁树哲.p53诱导细胞衰老基因机制研究最新进展(J).中国老年学杂志,2008;28(21):2170-2172
    [239]孙晓杰,黄常志。PI3K-Akt信号通路与肿瘤[J]。世界华人消化杂志,2006,14:306-311.
    [240]萧建中,杨文英,Kjeld Hermanse。细胞内脂肪堆积和β细胞增殖的关系[J]。中国糖尿病杂志,2006,14(2):94-97。
    [241]殷松楼,张宝慧。运动对大鼠胸主动脉损伤后c-myc、c-fos和P53表达的影响[J].中国运动医学杂志,1999,18(1):9-11。
    [242]张慧娟、刘晓民、王月影等。格列齐特对Ⅱ型糖尿病患者氧化应激状态的影响[J]。中国糖尿病杂志,2007,15(12):748-749。
    [243]张晓志,陈泽建,余清等。重组人P53腺病毒制品治疗肿瘤研究进展[J]。癌症进展杂志,2004,2 (Suppl):103-110。
    [244]张媛。耐力训练对高脂膳食大鼠骨骼肌线粒体脂肪氧化及PGC-1α基因表达的影响[J]。华东师范大学硕士学位论文,2009。
    [1]Barnard RJ,Jung T,Inkeles SB.Diet and exercise in the treatment of NIDDM:the need for early emphasis[J].Diabetes Care,1994,17:1469-1472.
    [2]Bonadonna RC,Del PS,Bonora E,et al.Roles of glucose transport and glucose phosphorylation in muscle insulin resistance of NIDDM[J].Diabetes,1996,45(7):915-925.
    [3]Borghouts LB, Keizer HA.Exercise and insulin sensitivity:a review[J].Int J Sports Med,2000, 21:1-12.
    [4]Boucle NG, Haddad E, Kenny GP,et al.Efects of exercise on glycemic control and body mass in type 2 diabetes mellitus:a meta—analysis of controlled clinical trials [J].JAMA,2001, 286:1218-27.
    [5]Durstine JL,Grandjean PW,Davis PG,et al.Blood lipid and lipoprotein adaptations to exercise:a quantitative analysis[J]. Sports Med,2001,31(15):1033-62.
    [6]Durstine JL,Haskell WL.Effects of exercise training on plasma lipids and lipoproteins[J]. Exercise and Sport Sciecces Reviews,1994,22:477-521.
    [7]Dyck DJ,Heigenhauser GJ,Bruce CR.The role of adipokines as regulators of skeletal muscle fatty acid metabolism and insulin sensitivity[J].Acta Physiol(Oxf),2006,186(1):5-16.
    [8]Harris MI,Hadden WC,Knowler WC,et al.Prevalence of diabetes and impaired glucose tolerance and plasma glucose levels in US population aged 20-74 yr[J].Diabetes,1987,36:523-534.
    [9]Helmrich SP,Ragland DR,Leung RW,et al.Physical activity and reduced occurrence of noninsulin dependent diabetes mellitus[J].New England Journal of Medicine,1991,325:147-152.
    [10]Hespel P,Vergauwen L,Vandenberghe K,et al.Important role of insulin and blood flow in stimulating glucose uptake in contracting skeletal muscle[J].Diabetes,1995,44:210-215.
    [11]Hulver MW,Zheng D,Tanner CJ,et al.Adiponectin is not altered with exercise training despite enhanced insulin action[J].Physiol Endocrinol Metab,2002,283(4):861-865.
    [12]Kanaya AM,Harris T,Goodpaster BH,et al.Adipocytokines attenuate the association between visceral adiposity and diabetes in older adults[J].Diabetes Care,2004,27(6):1375-1380.
    [13]Kondo H,Shimomura I,Matsukawa Y,et al.Association of adiponectin mutation with type 2 diabetes:a candidate gene for the insulin resistance syndrome[J].Diabetes,2002,51:2325-2328.
    [14]Orozco LJ,Buchleitner AM,Gimenez-Perez G,et al.Exercise or exercise and diet for preventing type 2 diabetes mellitus[J].Cochrane Database Syst Rev,2008,(3):CD003054.
    [15]Ronchi CL,Corbetta S,Cappiello V,et al.Circulating adiponectin levels and cardiovascular risk factors in acromegalic patients[J].Eur J Endocrinol,2004,150(5):663-669.
    [16]Soultanakis H,Platanou T.Effect of dietary carbohydrate content on blood glucose levels of swimmers during training[J].J Sports Med Phys Fitness,2008,48(3):335-40.
    [17]Stochmal A, Jasiak-Tyrkalska B, Stochmal E,et al.The influence of physical training on metabolic indices in men with myocardial infarction and impaired glucose tolerance[J].Przeql Lek, 2007,64(6):410-5.
    [18]Yang JY,Nam JH,Park H,et al.Effects of resistance exercise and growth hormone administration at low doses on lipid metabolism in middle-aged female rats[J].Eur Pharmacol,2006,539(1-2):99-107.
    [19]Yi W,David S,Maria A,et al.Adaptations to exercise training within skeletal muscle in adults with type 2 diabetes or impaired glucose tolerance:a systematic review[J].Diabetes Metab Res Rev,2009,25:13-40.
    [20]Young DR,Steinhardt MA.The importance of physical fitness versus physical activity for coronary artery disease risk factors:a cross-sectional analysis.Research Quarterly,1993,64:377-83.
    [21]Zeqiri S,Ylli A,Zeqiri N.The effect of physical activity in glycemia in patients with diabetes mellitus[J].Medicinski arhiv,2007,61(3):146-9.
    [22]李汉东,王永红。有氧运动对中老年人胰岛细胞的影响[J]。中国社区医师,2007,23:51。
    [23]李建辉,毕会民,甘佩珍等。运动对胰岛素抵抗大鼠肝脏蛋白酪氨酸磷酸酶1B表达的影响[J]。中国临床康复,2004,8(33):7516-18。
    [24]王芬,何华亮,刘铜华。自发的Ⅱ型糖尿病动物模型[J]。中国实验动物学报,2007,15(5):395。
    [25]吴军发,吴毅。运动改善原发Ⅱ型糖尿病大鼠血糖和血脂代谢紊乱的实验研究[J]。中华物理医学与康复杂志,2002,24(09):536-538。
    [26]吴文栩,潘景业,周雷等。运动对糖尿病视网膜病变病人的糖化血红蛋白和空腹血糖的影响[J]。护理研究,2006,20(10):2582-2583。
    [27]吴毅,吴君。Ⅱ型糖尿病患者的康复治疗及评价[J]。中国临床康复,2002,9(15):2202-3
    [28]徐君丽,周良斌。糖尿病患者的健康教育[J]。中国医药导报,2007,4(2):152。
    [29]赵惠兰,韩礼月。运动对非胰岛素依赖型糖尿病患者血糖、血脂、胰岛素的影响[J]。现代中西医结合杂志,2007,16(36):5450。
    [30]朱宏泉,王钇力,黄旭华。糖化血清蛋白和血糖联合检测对判定脑梗塞高血糖原因的研究[J]。赣南医学院学报,2006,26(2):212-213。
    [1]Bensaad K,Vousden KH.P53:new roles in metabolism[J].TRENDS in cell Biology,2007, 17(6):286-292.
    [2]Chen YW,Nader GA,Baar KR,et al.Response of rat muscle to acute resistance exercise defined by transcriptional and translational profiling[J].J Physiol,2002,545:27-41.
    [3]Hatoko M,Tanaka A,Kuwahara M,et al.Difference of molecular response to ischemia-Reperfusion of rat skeletal muscle as a function of ischemic time:study of the expression of p53,p21(WAF-1),Bax protein and apoptosis[J].Ann Plast Surg,2002,48(1):68-74.
    [4]Hussain SP,Harris CC.p53 mutation spectrum and load:The generation of hypotheses linking the exposure of endogenous or exogenous carcinogens to human cancer[J].Mutation Res,1999, 428:23-32.
    [5]Jin H,Wu Z,Tian T,et al.Apoptosis in atrophic skeletal muscle induced by brachial plexus injury in rats[J].J Trauma,2001,50:31-35.
    [6]Macdougall JD,Gibala MJ,Tarnopolsky MA,et al.The time course for elevated muscle protein synthesis following heavy resistance exercise[J].Canadian Journal of Applied Physiology,1995, 20:480-486.
    [7]Matoba S,Kang JQPatino WD,et al.p53 Regulates Mitochondrial Respiration[J].Science,2006, 312:1650-1653.
    [8]Nakahara T,Hashimoto K,Hirano M,et al.Acute and chronic effects of alcohol exposure on skeletal muscle c-myc,p53,and Bcl-2 mRNA expression[J].Am J Physiol Endocrinol Metab, 2003,285:E1273-E1281.
    [9]Ohnishi T,Takahashi A,Wang X,et al.Accumulation of a tumor suppressor p53 protein in rat muscle during a space flight[J].Mutat Res,1999,430:271-274.
    [10]Riley KJL,Maher LJ.p53RNA interactions:New clues in an old mystery[J].RNA,2007, 13(11):1825-1833.
    [11]Saleem A,Adhihetty PJ,Hood DA.Role of p53 in mitochondrial biogenesis and apoptosis in skeletal muscle[J].Physiol Genomics,2009,37(1):58-66.
    [12]Shefer G,Partridge TA,Heslop L,et al.Low-energy laser irradiation promotes the survival and cell cycle entry of skeletal muscle satellite cells[J].Journal of Cell Science,2002,115:1461-1469.
    [13]Siu PM,Alway SE.Subcellular responses of p53 and Id2 in fast and slow skeletal muscle in response to stretch-induced overload[J].J Appl Physiol,2005,99:1897-1904.
    [14]Siu PM,Pistilli EE,Butler DC,et al.Aging influences cellular and molecular responses of apoptosis to skeletal muscle unloading[J].Am J Physiol Cell Physiol,2005,288:C338-C349.
    [15]Siu PM,Pistilli EE,Murlasits Z,et al.Hindlimb unloading increases muscle content of cytosolic but not nuclear Id2 and p53 proteins in young adult and aged rats[J].J Appl Physiol,2006, 100:907-16.
    [16]Siu PM,Pistilli EE,Ryan MJ,et al.Aging sustains the hypertrophy-associated elevation of apoptotic suppressor XIAP in skeletal muscle during unloading[J].J Gerontol A Biol Sci Med Sci, 2005,60:976-983.
    [17]Vogelstein B,Lane DP,Levine AJ.Surfing the p53 network[J].Nature,2000,408:307-310.
    [18]丁树哲,陈彩珍,漆正堂等。运动对大鼠骨骼肌p53和COX Ⅰ的mRNA以及蛋白表达影响[J]。中国运动医学杂志,2008,27(4):454-457。
    [1]Arrigo AP.Gene expression and the thiol redox state[J].Free Radic Biol Med,1999,27:936-44.
    [2]Bejma J,Ji LL.Aging and acute exercise enhance free radical generation in rat skeletal muscle[J].JAppl Physiol,1999,87(1):465-70.
    [3]Borghouts C,Werner A,Elthon T,et al.Copper-modulated gene expression and senescence in the filamentous fungus Podospora anserine[J].Molecular and cellular biology,2001,21:390-399.
    [4]Bravi MC,Armiento A,Laurenti O,et al.Insulin decreases intracellular oxidative stress in patients with type 2 diabetes mellitus[J].Metabolism,2006,55(5):691-5.
    [5]Briere JJ,Tzagoloff A.The Scoop on Sco[J].Molecular Cell,2007,25:176-178.
    [6]Burgomaster KA,Heigenhauser GJF,Gibala MJ.Effect of short-term sprint interval training on human skeletal muscle carbohydrate metabolism during exercise and time trial performance[J].J Appl Physiol,2006,100:2041-2047.
    [7]Burgomaster KA,Hughes SC,Heigenhauser GJF,et al.Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans[J].J Appl Physiol,2005,98:1985-1990.
    [8]Catherwood MA,Powell LA,Anderson P,et al.Glucose-induced oxidative stress in mesangial cells[J].Kidney Int,2002,61:599-608.
    [9]Coyle EF.Very intense exercise-training is extremely potent and time efficient:a reminder[J].J Appl Physiol,2005,98:1983-1984.
    [10]Dudley GA,Abraham WM,Terjung RL.Influence of exercise intensity and duration on biochemical adaptations in skeletal muscle[J].JAppl Physiol,1982,53:844-850.
    [11]Edge J,Bishop D,Goodman C.The effects of training intensity on muscle buffer capacity in females[J].Eur J Appl Physiol,2006,96:97-105.
    [12]Gibala MJ,Little JP,Essen MV,et al.Short-term sprint interval versus traditional endurance training:similar initial adaptations in human skelefal muscle and exercise performance[J].J Physiol,2006,575(3):901-911.
    [13]Hara M,Abe M,Suzuki T,et al.Tissue changes in glutathione metabolism and lipid peroxidation induced by swimming are partially prevented by melatonin[J].Pharmacol Toxicol,1996,78(5):308-12.
    [14]Hawley JA.Adaptations of skeletal muscle to prolonged,intense endurance training[J].Clin Exp Pharmacol Physiol,2002,29:218-222.
    [15]Holloszy JO,Coyle EF.Adaptations of skeletal muscle to endurance training and their metabolic consequences[J].J Appl Physiol,1984,70:2032-2038.
    [16]Jaksch M,Ogilvie I,Yao J,et al.Mutations in SCO2 are associated with a distinct form of hypertrophic cardiomyopathy and cytochrome c oxidase deciency[J].Hum Mol Genet,2000, 9:795-801.
    [17]Kadenbach B,Stroh A,Huther FJ,et al.Evolutionary aspects of cytochrome c oxidase[J].J Bioenerg Biomembr,1991,23:321-334.
    [18]Kubukeli ZN,Noakes TD,Dennis SD.Training techniques to improve endurance exercise performances[J].Sports Med,2002,32:489-509.
    [19]Leonardo S,Evelyn HR,Winsome FW,et al.Copper supplementation restores cytochrome c oxidase activity in cultured cells from patients with SCO2 mutations[J].Biochem J,2002, 363:321-7
    [20]Lu SC,Kuhlenkamp J,Wu H,et al.Progressive defect in biliary GSH secretion in streptozotocin-induced diabetic rats[J].Am J Physiol,1997,272:G374-G382.
    [21]Mastrocola R,Restivo F,Vercellinatto I,et al.Oxidative and nitrosative stress in brain mitochondria of diabetic rats[J].J Endocrinol,2005,187:37-44.
    [22]Matoba S,Kang JG,Patino WD,et al.P53 regulates mitochondrial respiration[J].Science,2006, 312:1650-1653.
    [23]Mercurio F,Manning AM.NF-κB as a primary regulator of the stress response[J]. Oncogene,1999,18:6163-6171.
    [24]Michaela J,Claudia P,Rolf S,et al.Cytochrome c oxidase deficiency due to mutations in SCO2,encoding a mitochondrial copper-binding protein,is rescued by copper in human myoblasts[J].Human Molecular Genetics,2001,26:3025-3035.
    [25]Papadopoulou LC,Sue CM,Davidson MM,et al.Fatal infantile cardio-encephalomyopathy wi-th COX deficiency and mutations in SCO2,a COX assembly gene[J].Nat Genet,1999,23:333-7.
    [26]Pecina P,Houstkova H,Hansikova,et al.Genetic defects of cytochrome c oxidase assembly [J].Physiol Res,2004,53 Suppl 1:S213-23.
    [27]Shoubridge EA.Cytochrome c oxidase deficiency[J].Semin Med Genet,2001,106:46-52.
    [28]Shoubridge EA,Leary SC,Cobine PA,et al.The human cytochrome c oxidase assembly factors SCO1 and SCO2 have regulatory roles in the maintenance of celluar copper homeostasis[J].Cell Metabolism,2007,5:9-20.
    [29]Terada S,Yokozeki T,Kawanaka K,et al.Effects of high-intensity swimming training on GLUT-4 and glucose transport activity in rat skeletal muscle[J]J Appl Physiol,2001,90:2019-24.
    [30]Tessier D,Khalil A,Fiilop T.Effects of an oral glucose challenge on free radicals/antioxidants balance in an older population with type Ⅱ diabetes[J].J Gerontol A Biol Sci Med Sci,1999, 54(11):M541-5.
    [31]Wallace DC.Diseases of the mitochondrial DNA[J].Annu Rev Biochem,1992,61:1175-1212.
    [1]Bauer DE,Harris MH,Plas DR,et al.Cytokine stimulation of aerobic glycolysis in hematopoietic cells exceeds proliferative demand[J].FASEB J,2004,18:1303-5.
    [2]Bensaad K,Tsuruta A,Selak MA,et al.TIGAR,a p53-Inducible Regulator of Glycolysis and Apoptosis [J].Cell,2006,126:107-120.
    [3]Bensaad K,Vousden KH.p53:new roles in metabolism[J].Trends Cell Biol,2007,17:286-91.
    [4]Brummelkamp TR,Bernards R.New tools for functional mammalian cancer genetics[J].Nat Rev Cancer,2003,3:781-9.
    [5]Cappiello M,Amodeo P,Mendez BL,et al.Modulation of aldose reductase activity through S-thiolation by physiological thiols[J].Chem Biol Interact,2001,130-132:597-608.
    [6]Chesney J,Mitchell R,Benigni F,et al. An inducible gene product for 6-phosphofructo-2-kinase with an AU-rich instability element:role in tumor cell glycolysis and the Warburg effect[J].Proc Natl Acad Sci USA,1999,96:3047-3052.
    [7]DeBerardinis RJ,Lum JJ,Hatzivassiliou G,et al.The biology of cancer:metabolic reprogramming fuels cell growth and proliferation[J].Cell Metab,2008,7:11-20.
    [8]Droge W,Schulze-Osthoff K,Mihm S,et al.Functions of glutathione and glutathione disulfide in immunology and immunopathology[J].FASEB J,1994,8:1131-1138.
    [9]Durany N,Joseph J,Jimenez OM,et al.Phosphoglycerate mutase,2,3-bisphosphogly-cerate phosphatase,creatine kinase and enolase activity and isoenzymes in breast carcinoma[J].Br J Cancer,2000,82:20-7.
    [10]Falholt K,Jensen I,Lindkaer JS,et al.Carbohydrate and lipid metabolism of skeletal muscle in type 2 diabetic patients[J].Diabet Med,1988,5:27.
    [11]Fueger PT,Heikkinen S,Bracy DP,et al.Hexokinase Ⅱ partial knockout impairs exercise-stimulated glucose uptake in oxidative muscles of mice[J].Am J Physiol Endocrinol Metab,2003,285(11):E958-E963.
    [12]Fueger PT,Hess HS,Posey KA,et al.Control of Exercise-stimulated Muscle Glucose Uptake by GLUT4 Is Dependent on Glucose Phosphorylation Capacity in the Conscious Mouse[J].THE JOURNAL OF BIOLOGICAL CHEMISTRY,2004,279(49):50956-50961.
    [13]Giral P,Jacob N,Dourmap C,et al.Elevated gamma-glutamyltransferase activity and perturbed thiol profile are associated with features of metabolic syndrome[J].Arterioscler Thromb Vasc Biol, 2008,28:587-593.
    [14]Hsiao CH,Li W,Lou TF,et al.Fetal hemoglobin induction by histone deacetylase inhibitors involved generation of reactive oxygen species[J].Exp Hematol,2006,34:264-273.
    [15]Jen KY,Cheung VG,et al.Identification of novel p53 target genes in ionizing radiation response[J].Cancer Res,2005,65:7666-7673.
    [16]Kondoh H,Lleonart ME,Bernard D,et al.Protection from oxidative stress by enhanced glycoly-sis;a possible mechanism of cellular immortalization[J].Histol Histopathol,2007,22(1):85-90.
    [17]Kondoh H,Lleonart ME,Gil J,et al.Glycolytic enzymes can modulate cellular life span[J]. Cancer Res,2005,65:177-85.
    [18]Koval JA,DeFronzo RA,O'Doherty RM,et al.Regulation of hexokinase Ⅱ activity and expression in human muscle by moderate exercise[J].Am J Physiol Endocrinol Metab,1998,274(2):E304-E308.
    [19]Le Goffe C,Vallette G,Charrier L,et al.Metabolic control of resistance of human epithelial cells to H2O2 and NO stresses[J].Biochem J,2002,364:349-359.
    [20]Li H,Jogl G.Structural and Biochemical Studies of TIGAR (TP53-induced Glycolysis and Apoptosis Regulator)[J].J Biol Chem,2009,284(3):1748-1754.
    [21]Lushchak VI,Bagnyukova TV,Storey JM,et al.Influence of exercise on the activity and the distribution between free and bound forms of glycolytic and associated enzymes in tissues of horse mackerel[J]. Brazilian Journal of Medical and Biological Research,2001,34:1055-1064.
    [22]Martindale JL,Holbrook NJ.Cellular response to oxidative stress signaling for suicide and survival[J].J Cell Physiol,2002,192:1-15.
    [23]Ma W,Sung HJ,Park JY,et al.A pivotal role for p53:balancing aerobic respiration and glycolysis[J].Journal of Bioenergetics and Biomembranes,2007,39(3):243-246.
    [24]Okar DA,Manzano A,Navarro-Sabate,et al.PFK-2/FBPase-2:maker and breaker of the essential biofactor fructose-2,6-bisphosphate[J].Trends Biochem Sci,2001,26:30-35.
    [25]Pendergrass M,Gulli G,Saccomani MP,et al.In vivo glucose transport and phosphorylation in skeletal muscle is impaired in obese and diabetic patients[J].Dibetes,1994,43(suppl.1):72-75.
    [26]Ramanathan A,Wang C,Schreiber SL.Perturbational profiling of a cell-line model of tumorigenesis by using metabolic measurements[J].Proc Natl Acad Sci USA,2005,102:5992-7.
    [27]Rothman DL,Shulman RG,Shulman GI.31P nuclear magnetic resonance measurements of muscle glucose 6-phosphate:evidence for reduced insulin-dependent muscle glucose transport or phosphorylation activity in non-insulin-dependent diabetes mellitus[J].J Clin Invest,1992,89:1069.
    [28]Sablina AA,Budanov AV,Ilyinskaya GV,et al.The antioxidant function of the p53 tumor suppressor gene[J].Nat Med,2005,11:1306-1313.
    [29]Schwartzenberg-Bar-Yoseph F,Armoni M,Karnieli E.The tumor suppressor p53 down-regula-tes glucose transporters GLUT1 and GLUT4 gene expression[J].Cancer Res,2004,64:2627-33.
    [30]Sengupta S,Harris CC.p53:traffic cop at the crossroads of DNA repair and recombination[J]. Nat Rev Mol Cell Biol,2005,6:44-55.
    [31]Sitzmann FC,Dockter GErythrocyte enzymes and2,3-diphosphoglycerate in juvenile diabetics[J].Padiatr Padol,1982,17(4):705-12.
    [32]Sitzmann FC.Erythrocyte metabolism in type I diabetes mellitus (key enzymes of glycolysis)[J].Padiatr Padol,1984,19(3):303-9.
    [33]Smith TA.Mammalian hexokinases and their abnormal expression in cancer[J].Br J Biomed Sci,2000,57:170-8.
    [34]Trinei M,Giorgio M,Cicalese A,et al.A p53-p66Shc signalling pathway controls intracellular redox status, levels of oxidation-damaged DNA and oxidative stress-induced apoptosis[J]. Oncogene,2002,21:3872-8.
    [35]Tsang WP,Chau SP,Kong SK,et al.Reactive oxygen species mediate doxorubicin induced p53-indepenent apoptosis[J].Life Sci,2003,73:2047-2058.
    [36]Valko M,Leibfritz D,Moncol J,et al.Free radicals and antioxidants in normal physiological functions and human disease[J].Int J Biochem Cell Biol,2007,39:44-84.
    [37]Vestergaard H,Bjorbaek C,Hansen T,et al.Impaired activity and gene expression of hexokinase Ⅱ in muscle from non-insulin-dependent diabetes mellitus patients[J].J Clin Invest,1995,96:2639.
    [38]Warburg O.On the origin of cancer cells[J].Science,1956,123:309-314.
    [39]Wegener G,Krause U.Different modes of activating phosphofructokinase, a key regulatory enzyme of glycolysis, in working vertebrate muscle[J].Biochem Soc Trans,2002,30(2):264-70.
    [1]Aschenbach WQSakamoto K,Goodyear LJ.5'adenosine monophosphate-activated protein kinase,metabolism and exercise[J]. Sports Medicine,2004,34:91-103.
    [2]Baron AD,Steinberg H,Brechtel G,et al.Skeletal muscle blood flow independently modulation insulin-mediated glucose uptake[J].American Journal of Physiology,1994,266:248-253.
    [3]Carling D.AMP-activated protein kinase:balancing the scales[J].Biochimie,2005,87(l):87-91.
    [4]Degenhardt T,Saramaki A,Malinen M,et al.Three members of the human pyruvate dehydrogenase kinase gene family are direct targets of the peroxisome proliferator-activated Receptorβ/δ[J] J Mol Biol,2007,372(2):341-355.
    [5]Hawley JA,Lessard SJ.Exercise training-induced improvements in insulin action[J].Acta Physiol,2008,192:127-135.
    [6]Henriksen EJ,Halseth AE.Adaptive responses of GLUT4 and citrate synthase in fast-twitch muscle of voluntary running rats[J].Am J Physiol,1995,268(1 Pt 2):R130-4.
    [7]Holloway GP,Bezaire V,Heigenhauser GJ.Mitochondrial long chain fatty acid oxidation,fatty acid translocase/CD36 content and carnitine palmitoyltransferase I activity in human skeletal muscle during aerobic exercise[J].Physiol,2006,571:201-210.
    [8]Hsu HC,Peng SY,Lai PL,et al.Allelotype and Loss of Heterozygosity of p53 in Primary and Recurrent Hepatocellular Carcinomas[J].CANCER,1994,73(1):42-47.
    [9]Huang SH,Czech MP.The GLUT4 glucose transporter[J].Cell metabolism,2007,5(4):237-252.
    [10]Jager S,Handschin C,St-Pierre J,et al.AMP-activated protein kinase(AMPK)action in skeletal muscle via direct phosphorylation of PGC-la[J].PNAS,2007,104(29):12017-12022.
    [11]Jones RG,Plas DR,Kubek S,et al.AMP-activated protein kinase induces a p53-dependent metabolic checkpoint[J].Mol Cell,2005,18:283-293.
    [12]Kuo CH,Hunt DG,Ding Z,et al.Effect of carbohydrate supplementation on postexercise GLUT4protein expression in skeletal muscle[J].Journal of Applied Physiology,1999, 87(6):2290-95.
    [13]Kwon HS,Huang BG,Unterman R,et al.Protein kinase B{alpha}-inhibits human pyruvate dehydrogenase kinase-4 gene induction by dexamethasone through inactivation of FOXO transcription factors[J].Diabetes,2004,53(4):899-910.
    [14]LeBlanc PJ,Harris RA,Peters SJ.Skeletal muscle fiber type comparison of pyruvate dehydrogenase phosphatase activity and isoform expression in fed and food-deprived rats [J].Am J Physiol Endocrinol Metab,2007,292(2):E571-e576.
    [15]Levine AJ,Feng ZHH,Mak TW,et al.Coordination and communication between the p53 and IGF-1-AKT-TOR signal transduction pathways[J].Genes&Development,2006,20(3):267-75.
    [16]Misra P,Chakrabarti R.The role of AMP kinase in diabetes [J].Indian J Med Res,2007, 125(3):389-98.
    [17]Morifuji M,Sanbongi C,Sugiura K.Dietary soya protein intake and exercise training have an additive effect on skeletal muscle fatty acid oxidation enzyme actibities and mRNA levels in rats[J].Br J Nutr,2006,96(3):469-475.
    [18]Nahle Z,Hsieh M,Pietka T,et al.CD36-dependent Regulation of Muscle FoxO1 and PDK4 in the PPARδ/β-mediated Adaptation to Metabolic Stress[J].J Biol Chem,2008,283(21):14317-26.
    [19]Pan JG,Mak TW.Metabolic targeting as an anticancer strategy:dawn of a new era[J].Sci STKE,2007,381(4):14-15.
    [20]Patel MS,Korotchkina LG.Regulation of the pyruvate dehydrogenase complex[J].Biochem Soc Trans,2006,34(4):217-22.
    [21]Pilegaard H,Neufer PD.Transcriptional regulation of pyruvate dehydrogenase kinase 4 in skeletal muscle during and after exercise[J].Proc Nutr Soc,2004,63(2):221-226.
    [22]Pilegaard H,Osada T,Andersen LT,et al. Substrate availability and transcriptional regulation of metabolic genes in human skeletal muscle during recovery from exercise[J].Metabolism,2005, 54(8):1048-1055.
    [23]Roche TE.Pyruvate dehydrogenase kinase regulatory mechanisms and inhibition in treating diabetes,heart ischemia,and cancer[J].Cell Mol Life Sci,2007,64(7-8):830-849.
    [24]Schwartzenberg Bar Yoseph F,Armoni M,Karnieli E.The tumor suppressor p53down-regulates glucose transporters GLUT1 and GLUT4 gene expression[J].Cancer research,2004,64(7):2627-33.
    [25]Sugden MC,Holness MJ.Therapeutic potential of the mammalian pyruvate dehydrogenase kinases in the prevention of hyperglycaemia[J].Curr Drug Targets Immune Endocr Metabol Disord,2002,2:151-65.
    [26]Tobin JF,Freedman LP.Nuclear receptors as drug targets in metabolic diseases:new approaches to therapy [J].Trends Endocrinol Metab,2006,17(7):284-290.
    [27]Wang L,Psilander N,Tonkonogi M,et al.Similar Expression of Oxidative Genes after Interval and Continuous Exercise[J].Med Sci Sports Exerc,2009,41(12):2136-2144.
    [28]Watt MJ,Heigenhauser GJF,LeBlanc PJ,et al.Rapid upregulation of pyruvate dehydrogenase kinase activity in human skeletal muscle during prolonged exercise[J].J Appl Physiol,2004, 97(5):1261-7.
    [29]Winder WW,Arogyasami J,Elayan IM.Time course of exercise-induced decline in malonyl-CoA in different muscle types[J].Am J Physiol Endocrinol Metab,2003,259:E266-E271.
    [30]Winder WW,Taylor EB,Thomson DM.Role of AMP-activated protein kinase in the molecular adaptation to endurance exercise[J].Medicine&Science in Sports &Exercise,2006,38(11):1945-9.
    [31]Xu J,Han J,Epstein P,et al.Regulation of PDK mRNA by high fatty acid and glucose in pancreatic islets[J].Biochem Biophys Res Commun,2006,344(3):827-33.
    [32]郭维。耐力训练对高脂膳食大鼠骨骼肌GLUT4、PDK4和AMPKa2基因表达的影响[J]。华东师范大学硕士学位论文,2009。
    [33]漆正堂。骨骼肌线粒体对不同训练方式的适应及其基因应答机制的研究[J]。华东师范大学博士学位论文,2009。
    [34]王丹,吴毅,胡永善等。耐力运动对Ⅱ型糖尿病大鼠骨骼肌葡萄糖转运载体4基因表达的影响[J]。中国康复医学杂志,2007,22(5):391-394。
    [35]吴毅,胡瑞萍,胡永善等。运动对Ⅱ型糖尿病大鼠骨骼肌细胞腺苷酸活化蛋白激酶表达和活性的影响[J]。中国物理医学与康复杂志,2007,29(3):145-148。
    [36]许豪文编著。运动生物化学概论[M]。北京:高等教育出版社,2001。
    [37]张明,牛燕媚,姜宁等。有氧运动对C57BL/6小鼠骨骼肌PPARa及CPT-1的影响[J]。中国运动医学杂志,2008,27(6):690-693。
    [38]张玥,姜宁,苏丽。PPARa与运动改善脂质代谢的关系[J],中国康复医学杂志,2008,23(6):495-498。
    [39]周亮。运动过程中骨骼肌摄取葡萄糖的调节[J]。体育科学,2006,26(5):69-73。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700