有机染料的设计、合成及在光化学传感方面的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
荧光化学传感器和比色化学传感器由于具有较高的灵敏度、可利用光纤技术实现远距离实时检测、实现裸眼识别等优点,近年来引起了人们极大的兴趣。染料分子由于具有较强的生色能力,在加入底物过程中,通常会在可见光区范围发生紫外可见吸收光谱和荧光光谱的变化。因此,本论文设计、合成了一系列有机染料,并研究了其在离子光化学传感方面的应用。
     1.设计合成了偶氮喹啉苯酯衍生物1-4(见图A1),并研究了与Hg~(2+)作用前后化合物的光物理性质的变化。实验结果表明,偶氮基团的引入改善了喹啉苯酯化合物的生色能力。苯环上4-位取代基推电子能力的增强不仅使得化合物1-3的吸收光谱发生红移,而且对化合物和Hg~(2+)配位后的光谱变化有很大影响。对于含推电子基(-OCH_3,-N(CH_3)_2)的化合物2和3来说,Hg~(2+)的加入使化合物由D-π-D结构转变为D-π-A结构,增加了分子内电荷转移的程度,导致化合物吸收光谱的红移;而对于含吸电子基(-NO_2)的化合物4来说,Hg~(2+)的加入使化合物由D-π-A结构转变为A-π-A结构,减小了分子内电荷转移的程度,从而导致化合物吸收光谱的蓝移。强推电子基(-N(CH_3)_2)的引入将化合物3在加入Hg~(2+)前后的光谱调节至可见光区范围内,使其可用于Hg~(2+)的裸眼检测。其它金属阳离子的存在不干扰Hg~(2+)的检测。紫外吸收光谱和~1H NMR谱均证实化合物与Hg~(2+)的键合部位是喹啉N原子与酯基O原子。
     2.设计合成了罗丹明衍生物1-3(见图A2),研究了加入Hg~(2+)前后化合物的光物理性质的变化。实验结果表明,在pH为中性的缓冲溶液中,加入Hg~(2+)前,化合物1-3的紫外可见吸收谱图的吸收峰强度很弱,对应的荧光光谱发射峰也很弱,此时化合物为关环态;而加入Hg~(2+)后,紫外可见吸收谱图上位于555 nm附近分别出现了明显的吸收峰;对应的荧光光谱在510 nm波长激发下位于580 nm附近也出现了明显的发射峰,化合物由关环态转化为开环态。相应的颜色和荧光均发生了明显的变化:颜色由无色变为明显的红色;荧光颜色在365 nm波长激发下由无色变为橙红色。化合物1相比于化合物2和3对Hg~(2+)具有更好的选择识别性能,其它金属离子的存在不干扰化合物1对Hg~(2+)的检测。化合物1有望发展为同时具有吸收和荧光发射输出信号的Hg~(2+)化学传感器。
     3.设计合成了具有不同共轭结构的偶氮羟基喹啉衍生物1-3(见图A3),研究了加入阴离子前后化合物的光物理性质的变化。实验结果表明,偶氮基团的引入改善了8-羟基喹啉的生色能力,并且在乙腈溶液中随着取代基由苯基变为萘基和蒽基时,化合物的吸收光谱发生红移。结合吸收光谱数据和晶体结构数据可以得出,在乙腈溶液中化合物的光物理性质主要取决于共轭结构,而在固态条件下化合物的光物理性质受共轭结构、分子面间距、二面角以及氢键作用的综合影响。多环芳烃的引入能够在一定程度上改善化合物对阴离子的键合能力,使化合物均对F有较好的响应,并可达到裸眼识别。~1H NMR表明酚羟基是偶氮喹啉衍生物响应阴离子的关键部位。
     4.设计合成了半菁染料1-4(见图A4),研究了这四个化合物在加入阴离子前后的光物理性质。在加入碱性较大的阴离子(F和AcO-)后,化合物1-4的乙腈溶液的紫外可见吸收光谱均发生了明显的红移,表明1-4是一类较好的阴离子化学传感器。设计合成了一个查尔酮化合物5,加入碱性较大的阴离子(F和AcO~-)后,紫外可见吸收光谱和荧光光谱均发生变化,有望发展为荧光和生色双功能阴离子传感器。
     5.由于方酸染料与巯基的反应可破坏方酸染料的共轭结构,而加入Hg~(2+)后,巯基与Hg~(2+)相互作用可置换出方酸染料。基于这个置换反应,在第六章中,制备了有机/无机杂化介孔材料SQ/SBA-15(见图A5),可同时用于Hg~(2+)的检测和分离。其它金属阳离子的存在不干扰SQ/SBA-15对Hg~(2+)的检测,SQ/SBA-15有望发展为同时用于Hg~(2+)的检测和分离的有机/无机杂化材料。
Fluorescent and colorimetric chemosensors in selectively recognizing ions and molecules are of great interest in supramolecular chemistry. The advantages of fluorescence chemosensors are high selectivity, sensitivity and simplicity. Colorimetric sensors are popular due to their capability to detect analyte by the naked eye without resorting to any expensive instruments. In this thesis, a series of new fluorescent and colorimetric chemosensors were synthesized and investigated for their applications in the detection of Hg~(2+) and anions. The details are as follows:
     1. Four 8-hydroxyquinoline benzoate derivatives with diverse azo substituents 1-4 (see Fig. A1) were synthesized by diazo-reaction of 2-methyl-8-hydroxyquinoline with various arylamines, followed by esterification with benzoyl chloride. All the products allowed selective responding to Hg~(2+), which was confirmed by Uv-vis absorption spectra. Different spectral changes were observed for these compounds with electron-donating substituent (bathochromic shift) or electron-withdrawing substituent (hypsochromic shift). Particularly, obvious color change was found for 5-(4-dimethylaminophenylazo) -2-methylquinolin-8-yl benzoate (3) in the presence of Hg~(2+), which made it possible for distinguishing Hg~(2+) from other metal ions by naked eye.
     2. Three rhodamine B derivatives 1-3 (see Fig. A2) were synthesized and studied as turn-on fluorescent chemosensors for Hg~(2+). When Hg~(2+) was added, the solution of these compounds turned from colorless to red, corresponding to apparent fluorescent change from colorless to red-orange with excitation wavelength at 365 nm. Especially, a rhodamine B derivative with quinoline group (1) displayed highly selectivity for Hg~(2+) over other metal ions, which made it possible for distinguishing Hg~(2+) from other metal ions by naked eye.
     3. Three 8-hydroxyquinoline azo derivatives 1-3 (see Fig. A3) with diverse conjugated structures were synthesized and studied to chromogenically detect anions. All these dyes allowed detection for fluoride anion in CH3CN via instance deprotonation of compounds, which was confirmed by UV-vis absorption and H NMR spectra. The chromogenic responding ability increases as the substituent changes from phenyl to naphthyl or anthryl. This phenomenon is likely to be related to the enhancement of intramolecular charge transfer (ICT) induced by extension of conjugated structure.
     4. Four hemicyanine derivatives 1-4 (see Fig. A4) with diverse conjugated structures were synthesized and studied to chromogenically detect anions. All these dyes allowed detection for anions such as F~- and AcO~- in CH_3CN, which is likely to be related to the enhancement of intramolecular charge transfer (ICT) induced by instance deprotonation of compounds. In addition, a chalcone derivative was synthesized as fluorescent and colorimetric chemosensor for anions such as F~- and AcO~-.
     5. Mesoporous SQ/SBA-15 on the basis of the interaction of squaraine dye and mercaptol was designed and synthesized. This chemodosimeter system displayed highly selectivity for Hg~(2+) over other metal ions, corresponding to apparent color change from colorless to blue, which made it possible for distinguishing Hg~(2+) from other metal ions by naked eye. Moreover, SQ/SBA-15 could adsorb and separate Hg~(2+) from solution. This route based on guest-induced dye release methods might be of interest as a new route for the design of new and improved regenerative sensor molecules.
引文
1. Pederson, C. J. Cyclic polyethers and their complexes with metal ions [J]. J. Am. Chem. Soc. 1967, 89(10), 2495-2496.
    2. Cram, D. J.; Cram, J. M. Host-guest chemistry [J]. Science 1974, 183(4127), 803-809.
    3. Lehn, J. M.; Sauvage, G. P. [2]-Cryptates: stability and selectivity of alkali and alkaline-earth macrobicyclic complexes [J]. J. Am. Chem. Soc. 1975, 97(23), 6700-6707.
    4.刘育,尤长城,张衡益,超分子化学—合成受体的分子识别和组装[M].南开大学出版社,2001年.
    5.吴世康,超分子光化学导论—基础与应用[M].北京科学出版社,2005年.
    6. De Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; Mccoy, C. P.; Rademacher, J. T.; Rice, T. E. Signaling recognition events with fluorescent sensors and switches [J]. Chem. Rev. 1997, 97(5), 1515-1566.
    7. Martinez-Manez, R.; Sancenon, F. Fluorogenic and chromogenic chemosensors and reagents for anions [J]. Chem. Rev. 2003, 103(11), 4419-4476.
    8. Lakowicz, J. R. Ed. Principles of fluorescence spectroscopy [M]. Plenum Publishers Corporation: New York, 1999.
    9. Snowden, T. S.; Anslyn, E. V. Anion recognition: synthetic receptors for anions and their application in sensors [J]. Curr. Opin. Chem. Biol. 1999, 3(6), 740-746.
    10.张宇辉,董赫,童爱军,发光性受体的分子设计与分子识别[J].分析试验室2002,21(5),93-99.
    11. Valeur, B.; Leray, I. Design principles of fluorescent molecular sensors for cation recognition [J]. Coord. Chem. Rev. 2000, 205, 3-40.
    12.吴世康,荧光化学产感器研究中的光化学与光物理问题[J].化学进展 2004,16(2),174-183.
    13. Barbara, P. F.; Jarzeba, W. Ultrafast photochemical intramolecular charge and excited state solvation [J]. Adv. Photochem. 1990, 15, 1-68.
    14. Il'ichev, Y. V.; Kuhnle, W.; Zachariasse, K. A. Intramolecular charge transfer in dual fluorescent 4-(dialkylamino)benzonitriles. Reaction efficiency enhancement by increasing the size of the amino and benzonitrile subunits by alkyl substituents [J]. J. Phys. Chem. A. 1998, 102(28), 5670-5680.
    15. (a) Lakowicz, J. R. Principles of fluorescence spectroscopy [M]. 2nd ed.,Kluwer/Plenum,New York,1999.(b)樊美公,光化学基本原理与光子学材料 科学[M].科学出版社,2001年.
    16. Sherrill, C. B.; Marshall, D. J.; Moser, M. J.; Larsen, C. A.; Daude-Snow, L.; Prudent, J. R. Nucleic acid analysis using an expanded genetic alphabet to quench fluorescence [J]. J. Am. Chem. Soc. 2004, 126(14), 4550-4556.
    17.黄春辉,李富友,黄岩谊,光电功能超薄膜[M].北京大学出版社,2001年.
    18. Zollinger, H. Color Chemistry [M]. VCH: Weinheim, 1991.
    19. Amendola, V.; Fabbrizzi, L.; Mangano, C.; Pallavicini, P.; Poggi, A.; Taglietti, A. Anion recognition by dimetallic cryptates [J]. Coord. Chem. Rev. 2001, 219, 821-837.
    20. Sessler, J. L.; Weghorn, S. J. Expanded, contracted and isomeric porphyrins [M]. Elsevier: London, 1997.
    21.(a)孟祥明,刘磊,郭庆祥,铅、汞、镉离子的荧光化学传感器研究进展[J].化学进展 2005,17(1),45-54.(b)杨红博士论文,复旦大学,2006年.
    22. Nendza, M.; Herbst, T.; Kussatz, C.; Gies, A. Potential for secondary poisoning and biomagnification in marine organisms [J]. Chemosphere 1997, 359(9), 1875-1885.
    23. (a) Rurack, K.; Bricks, J. L.; Schulz, B.; Maus, M.; Reck, G.; Resch-Genger, U. Substituted 1,5-diphenyl-3-benzothiazol-2-yl-delta(2)-pyrazolines: synthesis, X-ray structure, photophysics, and cation complexation properties [J]. J. Phys. Chem. A 2000, 104(26), 6171-6188. (b) Rurack, K.; Bricks, J. L.; Reck, G.; Radeglia, R.; Resch-Genger, U.; Chalcone-analogue dyes emitting in the near-infrared (NIR): influence of donor-acceptor substitution and cation complexation on their spectroscopic properties and X-ray structure [J]. J. Phys. Chem. A 2000, 104(14), 3087-3109.
    24. Rurack, K.; Resch-Genger, U.; Bricks, J. L.; Spieles, M. Cation-triggered 'switching on' of the red/near infra-red (NIR) fluorescence of rigid fluorophore-spacer-receptor ionophores [J]. Chem. Commun. 2000, 21, 2103-2104.
    25. Rurack, K.; Kollmannsberger, M.; Resch-Genger, U.; Daub, J. A selective and sensitive fluoroionophore for Hg-Ⅱ, Ag-Ⅰ, and Cu-Ⅱ with virtually decoupled fluorophore and receptor units [J]. J. Am. Chem. Soc. 2000, 122(5), 968-969.
    26. Descalzo, A. B.; Martinez-Manez, R.; Radeglia, R.; Rurack, K.; Soto, J. Coupling selectivity with sensitivity in an integrated chemosensor framework: Design of a Hg~(2+)-responsive probe, operating above 500 nm [J]. J. Am Chem. Soc. 2003, 125(12), 3418-3419.
    27. Jimenez, D.; Martinez-Manez, R.; Sancen6n, F.; Soto, J. Electro-optical triple-channel sensing of metal cations via multiple signalling patterns [J]. Tetrahedron Lett. 2004, 45(6), 1257-1259.
    28. Ros-Lis, J. V.; Martinez-Manez, R.; Rurack, K.; Sancen6n, F.; Soto, J.; Spieles, M. Highly selective chromogenic signaling of Hg~(2+) in aqueous media at nanomolar levels employing a squaraine-based reporter [J]. Inorg. Chem. 2004, 43(17), 5183-5185.
    29. Kim, S. H.; Song, K. C.; Ahn, S.; Kang, Y. S.; Chang, S. K. Hg~(2+)-selective fluoroionophoric behavior of pyrene appended diazatetrathia-crown ether [J]. Tetrahedron Lett. 2006, 47(4), 497-500.
    30. Vaidya, B.; Zak, J.; Bastiaans, G. J.; Porter, M. D. Chromogenic and fluorogenic grown ether compounds for the selective extraction and determination of Hg(Ⅱ) [J]. Anal. Chem. 1995, 67(22), 4101-4111.
    31. Prodi, L.; Bargossi, C.; Montali, M.; Zaccheroni, N.; Su, N.; Bradshaw, J. S.; Izatt, R. M.; Savage, P. B. An effective fluorescent chemosensor for mercury ions [J]. J. Am. Chem. Soc. 2000, 122(28), 6769-6770.
    32. Padilla-Tosta, M. E.; Lloris, J. M.; Martinez-Manez, R.; Marcos, M. D.; Miranda, M. A.; Pardo, T.; Sancenon, F.; Soto, J. Fluorescent chemosensors for heavy metal ions based on bis(terpyridyl) ruthenium(Ⅱ) complexes containing aza-oxa and polyaza macrocycles [J]. Eur. J. Inorg. Chem. 2001, 6, 1475-1482.
    33. Sakamoto, H.; Ishikawa, J.; Nakao, S.; Wada, H. Excellent mercury(Ⅱ) ion selective fluoroionophore based on a 3,6,12,15-tetrathia-9-azahepta-decane derivative bearing a nitrobenzoxadiazolyl moiety [J]. Chem. Commun. 2000, 23, 2395-2396.
    34. Sancenon, F.; Martinez-Manez, R.; Soto, J. Colourimetric detection of Hg~(2+) by a chromogenic reagent based on methyl orange and open-chain polyazaoxaalkanes [J]. Tetrahedron Lett. 2001, 42(26), 4321-4323.
    35. Sancenon, F.; Martinez-Manez, R.; Soto, J. 1,3,5-Triarylpent-2-en-1,5-diones for the colorimetric sensing of the mercuric cation [J]. Chem. Commun. 2001, 21, 2262-2263.
    36. Cheung, S. M.; Chan, W. H. Hg~(2+) sensing in aqueous solutions: an intramolecular charge transfer emission quenching fluorescent chemosensors [J].Tetrahedron 2006, 62(35), 8379-8383.
    37. Kim, J. S., Choi, M. G.; Song, K. C.; No, K. T.; Alan, S.; Chang, S. K. Ratiometric determination of Hg~(2+) ions based on simple molecular motifs of pyrene and dioxaoctanediamide [J]. Org. Lett. 2007, 9(6), 1129-1132.
    38. Yoon, J. Y.; Ohler, N. E.; Vance, D. H.; Aumiller, W. D.; Czamik, A. W. A fluorescent chemosensor signalling only Hg(Ⅱ) and Cu(Ⅱ) in water [J]. Tetrahedron Lett. 1997, 38(22), 3845-3848.
    39. Moon, S. Y.; Youn, N. J.; Park, S. M.; Chang, S. K Diametrically disubstituted cyclam derivative having Hg~(2+)-selective fluoroionophoric behaviors [J]. J. Org. Chem. 2005, 70(6), 2394-2397.
    40. Kim, S. H.; Kim, J. S.; Park, S. M.; Chang S. K. Hg~(2+)-selective OFF-ON and Cu~(2+)-selective ON-OFF type fluoroionophore based upon cyclam [J]. Org. Lett. 2006, 8(3), 371-374.
    41. Talanova, G. G.; Elkarim, N. S. A.; Talanov, V. S.; Bartsch, R. A. A calixarene-based fluorogenic reagent for selective mercury(Ⅱ) recognition [J]. Anal. Chem. 1999, 71(15), 3106-3109.
    42. Choi, M. J.; Kim, M. Y.; Chang, S. K A new Hg~(2+)-selective chromoionophore based on calix[4]arenediazacrown ether [J]. Chem. Commun. 2001, 17, 1664-1665.
    43. Cha, N. R.; Kim, M. Y.; Kim, H.; Choe, J. I.; Chang, S. K. New Hg~(2+)-selective fluoroionophores derived from p-tert-butylcalix[4]arene-azacrown ethers [J]. J. Chem. Soc, Perkin Trans. 2002, 2(6), 1193-1196.
    44. Arena, G.; Contino, A.; Longo, E.; Sciotto, D.; Spoto, G. Selective complexation of soft Pb~(2+) and Hg~(2+) by a novel allyl functionalized thioamide calix[4]arene in 1,3-alternate conformation: a UV-visible and H-1 NMR spectroscopic investigation [J]. J. Chem. Soc., Perkin Trans. 2001, 2(12), 2287-2291.
    45. Ou, S. J.; Lin, Z. H.; Duan, C.Y.; Zhang, H. T.; Bai, Z. P. A sugar-quinoline fluorescent chemosensor for selective detection of Hg~(2+) ion in natural water [J]. Chem. Commun. 2006, 42, 4392-4394.
    46. Minh-Huong, H. T.; Mael, P.; Veronique, M.; Isabelle, L. Highly selective and sensitive phosphane sulfide derivative for the detection of Hg~(2+) in an organoaqueous medium [J]. Org. Lett. 2007, 9(6), 1133-1136.
    47. Palomares, E.; Vilar, R.; Durrant, J. R. Heterogeneous colorimetric sensor for mercuric salts [J]. Chem. Commun. 2004, 4, 362-363.
    48. Tatay, S.; Gavina, P.; Coronado, E.; Palomares, E. Optical mercury sensing using a benzothiazolium hemicyanine dye [J]. Org. Lett. 2006, 8(17), 3857-3860.
    49. Liu. B.; Tian, H. A selective fluorescent ratiometric chemodosimeter for mercury ion [J]. Chem. Commun. 2005, 25, 3156-3158.
    50. Delmarre, D.; Meallet, R.; Bied-Charreton, C.; Pansu, R. B. Heavy metal ions detection in solution, in sol-gel and with grafted porphyrin monolayers [J]. J. Photochem. Photobio. A: Chemistry 1999, 124(1-2), 23-28.
    51. Zhang, X. B.; Guo, C. C.; Li, Z. Z.; Shen, G. L.; Yu, R. Q. An optical fiber chemical sensor for mercury ions based on a porphyrin dimer [J]. Anal. Chem. 2002, 74(4), 821-825.
    52. Ramaiah, D.; Rekha, R.; Avirah, K. J.; Danaboyina, R. Dual-mode semisquaraine-based sensor for selective detection of Hg~(2+) in a micellar medium [J]. Org. Lett. 2007, 9(1), 121-124.
    53.许胜,刘斌,田禾,阴离子荧光化学传感器新进展[J].化学进展 2006,18(6),687-697.
    54. Costero, A. M.; Sanchis, J.; Gil, S.; Sanz, V.; Williams, J. A. G. Poly(amine) biphenyl derivatives as fluorescent sensors for anions and cations [J]. J. Mater. Chem. 2005, 15(27-28), 2848-2853.
    55. Liu, B.; Tian, H. A ratiometric fluorescent chemosensor for fluoride ions based on a proton transfer signaling mechanism [J]. J. Mater. Chem. 2005, 15(27-28), 2681-2686.
    56. Wu, J. S.; Zhou, J. H.; Wang, P. F.; Zhang, X. H.; Wu, S. K. New fluorescent chemosensor based on exciplex signaling mechanism [J]. Org. Lett. 2005, 7(11), 2133-2136.
    57. Chen, Q. Y.; Chen, C. F. A new fluorescent as well as chromogenic chemosensor for anions based on an anthracene carbamate derivative [J]. Tetrahedron Lett. 2004, 45(34), 6493-6496.
    58. Kovalchuk, A.; Bricks, J. L.; Reck, G.; Rurack, K.; Schulz, B.; Szumna, A.; Weisshoff, H. A charge transfer-type fluorescent molecular sensor that "lights up" in the visible upon hydrogen bond-assisted complexation of anions [J]. Chem. Commun. 2004, 17, 1946-1947.
    59. Anzenbacher, P.; Jursikova, K.; Sessler, J. L. Second generation calixpyrrole anion sensors [J]. J. Am. Chem. Soc. 2000, 122(38), 9350-9351.
    60. (a) Gunnlaugsson, T.; Davis, A. P.; O'brien, J. E.; Glynn, M. Fluorescent sensing of pyrophosphate and bis-carboxylates with charge neutral PET chemosensors [J]. Org. Lett. 2002, 4(15), 2449-2452. (b) Gunnlaugsson, T.; Davis, A. P.; Obrien, J. E.; Glynn, M. Synthesis and photophysical evaluation of charge neutral thiourea or urea based fluorescent PET sensors for bis-carboxylates and pyrophosphate [J]. Org. Biomol. Chem. 2005, 3(1), 48-56.
    61. Ren, J.; Wang, Q. C.; Qu, D. H.; Zhao, X. L.; Tian, H. New fluoride-selective red fluorescent chemosensors based on perylene derivatives [J]. Chem. Lett. 2004, 33(8), 974-975.
    62. Ren, J.; Zhao, X. L.; Wang, Q. C.; Ku, C. F.; Qu, D. H.; Chang, C. P.; Tian, H. New fluoride fluorescent chemosensors based on perylene derivatives linked by urea [J]. Dyes and Pigments 2005, 64(3), 193-200.
    63. Liu, B.; Tian, H. A highly selective chromogenic and fluorogenic chemosensor for fluoride ion [J]. Chem. Lett. 2005, 34(5), 686-687.
    64. Lee, D. H.; Im, J. H.; Lee, J. H.; Hong, J. I. A new fluorescent fluoride chemosensor based on conformational restriction of a biaryl fluorophore [J]. Tetrahedron Lett. 2002, 43(52), 9637-9640.
    65. Xu, G. X.; Tarr, M. A. A. novel fluoride sensor based on fluorescence enhancement [J]. Chem. Commun. 2004, 9, 1050-1051.
    66. (a) Cho, E. J.; Moon, J. W.; Ko, S. W.; Lee, J. Y.; Kim, S. K.; Yoon, J.; Nam, K. C. A new fluoride selective fluorescent as well as chromogenic chemosensor containing a naphthalene urea derivative [J]. J. Am. Chem. Soc. 2003, 125(41), 12376-12377. (b) Lee, J. Y.; Cho, E. J.; Mukamel, S.; Nam, K. C. Efficient fluoride-selective fluorescent host: Experiment and theory [J]. J. Org. Chem. 2004, 69(3), 943-950.
    67. Oton, F.; Tarraga, A.; Velasco, M. D.; Espinosa, A.; Molina, P. A new fluoride selective electrochemical and fluorescent chemosensor based on a ferrocene-naphthalene dyad [J]. Chem. Commun. 2004, 14, 1658-1659.
    68. Esteban-Gomez, D.; Fabbrizzi, L.; Licchelli, M.; Sacchi, D. A two-channel chemosensor for the optical detection of carboxylic acids, including cholic acid [J]. J. Mater. Chem. 2005, 15(27-28), 2670-2675.
    69. Descalzo, A. B.; Rurack, K.; Weisshoff, H.; Martinez-Manez, R.; Marcos, M. D.; Amoros, P.; Hoffmann, K.; Soto, J. Rational design of a chromo-and fluorogenic hybrid chemosensor material for the detection of long-chain carboxylates [J]. J. Am. Chem. Soc. 2005, 127(1), 184-200.
    70. Black, C. B.; Andrioletti, B.; Try, A. C.; Ruiperez, C.; Sessler, J. L. Dipyrrolylquinoxalines: efficient sensors for fluoride anion in organic solution [J]. J. Am. Chem. Soc. 1999, 121(44), 10438-10439.
    71. Pohl, R.; Aldakov, D.; Kubat, P.; Jursikova, K.; Marquez, M.; Anzenbacher, P. J. Strategies toward improving the performance of fluorescence-based sensors for inorganic anions [J]. Chem. Commun. 2004, 11, 1282-1283.
    72. Tong, H.; Zhou, G.; Wang, L. X.; Jing, X. B.; Wang, F. S.; Zhang, J. P. Novel highly selective anion chemosensors based on 2,5-bis(2-hydroxyphenyl)-1,3,4-oxadiazole [J]. Tetrahedron Lett. 2003, 44(1), 131-134.
    73. Zhou, G.; Cheng, Y. X.; Wang, L. X.; Jing, X. B.; Wang, F. S. Novel polyphenylenes containing phenol-substituted oxadiazole moieties as fluorescent chemosensors for fluoride ion [J]. Macromolecules 2005, 38(6), 2148-2153.
    74. Arimori, S.; Davidson, M. G.; Fyles, T. M.; Hibbert, T. G.; James, T. D.; Kociok-Kehn, G. I. Synthesis and structural characterisation of the first bis(bora)calixarene: a selective, bidentate, fluorescent fluoride sensor [J]. Chem. Commun. 2004, 14, 1640-1641.
    75. Kwak, G.; Fujiki, M.; Masuda, T. Dynamic fluoride anion coordinating Si-containing pi-conjugating polymers [J]. Macromolecules 2004, 37(7), 2422-2426.
    76. Coskun, A.; Akkaya, E. U. Difluorobora-s-diazaindacene dyes as highly selective dosimetric reagents for fluoride anions [J]. Tetrahedron Lett. 2004, 45(25), 4947-4949.
    77. Xu, S.; Chen, K. C.; Tian H. A colorimetric and fluorescent chemodosimeter: fluoride ion sensing by an axial-substituted subphthalocyanine [J]. J. Mater. Chem. 2005, 15(27-28), 2676-2680.
    78. Kubo, Y.; Ishida, T.; Kobayashi, A.; James, T. D. Fluorescent alizarin-phenylboronic acid ensembles: design of self-organized molecular sensors for metal ions and anions [J]. J. Mater. Chem. 2005, 15(27-28), 2889-2895.
    79. Liu, Z. Q.; Shi, M.; Li, F. Y.; Fang, O. Chen, Z. H.; Yi, T.; Huang, C. H. Highly selective two-photon chemosensors for fluoride derived from organic boranes [J]. Org. Lett. 2005, 7(24), 5481-5484.
    1. (a) Buhlmann, P.; Pretsch, E.; Bakker, E. Carrier-based ion-selective electrodes and bulk optodes. 2. Ionophores for potentiometric and optical sensors [J]. Chem. Rev. 1998, 98(4), 1593-1687. (b) Jiang, P. J.; Guo, Z. J. Fluorescent detection of zinc in biological systems: recent development on the design of chemosensors and biosensors [J]. Coord. Chem. Rev. 2004, 248(1-2), 205-229. (c) Chakrabarti, A.; Chawla, H. M.; Francis, T.; Pant, N.; Upreti, S. Synthesis and cation binding properties of new arylazo-and heteroarylazotetrathiacalix[4]arenas [J]. Tetrahedron 2006, 62(6), 1150-1157. (d) Roy, B. C.; Chandra, B.; Hromas, D.; Mallik, S. Synthesis of new, pyrene-containing, metal-chelating lipids and sensing of cupric ions [J]. Org. Lett. 2003, 5(1), 11-14. (e) Sumner, J. P.; Westerberg, N. M.; Stoddard, A. K.; Hurst, T. K.; Cramer, M.; Thompson, R. B.; Fierke, C. A.; Kopelman, R. Dsred as a highly sensitive, selective, and reversible fluorescencebased biosensor for both Cu~+ and Cu2~(2+) ions [J]. Biosensors & Bioelectron. 2006, 21(7), 1302-1308. (f) Xiang, Y.; Tong, A. J.; Jin, P. Y.; Ju, Y. New fluorescent rhodamine hydrazone chemosensor for Cu(Ⅱ) with high selectivity and sensitivity [J]. Org. Lett. 2006, 8 (13), 2863-2866.
    2. (a) U. S. EPA, Regulatory impact analysis of the clean air mercury rule: EPA-452/R-05-003, 2005. (b) Harris, H. H.; Pickering, I. J.; George, G. N. The chemical form of mercury in fish-Response [J]. Science 2004, 303(5659), 764-766. (c) Harris, H. H.; Pickering, I. J.; George, G. N. The chemical form of mercury in fish [J]. Science 2003, 301(5637), 1203-1203. (d) Boening, D. W. Ecological effects, transport, and fate of mercury: a general review [J]. Chemosphere 2000, 40 (12), 1335-1351. (e) Clarkson, T. W.; Magos, L.; Myers, G. The toxicology of mercury-current exposures and clinical manifestations [J]. J. New Engl. J. Med. 2003, 349 (18), 1731-1737.
    3. (a) Basheer, M. C.; Alex, S.; Thomas, K. G.; Suresh, C. H.; Das, S. A squaraine-based chemosensor for Hg~(2+) and Pb~(2+) [J]. Tetrahedron 2006, 62(4), 605-610. (b) Gunnlaugsson, T.; Leonard, J. P.; Murray, N. S. Highly selective colorimetric naked-eye Cu(Ⅱ) detection using an azobenzene chemosensor [J]. Org. Lett. 2004, 6(10), 1557-1560. (c) Sancenon, F.; Martinez-Manez, R.; Soto, J. 1,3,5-Triarylpent-2-en-1,5-diones for the colorimetric sensing of the mercuric cation [J]. Chem. Commun. 2001, (21), 2262-2263. (d) Choi, M. J.; Kim, M. Y.; Chang, S. K. A new Hg~(2+)-selective chromoionophore based on calix[4]arenediazacrown ether [J]. Chem. Commun. 2001, 17, 1664-1665.
    4. (a) Liu, B.; Tian, H. A selective fluorescent ratiometric chemodosimeter for mercury ion [J]. Chem. Commun. 2005, 25, 3156-3158.
    (b) Yang, Y. K.; Yook, K. J.; Tae, J. A rhodamine-based fluorescent and colorimetric chemodosimeter for the rapid detection of Hg~(2+) ions in aqueous media [J]. J. Am. Chem. Soc. 2005, 127(48), 16760-16761.
    (c) Zhang, G. X.; Zhang D. Q.; Yin, S. W.; Yang, X. D.; Shuai, Z. G.; Zhu, D. B. 1,3-Dithiole-2-thione derivatives featuring an anthracene unit: new selective chemodosimeters for Hg(Ⅱ) ion [J]. Chem. Commun. 2005, 16, 2161-2163.
    (d) Youn, N. J.; Chang, S. K. Dimethylcyclam based fluoroionophore having Hg~(2+)-and Cd~(2+)-selective signaling behaviors [J]. Tetrahedron Lett. 2005, 46(1), 125-129.
    (e) Moon, S. Y.; Youn, N. J.; Park, S. M.; Chang, S. K. Diametrically disubstituted cyclam derivative having Hg~(2+)-selective fluoroionophoric behaviors [J]. J. Org. Chem. 2005, 70(6), 2394-2397.
    (f) Miyake, Y.; Ono, A. Fluorescent sensor for redox environment: a redox controlled molecular device based on the reversible mercury mediated folded structure formation of oligothymidylate [J]. Tetrahedron Lett. 2005, 46(14), 2441-2443.
    (g) Kim, S. H.; Kim, J. S.; Park, S. M.; Chang, S. K. Hg~(2+)-selective OFF-ON and Cu~(2+)-selective ON-OFF type fluoroionophore based upon cyclam [J]. Org. Lett. 2006, 8(3), 371-374.
    (h) Ono, A.; Togashi, H. Highly selective oligonucleotidebased sensor for mercury(Ⅱ) in aqueous solutions [J]. Angew. Chem. Int. Ed. 2004, 43(33), 4300-4302.
    (i) Xiao, Y.; Qian, X. H. Novel highly efficient fluoroionophores with a peri-effect and strong electron-donating receptors: TICT-promoted PET and signaling response to transition metal cations with low background emission [J]. Tetrahedron Lett. 2003, 44(10), 2087-2091.
    (j) Guo, X. F.; Qian, X. H.; Jia, L. H. A highly selective and sensitive fluorescent chemosensor for Hg~(2+) in neutral buffer aqueous solution [J]. J. Am. Chem. Soc. 2004, 126(8), 2272-2273.
    (k) Wang, Z.; Zhang, D. Q.; Zhu, D. B. A sensitive and selective "turn on" fluorescent chemosensor for Hg(II) ion based on a new pyrenethymine dyad [J].Anal. Chim. Acta 2005, 549(1-2), 10-13.
    5. (a) Singh, L. P.; Bhatnagar, J. M. Copper(Ⅱ) selective electrochemical sensor based on Schiff Base complexes [J]. Talanta 2004, 64(2), 313-319.
    (b) Liu, Z. H.; Huan, S. Y.; Jiang, J. H.; Shen, G. L.; Yu, R. Q. Molecularly imprinted TiO_2 thin film using stable ground-state complex as template as applied to selective electrochemical determination of mercury [J]. Talanta 2006, 68(4), 1120-1125.
    6. (a) Shi, G. Q.; Jiang, G. B. A dip-and-read test strip for the determination of mercury(H) ion in aqueous samples based on urease activity inhibition [J]. Anal. Sci. 2002, 18(11), 1215-1219. (b) Yang, Y. H.; Wang, Z. J.; Yang, M. H.; Guo, M. M.; Wu, Z. Y.; Shen, G. L.; Yu, R. Q. Inhibitive determination of mercury ion using a renewable urea biosensor based on self-assembled gold nanoparticles [J]. Sensor. Actuat. B-Chem. 2006, 114(1), 1-8.
    7. Manganiello, L.; Rios, A.; Valcarcel, M. A method for screening total mercury in water using a flow injection system with piezoelectric detection [J]. Anal. Chem. 2002, 74(4), 921-925.
    8. (a) Yang, H.; Liu, Z. Q.; Zhou, Z. G.; Shi, E. X.; Li, F. Y.; Du, Y. K.; Yi, T.; Huang, C. H. A highly selective ratiometric fluorescent sensor for Cu(Ⅱ) with two urea groups [J]. Tetrahedron Lett. 2006, 47(17), 2911-2914. (b) Wang, J. B.; Qian, X. H.; Cui, J. N. Detecting Hg~(2+) ions with an ICT fluorescent sensor molecule: Remarkable emission spectra shift and unique selectivity [J]. J. Org. Chem. 2006, 71(11), 4308-4311. (c) Zhang, T. Z.; Anslyn, E. V. A colorimetric boronic acid based sensing ensemble for carboxy and phospho sugars [J]. Org. Lett. 2006, 8(8), 1649-1652. (d) Chen, C. F.; Chen, Q. Y. Azocalix[4]arene-based chromogenic anion probes [J]. New J. Chem. 2006, 30(2), 143-147. (e) Liu, J. W.; Lu, Y. Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles [J]. Angew. Chem. Int. Ed. 2006, 45(1), 90-94.
    9. (a) Nazeeruddin, M. K.; Di Censo, D., Humphry-Baker, R., Gratzel, M. Highly selective and reversible optical, colorimetric, and electrochemical detection of mercury(Ⅱ) by amphiphilic ruthenium complexes anchored onto mesoporous oxide films [J]. Adv. Funct. Mater. 2006, 16(2), 189-194. (b) Ros-Lis, J. V.; Martinez-Manez, R.; Rurack, K.; Sancenon, F.; Soto, J.; Spieles, M. Highly selective chromogenic signaling of Hg~(2+) in aqueous media at nanomolar levels employing a squaraine-based reporter [J]. Inorg. Chem. 2004, 43(17), 5183-5185. (c) Descalzo, A. B.; Martinez-Manez, R.; Radeglia, R.; Rurack, K.; Soto, J. Coupling selectivity with sensitivity in an integrated chemosensor framework: Design of a Hg~(2+)-responsive probe, operating above 500 nm [J].J. Am. Chem. Soc. 2003, 125(12), 3418-3419. (d) Sancenon, F.; Martinez-Manez, R.; Soto, J. Colourimetric detection of Hg~(2+) by a chromogenic reagent based on methyl orange and open-chain polyazaoxaalkanes [J]. Tetrahedron Lett. 2001, 42(26), 4321-4323. (e) Moon, S. Y.; Cha, N. R.; Kim, Y. H.; Chang, S. K. New Hg~(2+)-selective chromo-and fluoroionophore based upon 8-hydroxyquinoline [J]. J. Org. Chem. 2004, 69(1), 181-183. (f) Coronado, E.; Galan-Mascaros, J. R.; Marti-Gastaldo, C.; Palomares, E.; Durrant, J. R.; Vilar, R.; Gratzel, M.; Nazeeruddin, M. K. Reversible colorimetric probes for mercury sensing [J]. J. Am. Chem. Soc. 2005, 127(35), 12351-12356. (g) Lee, H. G.; Lee, J. E.; Choi, K. S. Chromoionophoric N282 macrocycles exhibiting mercury(II) selectivity [J]. Inorg. Chem. Comm. 2006, 9(6), 582-585.
    10. Zhang, H.; Han, L. F.; Zachariasse, K. A.; Jiang, Y. B. 8-Hydroxyquinoline benzoates as highly sensitive fluorescent chemosensors for transition metal ions [J]. Org. Lett. 2005, 7(19), 4217-4220.
    11. (a) Lee, S. J.; Jung, J. H.; Seo, J.; Yoon, I.; Park, K. M.; Lindoy, L. F.; Lee, S. S. A chromogenic macrocycle exhibiting cation-selective and anion-controlled color change: An approach to understanding structure-color relationships [J]. Org. Lett. 2006, 8(8), 1641-1643. (b) Kano, N.; Yoshino, J.; Kawashima, Y. Photoswitching of the Lewis acidity of a catecholborane bearing an azo group based on the change in coordination number of boron [J]. Org. Lett. 2005, 7(18), 3909-3911. (c) Mashhadizadeh, M. H.; Sheikhshoaie, I. Mercury(Ⅱ) ion-selective polymeric membrane sensor based on a recently synthesized Schiff base [J]. Talanta 2003, 60(1), 73-80. (d) Hassan, S. S. M.; Marzouk, S. A. M.; Sayour, H. E. M. Selective potentiometric determination of nitrite ion using a novel (4-sulphophenylazo-)1-naphthylamine membrane sensor [J]. Talanta 2003, 59(6), 1237-1244. (e) Sands, T. J.; Cardwell, T. J.; Cattrall, R. W.; Farrell, J. R.; Iles, P. J.; Kolev, S. D. A highly versatile stable optical sensor based on 4-decyloxy-2-(2-pyridylazo)-1-naphthol in Nation for the determination of copper [J]. Sensor. Actuat. B-Chem. 2002, 85(1-2), 33-41. (f) Ward, C. J.; Patel, P.; James, T. D. A molecular colour sensor for fluoride [J]. Chem. Lett. 2001, (5), 406-407. (g) Gunnlaugsson, T.; Leonard, J. P.; Murray, N. S. Highly selective colorimetric naked-eye Cu(Ⅱ) detection using an azobenzene chemosensor [J]. Org. Lett. 2004, 6(10), 1557-1560.
    12. (a) Kao, T. L.; Wang, C. C.; Pan, Y. T.; Shiao, Y. J.; Yen, J. Y.; Shu, C. M.; Lee, G. H.; Peng, S. M.; Chung, W. S. Upper rim allyl-and arylazo-coupled calix[4]arenes as highly sensitive chromogenic sensors for Hg~(2+) ion [J]. J. Org. Chem. 2005, 70(8), 2912-2920. (b) Li, S. H.; Yu, C. W.; Xu, J. G. A cyclometalated palladium-azo complex as a differential chromogenic probe for amino acids in aqueous solution [J]. Chem. Commun. 2005, (4), 450-452. (c) Kim, J. Y.; Kim, G.; Kim, C. R.; Lee, S. H.; Lee, J. H.; Kim, J. S. UV band splitting of chromogenic azo-coupled calix[4]crown upon cation complexation [J]. J. Org. Chem. 2003, 68(5), 1933-1937. (d) Sancenon, F.; Martinez-Manez, R.; Soto, J. A selective chromogenic reagent for nitrate [J]. Angew. Chem. Int. Ed. 2002, 41(8), 1416-1419. (e) Bhardwaj, V. K.; Singh, N.; Hundal, M. S.; Hundal, G. Mesitylene based azo-coupled chromogenic tripodal receptors-a visual detection of Ag(I) in aqueous medium [J]. Tetrahedron 2006, 62(33), 7878-7886.
    13. (a) Sheldrick, G. M. SHELXTL-Plus V5.1 software reference manual [M]. Bruker AXS Inc.: Madison, WI, 1997. (b) Sheldrick, G. M. SHELXTL-97, Program for crystal structure solution [M]. G6ttingen, 1997. (c) Sheldrick, G. M. SHELXTL-97, Program for the refinement of crystal structures [M]. G6ttingen, 1997.
    14. Valeur, B.; Pouget, J.; Bourson, J. M. Tuning of photoinduced energy-transfer in a bichromophoric coumarin supermolecule by cation binding [J]. Jr. Phys. Chem. 1992, 96(16), 6545-6549.
    15. (a) Ho, M. L.; Hwang, F. M.; Chen, P. N.; Hu, Y. H.; Cheng, Y. M.; Chen, K. S.; Lee, G. H.; Chi, Y.; Chou, P. T. Design and synthesis of iridium(Ⅲ) azacrown complex: application as a highly sensitive metal cation phosphorescence sensor [J]. Org. Biomol. Chem. 2006, 4(1), 98-103. (b) Liu, S. Y.; He, Y. B.; Wu, J. L.; Wei, L. H.; Qin, H. J.; Meng, L. Z.; Hu, L. Calix[4]arenes containing thiourea and amide moieties: neutral receptors towards alpha,omega-dicarboxylate anions [J]. Org. Biomol. Chem. 2004, 2(11), 1582-1586. (c) Morozumi, T.; Hiraga, H.; Nakamura, H. Intramolecular charge-transfer behavior of 1-pyrenyl aromatic amides and its control through the complexation with metal ions [J]. Chem. Lett. 2003, 32(2), 146-147.
    16. Conners, K. A. Binding constants [M]. Wiley, New York, 1987.
    17. (a) De Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; Mccoy, C. P.; Rademacher, J. T.; Rice, T. E. Signaling recognition events with fluorescent sensors and switches [J]. Chem. Rev. 1997, 97, 1515-1566. (b) Valeur, B.; Leray, I. Design principles of fluorescent molecular sensors for cation recognition [J]. Coord. Chem. Rev. 2000, 205, 3-40. (c) Liu, B.; Tian, H. A highly selective chromogenic and fluorogenic chemosensor for fluoride ion [J]. Chem. Lett. 2005, 34(5), 686-687.
    18. Huang, J. H.; Wen, W. H.; Sun, Y. Y.; Chou, P. T.; Fang, J. M. Two-stage sensing property via a conjugated donor-acceptor-donor constitution: Application to the visual detection of mercuric ion [J]. J. Org. Chem. 2005, 70(15), 5827-5832.
    19. (a) Caballero, A.; Martinez, R.; Lloveras, V.; Ratera, I.; Vidal-Gancedo, J.; Wurst, K.; Tarraga, A.; Molina, P.; Veciana, J. Highly selective chromogenic and redox or fluorescent sensors of Hg~(2+) in aqueous environment based on 1,4-disubstituted azines [J]. J. Am. Chem. Soc. 2005, 127(45), 15666-15667. (b) Martinez, R.; Espinosa, A.; Tarraga, A.; Molina, P. New Hg~(2+) and Cu~(2+) selective chromo-and fluoroionophore based on a bichromophoric azine [J]. Org. Lett. 2005, 7(26), 5869-5872.
    1. (a) Renzoni, A.; Zino, F.; Franchi, E. Mercury levels along the food chain and risk for exposed populations [J]. Environmental Research 1998, 77(2), 68-72. (b) Benoit, J. M.; Fitzgerald, W. F.; Damman, A. W. The biogeochemistry of an ombrotrophic bog: Evaluation of use as an archive of atmospheric mercury deposition [J]. Environmental Research 1998, 78(2), 118-133.
    2. (a) U. S. EPA, Regulatory impact analysis of the clean air mercury rule: EPA-452/R-05-003, 2005. (b) Harris, H. H.; Pickering, I. J.; George, G. N. The chemical form of mercury in fish-response [J]. Science 2004, 303(5659), 764-766. (c) Harris, H. H.; Pickering, I. J.; George, G. N. The chemical form of mercury in fish [J]. Science 2003, 301(5637), 1203-1203. (d) Boening, D. W. Ecological effects, transport, and fate of mercury: a general review [J]. Chemosphere 2000, 40(12), 1335-1351. (e) Clarkson, T. W.; Magos, L.; Myers, G. J. The toxicology of mercury-current exposures and clinical manifestations [J]. N. Engl. J. Med. 2003, 349(18), 1731-1737.
    3. (a) Caballero, A.; Martinez, R.; Lloveras, V.; Ratera, I.; Vidal-Gancedo, J.; Wurst, K.; Tarraga, A.; Molina, P.; Veciana, J. Highly selective chromogenic and redox or fluorescent sensors of Hg~(2+) in aqueous environment based on 1,4-disubstituted azines [J]. J. Am. Chem. Soc. 2005, 127(45), 15666-15667. (b) Coskun, A.; Akkaya, E. U. Signal ratio amplification via modulation of resonance energy transfer: Proof of principle in an emission ratiometric Hg(Ⅱ) sensor [J]. J. Am. Chem. Soc. 2006, 128(45), 14474-14475. (c) Avirah, R. R.; Jyothish, K.; Ramaiah, D. Dual-mode semisquaraine-based sensor for selective detection of Hg2~ in a micellar medium [J]. Org. Lett. 2007, 9(1), 121-124. (d) Kim, S. H.; Kim, J. S.; Park, S. M.; Chang, S. K. Hg~(2+)-selective OFF-ON and Cu~(2+)-selective ON-OFF type fluoroionophore based upon cyclam [J]. Org. Lett. 2006, 8(3), 371-374. (e) Choi, M. J.; Kim, M. Y.; Chang, S. K. A new Hg~(2+)-selective chromoionophore based on calix[4]arenediazacrown ether [J]. Chem. Commun. 2001, 17, 1664-1665. (f) Youn, N. J.; Chang, S. K. Dimethylcyclam based fluoroionophore having Hg~(2+)-and Cd~(2+)-selective signaling behaviors [J]. Tetrahedron Lett. 2005, 46(1), 125-129. (g) Moon, S. Y.; Youn, N. J.; Park, S. M.; Chang, S. K. Diametrically disubstituted cyclam derivative having Hg~(2+)-selective fluoroionophoric behaviors [J]. J. Org. Chem. 2005, 70(6), 2394-2397.
    4. (a) Chae, M. Y.; Czarnik, A. W. Fluorometric chemodosimetry-mercury(ⅱ) and silver(ⅰ) indication in water via enhanced fluorescence signaling [J]. J. Am. Chem. Soc. 1992, 114(24), 9704-9705. (b) Hennrich, G.; Sonnenschein, H.; Resch-Genger, U. Redox switchable fluorescent probe selective for either Hg(Ⅱ) or Cd(Ⅱ) and Zn(Ⅱ) [J]. J. Am. Chem. Soc. 1999, 121(21), 5073-5074. (c) Zhang, G. X.; Zhang, D. Q.; Yin, S. W.; Yang, X. D.; Shuai, Z.; Zhu, D. B. 1,3-Dithiole-2-thione derivatives featuring an anthracene unit: new selective chemodosimeters for Hg(Ⅱ) ion [J]. Chem. Commun. 2005, 16, 2161-2163. (d) Yang, Y. K.; Yook, K. J.; Tae, J. A rhodamine-based fluorescent and colorimetric chemodosimeter for the rapid detection of Hg~(2+) ions in aqueous media [J]. J. Am. Chem. Soc. 2005, 127(48), 16760-16761. (e) Liu, B.; Tian, H. A selective fluorescent ratiometric chemodosimeter for mercury ion [J]. Chem. Commun. 2005, 25, 3156-3158. (f) Ros-Lis, J. V.; Marcos, M. D.; Martinez-Manez, R.; Rurack, K.; Soto, J. A regenerative chemodosimeter based on metal-induced dye formation for the highly selective and sensitive optical determination of Hg~(2+) ions [J]. Angew. Chem., Int. Ed. 2005, 44(28), 4405-4407.
    5. (a) Komatsu, H.; Miki, T.; Citterio, D.; Kubota, T.; Shindo, Y.; Kitamura, Y.; Oka, K.; Suzuki, K. Single molecular multianalyte (Ca~(2+), Mg~(2+)) fluorescent probe and applications to bioimaging [J]. J. Am. Chem. Soc. 2005, 127(31), 10798-10799. (b) Tsien, R. W.; Tsien, R. Y. Calcium channels, stores, and oscillations [J]. Annu. Rev. Cell Biol. 1990, 6, 715-760.
    6. (a) Bozym, R. A.; Thompson, R. B.; Stoddard, A. K.; Fierke, C. A. Measuring picomolar intracellular exchangeable zinc in PC-12 cells using a ratiometric fluorescence biosensor [J]. ACS Chem. Biol. 2006, 1(2), 103-111. (b) Fiissl, A.; Schleifenbaum, A.; Goritz, M.; Riddell, A.; Schultz, C.; Kramer, R. Cellular uptake of PNA-terpyridine conjugates and its enhancement by Zn~(2+) ions [J]. J. Am. Chem. Soc. 2006, 128(18), 5986-5987. (c) Leevy, W. M.; Johnson, J. R.; Lakshmi, C.; Morris, J.; Marquez, M.; Smith, B. D. Selective recognition of bacterial membranes by zinc(Ⅱ)-coordination complexes [J]. Chem. Commun. 2006, 15, 1595-1597. (d) Nolan, E. M.; Jaworski, J.; Okamoto, K. I.; Hayashi, Y.; Sheng, M.; Lippard, S. J. QZ1 and QZ2: rapid, reversible quinoline-derivatized fluoresceins for sensing biological Zn(Ⅱ) [J]. J. Am. Chem. Soc. 2005, 127(48), 16812-16823. (e) Lim, N. C.; Freake, H. C.; Bruckner, C. Illuminating zinc in biological systems [J]. Chem. Eur. J. 2005, 11(1), 38-49. (f) Kikuchi, K.; Komatsu, K.; Nagano, T. Zinc sensing for cellular application [J]. Curr. Opin. Chem. Biol. 2004, 8(2), 182-191. (g) Taki, M.; Wolford, J. L.; O'Halloran, T. V. Emission ratiometric imaging of intracellular zinc: Design of a benzoxazole fluorescent sensor and its application in two-photon microscopy [J]. J. Am. Chem. Soc. 2004, 126(3), 712-713. (h) Burdette, S. C., Lippard, S. J. Meeting of the minds: metalloneurochemistry [J]. Proc. Natl. Acad. Sci. U.S.A. 2003, 100(7), 3605-3610. (ⅰ) Walkup, G. K.; Burdette, S. C.; Lippard, S. L.; Tsien, R. Y. A new cell-permeable fluorescent probe for Zn~(2+) [J]. J. Am. Chem. Soc. 2000, 122(23), 5644-5645. (j) Komatsu, K.; Kikuchi, K.; Kojima, H.; Urano, Y.; Nagano, T. Selective zinc sensor molecules with various affinities for Zn~(2+), revealing dynamics and regional distribution of synaptically released Zn~(2+) in hippocampal slices [J]. J. Am. Chem. Soc. 2005, 127(29), 10197-10204.
    7. Zeng, L.; Miller, E. W.; Pralle, A.; Isacoff, E. Y.; Chang, C. J. A selective turn-on fluorescent sensor for imaging copper in living cells [J]. J. Am. Chem. Soc. 2006, 128(1), 10-11.
    8. (a) Farruggia, G.; Iotti, S.; Prodi, L.; Montalti, M.; Zaccheroni, N.; Savage, P. B.; Trapani, V.; Sale, P.; Wolf, F. I. 8-Hydroxyquinoline derivatives as fluorescent sensors for magnesium in living cells [J]. J. Am. Chem. Soc. 2006, 128(1), 344-350. (b) Komatsu, H.; Iwasawa, N.; Citterio, D.; Suzuki, Y.; Kubota, T.; Tokuno, K.; Kitamura, Y.; Oka, K.; Suzuki, K. Design and synthesis of highly sensitive and selective fluorescein-derived magnesium fluorescent probes and application to intracellular 3D Mg~(2+) imaging [J]. J. Am. Chem. Soc. 2004, 126(50), 16353-16360.
    9. He, Q. W.; Miller, E. W.; Wong, A. P.; Chang, C. J. A selective fluorescent sensor for detecting lead in living cells [J]. J. Am. Chem. Soc. 2006, 128(29), 9316-9317.
    10. Yoon, S.; Albers, A. E.; Wong, A. P.; Chang, C. J. Screening mercury levels in fish with a selective fluorescent chemosensor [J]. J. Am. Chem. Soc. 2005, 127(46), 16030-16031.
    11. (a) Nguyen, T.; Francis, M. B. Practical synthetic route to functionalized rhodamine dyes [J]. Org. Lett. 2003, 5(18), 3245-3248. (b) Zheng, H.; Qian, Z. H.; Xu, L.; Yuan, F. F.; Lan, L. D.; Xu, J. G. Switching the recognition preference of rhodamine B spirolactam by replacing one atom: Design of rhodamine B thiohydrazide for recognition of Hg(Ⅱ) in aqueous solution [J]. Org. Lett. 2006, 8(5), 859-861. (c) Xiang, Y.; Tong, A. J. A new rhodamine-based chemosensor exhibiting selective Fe-Ⅲ-amplified fluorescence [J]. Org. Lett. 2006, 8(8), 1549-1552. (d) Yang, D.; Wang, H. L.; Sun, Z. N.; Chung, N. W.; Shen, J. G. A highly selective fluorescent probe for the detection and imaging of peroxynitrite in living cells [J]. J. Am. Chem. Soc. 2006, 128(18), 6004-6005. (e) Xiang, Y.; Tong, A. J.; Jin, P. Y.; Ju, Y. New fluorescent rhodamine hydrazone chemosensor for Cu(Ⅱ) with high selectivity and sensitivity [J]. Org. Lett. 2006, 8(13), 2863-2866.
    12. Dujols, V.; Ford, F.; Czarnik, A. W. A long-wavelength fluorescent chemodosimeter selective for Cu(II) ion in water [J]. J. Am. Chem. Soc. 1997, 119(31), 7386-7387.
    13. (a) Sheldrick, G. M. SHELXTL-Plus V5.1 software reference manual [M]. Bruker AXS Inc.: Madison, WI, 1997. (b) Sheldrick, G. M. SHELXTL-97, Program for crystal structure solution [M]. G6ttingen, 1997. (c) Sheldrick, G. M. SHELXTL-97, Program for the refinement of crystal structures [M]. Gottingen, 1997.
    14. Kwon, J. Y.; Jang, Y. J.; Lee, Y. J.; Kim, K. M.; Seo, M. S.; Nam, W.; Yoon, J. A highly selective fluorescent chemosensor for Pb~(2+) [J]. J. Am. Chem. Soc. 2005, 127(28), 10107-10111.
    15. Wu, J. S.; Hwang, I. C.; Kim, K. S.; Kim, J. S. Rhodamine-based Hg~(2+)-selective chemodosimeter in aqueous solution: fluorescent OFF-ON [J]. Org. Lett. 2007, 9(5), 907-910.
    16. (a) Ho, M. L.; Hwang, F. M.; Chen, P. N.; Hu, Y. H.; Cheng, Y. M.; Chen, K. S.; Lee, G. H.; Chi, Y.; Chou, P. T. Design and synthesis of iridium(Ⅲ) azacrown complex: application as a highly sensitive metal cation phosphorescence sensor [J]. Org. Biomol. Chem. 2006, 4(1), 98-103. (b) Liu, S. Y.; He, Y. B.; Wu, J. L.; Wei, L. H.; Qin, H. J.; Meng, L. Z.; Hu, L. Calix[4]arenes containing thiourea and amide moieties: neutral receptors towards alpha, omega-dicarboxylate anions [J]. Org. BiomoL Chem. 2004, 2(11), 1582-1586. (c) Morozumi, T.; Hiraga, H.; Nakamura, H. Intramolecular charge-transfer behavior of 1-pyrenyl aromatic amides and its control through the complexation with metal ions [J]. Chem. Lett. 2003, 32(2), 146-147.
    17. Wu, D. Y.; Huang, W.; Duan, C. Y.; Lin, Z. H.; Meng, Q. J. Highly sensitive fluorescent probe for selective detection of Hg~(2+) in DMF aqueous media [J]. Inorganic Chemistry 2007, 46(5), 1538-1540.
    1. (a) Martinez-Manez, R.; Sancenon, F. Fluorogenic and chromogenic chemosensors and reagents for anions [J]. Chem. Rev. 2003, 103(11), 4419-4476. (b) De Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; Mccoy, C. P.; Rademacher, J. T.; Rice, T. E. Signaling Recognition Events with Fluorescent Sensors and Switches [J]. Chem. Rev. 1997, 97, 1515-1566. (c) Wiskur, S. L.; Ait-Haddou, H.; Lavigne, J. J.; Anslyn, E. V. Teaching old indicators new tricks [J]. Acc. Chem. Res. 2001, 34(12), 963-972. (d) Beer, P. D.; Gale, P. A. Anion recognition and sensing: The state of the art and future perspectives [J]. Angew. Chem., Int. Ed. 2001, 40(3), 486-516. (e) Gale, P. A. Anion and ion-pair receptor chemistry: highlights from 2000 and 2001 [J]. Coord. Chem. Rev. 2003, 240(1-2), 191-221. (f) Llinares, J. M.; Powell, D.; Bowman-James, K. Ammonium based anion receptors [J]. Coord. Chem. Rev. 2003, 240(1-2), 57-75. (g) Suksai, C.; Tuntulani, T. Chromogenic anion sensors [J]. Chem. Soc. Rev. 2003, 32(4), 192-202.
    2. Kirk, K. L. Biochemistry of the halogens and inorganic halides [M]. Plenum Press: New York, 1991, 58.
    3. Kleerekoper, M. The role of fluoride in the prevention of osteoporosis [J]. Endocrinol. Metab. Clin. North Am. 1998, 27(2), 441-443.
    4. (a) Yamaguchi, S.; Shirasaka, T.; Akiyama, S.; Tamao, K. Dibenzoborole-containing pi-electron systems: Remarkable fluorescence change based on the "on/off" control of the p(pi)-pi~* conjugation [J]. J. Am. Chem. Soc. 2002, 124(30), 8816-8817. (b) Kubo, Y.; Yamamoto, M.; Ikeda, M.; Takeuchi, M.; Shinkai, S.; Yamaguchi, S.; Tamao, K. A colorimetric and ratiometric fluorescent chemosensor with three emission changes: Fluoride ion sensing by a triarylborane-porphyrin conjugate [J]. Angew. Chem. Int. Ed. 2003, 42(18), 2036-2040. (c) Liu, Z. Q.; Shi, M; Li, F. Y.; Fang, Q; Chen, Z. H.; Yi, T.; Huang, C. H. Highly selective two-photon chemosensors for fluoride derived from organic boranes [J]. Org. Lett. 2005, 7(24), 5481-5484. (d) So16, S.; Gabbai, F.P. A bidentate borane as colorimetric fluoride ion sensor [J]. Chem. Commun. 2004, 11, 1284-1285. (e) Ros-Lis, J. V.; Marcos, M. D.; Martinez-Manez, R.; Rurack, K.; Soto, J. A regenerative chemodosimeter based on metal-induced dye formation for the highly selective and sensitive optical determination of Hg~(2+) ions [J]. Angew. Chem. Int. Ed. 2005, 44(28), 4405-4407. (f) Mizuno, T.; Wei, W. H.; Eller, L. R.; Sessler, J. L. Phenanthroline complexes bearing fused dipyrrolylquinoxaline anion recognition sites: Efficient fluoride anion receptors. [J]. J. Am. Chem. Soc. 2002, 124(7), 1134-1135. (g) Sessler, J. L.; Katayev, E.; Pantos, G. D.; Scherbakov, P.; Reshetova, M. D.; Khrustalev, V. N.; Lynch, V. M.; Ustynyuk, Y. A. Fine tuning the anion binding properties of 2,6-diamidopyridine dipyrromethane hybrid macrocycles [J]. J. Am. Chem. Soc. 2005, 127(32), 11442-11446.
    5. (a) Anzenbacher, P.; Palacios, M. A.; Jursikova, K.; Marquez, M. Simple electrooptical sensors for inorganic anions [J]. Org. Lett. 2005, 7(22), 5027-5030. (b) Kang, J.; Kim, H. S.; Jang, D. O. Fluorescent anion chemosensors using 2-aminobenzimidazole receptors [J]. Tetrahedron Lett. 2005, 46(36), 6079-6082. (c) Wu, J. S.; Zhou, J. H.; Wang, P. F.; Zhang, X. H.; Wu, S. K. New fluorescent chemosensor based on exciplex signaling mechanism [J]. Org. Lett. 2005, 7(11), 2133-2136.
    6. (a) Gunnlaugsson, T.; Kruger, P. E.; Jensen, P.; Tierney, J.; Ali, H. D. P.; Hussey, G. M. Colorimetric "naked eye" sensing of anions in aqueous solution [J]. J. Org. Chem. 2005, 70(26), 10875-10878. (b) Zhou, G.; Cheng, Y. X.; Wang, L. X.; Jing, X. B.; Wang, F. S. Novel polyphenylenes containing phenol-substituted oxadiazole moieties as fluorescent chemosensors for fluoride ion [J]. Macromolecules 2005, 38(6), 2148- 2153. (c) Piatek, P.; Jurczak, J. A selective colorimetric anion sensor based on an amide group containing macrocycle [J]. Chem. Commun. 2002, 20, 2450-2451.
    7. (a) Lee, D. H.; Im, J. H.; Son, S. U.; Chung, Y. K.; Hong, J. I. An azophenol-based chromogenic pyrophosphate sensor in water [J]. J. Am. Chem. Soc. 2003, 125(26), 7752-7753. (b) Lee, D. H.; Lee, K. H.; Hong, J. I. An azophenol-based chromogenic anion sensor [J]. Org. Lett. 2001, 3(1), 5-8.
    8. (a) Lee, D. H.; Lee, H. Y.; Lee, K. H.; Hong, J. I. Selective anion sensing based on a dual-chromophore approach [J]. Chem. Commun. 2001, 13, 1188-1189. (b) Wu, F. Y.; Tan, X. F.; Hu, M. H.; Wang, X. Y. Design and synthesis of anion receptors based on azoquinoline and their anion recognition [J]. Acta Chim. Sinica 2004, 62(15), 1451-1454.
    9. Lee, K. H.; Lee, H. Y.; Lee, D. H.; Hong, J. I. Fluoride-selective chromogenic sensors based on azophenol [J]. Tetrahedron Lett. 2001, 42(32), 5447-5449.
    10. Matsuo, T; Musashi, A.; Naito, Y. [J]. J. Pharm. Soc. Japan 1952, 72, 1456.
    11. Sheldrick, G. M. SHELXTL-Plus V5.1 software reference manual [M]. Bruker AXS Inc.: Madison, WI, 1997.
    12. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A. Jr.; Vreven, T. Gaussian 03, Revision B.05, Gaussian [M]. Inc.: Pittsburgh PA, 2003.
    13. Conners, K. A. Binding constants [M]. Wiley, New York, 1987.
    14. Lamansky, S.; Djurovich, P.; Murphy, D.; Abdel-Razzaq, F.; Kwong, R.; Tsyba, I.; Bortz, M.; Mui, B.; Bau, R.; Thompson, M. E. Synthesis and characterization of phosphorescent cyclometalated iridium complexes [J]. Inorg. Chem. 2001, 40(7), 1704-1711.
    15. Demeter, A.; Ravasz, L.; Berces, T. Influence of hydrogen bond formation on the photophysics of N-(2,6-dimethylphenyl)-2,3-naphthalimide [J]. J. Physical Chem. A 2004, 108(19), 4357-4364.
    16. Liu, W.; Bian, S. P.; Li, L.; Samuelson, L; Kumar, J.; Tripathy, S. Enzymatic synthesis of photoactive poly(4-phenylazophenol)[J]. Chem. Mater. 2000, 12(6), 1577-1584.
    17. (a) Boiocchi, M.; Del Boca, L.; Gomez, D. E.; Fabbrizzi, L.; Licchelli, M.; Monzani, E. Nature of urea-fluoride interaction: Incipient and definitive proton transfer [J]. J. Am. Chem. Soc. 2004, 126(50), 16507-16514. (b) Amendola, V.; Boiocchi, M.; Fabbrizzi, L.; Palchetti, A. Anion receptors containing NH binding sites: Hydrogen-bond formation or neat proton transfer? [J]. Chem. Eur. J. 2005, 11(1), 120-127.
    18. Zhou, L. L.; Zhang, X. H.; Wu, S. K. Colorimetric detection and differentiation of fluoride and dihydrogenphosphate anions [J]. Sensor. Actuat. B-Chem. 2005, 106(1), 343-346.
    1. (a) Jedrzejewska. B.; Kabatc, J.; Paczkowski, J. Dichromophoric hemicyanine dyes. Synthesis and spectroscopic investigation [J]. Dyes and Pigments 2007, 74(2), 262-268. (b) Hou, K.; Shen, L.; Li, F. Y.; Bian, Z. Q.; Huang, C. H. Hemicyanine dye as a surfactant for the synthesis of bicontinuous cubic mesostructured silica [J]. J. Phys. Chem. B 2006, 110(19), 9452-9460. (c) Li, F. Y.; Shi, M.; Huang, C. H.; Jin, L. P. Multifunctional photoelectrochemical logic gates based on a hemicyanine sensitized semiconductor electrode [J]. J. Mater. Chem. 2005, 15(29), 3015-3020. (d) Huang, Y. Y.; Cheng, T. R.; Li, F. Y.; Huang, C. H.; Hou, T. J.; Yu, A. C.; Zhao, X. S.; Xu, X. J. Photophysical studies on the mono- and dichromophoric hemicyanine dyes Ⅰ. Photoelectric conversion from the dye modified ITO electrodes [J]. J. Phys. Chem. B 2002, 106(39), 10020-10030.
    2. (a) Niu, C. G.; Guan, A. L.; Zeng, G. M.; Liu, Y. G.; Li, Z. W. Fluorescence water sensor based on covalent immobilization of chalcone derivative [J]. Anal. Chim. Acta 2006, 577(2), 264-270. (b) Kim, J. H.; Ban, S. Y.; Zhang, Q.; Kim, G. W.; Cho, M. J.; Choi, D. H. Effect of photocrosslinking on photochromism of chalcone-based polymeric materials bearing spiropyran dye [J]. Molecular Cryst. Liquid Cryst. 2006, 445, 307-314.
    3.李富友博士后出站报告,北京大学,2000年.
    4.石恩娴硕士论文,苏州大学,2005年.
    5. Conners, K. A. Binding constants [M]. Wiley, New York, 1987.
    6. (a) Boiocchi, M.; Del Boca, L.; Gomez, D. E.; Fabbrizzi, L.; Licchelli, M.; Monzani, E. Nature of urea-fluoride interaction: Incipient and definitive proton transfer [J]. J. Am. Chem. Soc. 2004, 126(50), 16507-16514. (b) Amendola, V.; Boiocchi, M.; Fabbrizzi, L.; Palchetti, A. Anion receptors containing NH binding sites: Hydrogen-bond formation or neat proton transfer? [J]. Chem. Eur. J. 2005, 11(1), 120-127.
    1. (a) Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism [J]. Nature 1992, 359(6397), 710-712. (b) Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olsen, D. H.; Sheppard, E. W.; Mccullen, S. B.; Higgins, J. B.; Schlenker, J. L. A new family of mesoporous molecular-sieves prepared with liquid-crystal templates [J]. J. Am. Chem. Soc. 1992, 114(27), 10834-10843.
    2. (a) Brunel, D.; Cauvel, A.; Fajula, F.; DiRenzo, F. MCM-41 type silicas as supports for immobilized catalysts [J]. Stud. Surf Sci. Catal. 1995, 97, 173-180. (b) Fryxell, G. E.; Liu, J.; Hauser, T. A.; Nie, Z.; Ferris, K. F.; Mattigod, S.; Meiling, G.; Hallen, R. T. Design and synthesis of selective mesoporous anion traps [J]. Chem. Mater. 1999, 11(8), 2148-2154. (c) Burkett, S. L.; Sims, S. D.; Mann, S. Synthesis of hybrid inorganic-organic mesoporous silica by co-condensation of siloxane and organosiloxane precursors [J]. Chem. Commun. 1996, 11, 1367-1368. (d) Lim, M. H.; Blanford, C. F.; Stein, A. Synthesis of ordered microporous silicates with organosulfur surface groups and their applications as solid acid catalysts [J]. Chem. Mater. 1998, 10(2), 467-471.
    3. (a) Liu, J.; Feng, X. D.; Fryxell, G. E.; Wang, L. Q.; Kim, A. Y.; Gong, M. L. Hybrid mesoporous materials with functionalized monolayers [J]. Adv. Mater. 1998, 10(2), 161-164. (b) Kageyama, K.; Tamazawa, J.; Aida, T. Extrusion polymerization: Catalyzed synthesis of crystalline linear polyethylene nanofibers within a mesoporous silica [J]. Science 1999, 285(5436), 2113-2115. (c) Lin, X. H.; Chuah, G. K.; Jaenicke, S. Base-functionalized MCM-41 as catalysts for the synthesis of monoglycerides [J]. J. Mol. Catal. A 1999, 150(1-2), 287-294. (d) Rodriguez, I.; Iborra, S.; Rey, F.; Corma, A. Heterogeneized Bronsted base catalysts for fine chemicals production: grafted quaternary organic ammonium hydroxides as catalyst for the production of chromenes and coumarins [J]. Appl. Catal. A: General 2000, 194, 241-252.
    4. (a) Stein, A.; Melde, B. J.; Schroden, R. C. Hybrid inorganic-organic mesoporous silicates-Nanoscopic reactors coming of age [J]. Adv. Mater. 2000, 12(19), 1403-1419. (b) Feng, X.; Fryxell, G. E.; Wang, L. Q.; Kim, A. Y.; Liu, J.; Kemner, K. M. Functionalized monolayers on ordered mesoporous supports [J]. Science 1997, 276(5314), 923-926.
    5. (a) Ros-Lis, J. V., Garcia, B.; Jimenez, D.; Martinez-Manez, R.; Sancenon, F.; Soto, J.; Gonzalvo, F.; Valldecabres, M. C. Squaraines as fluoro-chromogenic probes for thiol-containing compounds and their application to the detection of biorelevant thiols [J]. J. Am. Chem. Soc. 2004, 126(13), 4064-4065. (b) Casasus, R.; Marcos, M. D.; Martinez-Manez, R.; Ros-Lis, J. V.; Soto, J.; Villaescusa, L. A.; Amoros, P.; Beltran, D.; Guillem, C.; Latorre, J. Toward the development of ionically controlled nanoscopic molecular gates [J]. J. Am. Chem. Soc. 2004, 126(28), 8612-8613.
    6. Ros-Lis, J. V.; Marcos, M. D.; Martinez-Manez, R.; Rurack, K.; Soto, J. A regenerative chemodosimeter based on metal-induced dye formation for the highly selective and sensitive optical determination of Hg~(2+) ions [J]. Angew. Chem. Int. Ed. 2005, 44(28), 4405-4407.
    7. (a) Zhao, D. Y.; Feng, J. L.; Huo, Q. S.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores [J]. Science 1998, 279(5350), 548-552. (b) Zhao, D. Y.; Huo, Q. S.; Feng, J. L.; Chmelka, B. F.; Stucky, G. D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures [J]. J. Am. Chem. Soc. 1998, 120(24), 6024-6036.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700