h→γl(l|-)衰变及h→ZZ~*→4l中Higgs粒子宇称混合性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Higgs玻色子在我们理解物质的质量起源中起到了非常重要的作用。在实验上发现该粒子是标准模型的巨大成功。考虑到目前的实验数据与标准模型的预言在误差范围内是吻合的,为了在实验上发现新物理的迹象,我们必须对Higgs粒子做精确的研究。
     在第1章,我们简单地介绍一下Higgs机制的历史以及LHC上Higgs粒子研究的现状,然后引出本文的主要工作。在第2章中我们介绍一些背景知识,包括自发对称性破缺,Higgs机制以及电弱统一理论。
     在第3章,我们介绍标准模型中Higgs玻色子主要的两体衰变道,尤其是h→γγ和h→γZ衰变道并介绍了目前这些衰变道在LHC上的观测结果以及未来的研究预期。
     目前的实验倾向于支持Higgs-like粒子是一个零自旋偶宇称粒子,但Higgs-like粒子是一个宇称混合态的可能性并不能被排除。在第4章中通过分析一个包含奇宇称和偶宇称的一般的hZZ耦合顶角以及h-→ZZ*→l1+l1-l2+l2-(l1和l2可以是电子或μ子)衰变过程,我们研究了该过程中的一个high-low momentum asymmetry和两个angular asymmetries。这些不对称性能够揭示hZZ耦合中各种宇称耦合的差异并进而得到Higgs-like粒子的宇称混合信息。我们的研究显示在未来高精度的实验上这些不对称性是很有趣的可观测量。
     在第5章,我们讨论了标准模型中Higgs粒子的稀有衰变道h→γl+l-,其中l=e,μ和τ。计算中包括了树图和圈图的贡献。除了该过程的衰变宽度和双轻子不变质量谱外,我们还讨论了在新物理框架下该衰变过程可能出现的forward-backward asymmetries。我们发现该不对称性能够直接反映新物理中宇称破坏的程度,因此在实验上有着重要意义。另一个稀有衰变道h→γυlυl(其中Vl可以是Ve,Vμ和Vτ)在标准模型中的行为也在本文中做了讨论。我们的计算表明该过程的总宽度是1.41keV,约占双光子衰变道的15%。因此,在将来的高精度实验中,这些衰变道的测量将会为我们提供关于标准模型和新物理的丰富信息。
     在第6章,我们给出总结与展望。
The Higgs boson plays an important role in our understanding of the world. Its discovery is a big triumph of the standard model. Considering that current data are consistent with the Higgs boson in the standard model, in order to find the new physics in the experiments, we have to study the precise property of the Higgs boson.
     In chapter1, we offer a review of the history of the Higgs mechanism and the research of the Higgs-like particle in the LHC, then the main works in this paper are discussed. In chapter2, we introduce the spontaneous symmetry breaking, Higgs mechanism and the electroweak theory.
     In chapter3, a brief discussion about the two-body decay of the Higgs boson in the standard model, especially the decay channel h→γγ and h→γZ is given. The observation and expected results in the future experiments are also discussed in this chapter.
     Current experiments support that the Higgs-like particle is a spin-0and parity-even particle. However, it is still possible that the new particle is a parity mixed state. In chapter4, We examine a general hZZ vertex which contains CP-even and CP-odd couplings, by studying the process h→ZZ*→l1+l1-l2+l2-with l1, l2=e or μ, to explore the CP mixed property of the Higgs-like particle. One momentum asymmetry and two angular asymmetries have been analyzed in order to reveal the difference from different CP-couplings. Our study shows that these asymmetries could be interesting observables in the future precise experiments.
     In chapter5, the radiative Higgs decays h→γl+l-with l=e,μ and τ are an-alyzed in the standard model using mh=125GeV. Both tree and one-loop diagrams for the processes are evaluated. In addition to their decay rates and dilepton invariant mass distributions, we also discuss the forward-backward asymmetries in these modes in the new physics. Those asymmetries can directly reflect the strength of the parity breaking in the new physics, hence it is important to study them in the future exper-iments. Another Higgs rare decays h→γυlυl with υl=υe, υμ and vτ are analyzed in the standard model. Our calculation shows that the inclusive width of these pro-cesses, i.e., the sum of Γ(h→γυlυl) for υl=υe, υμ,υτ, is1.41keV, which is about15%of Γ(h→γγ). Therefore, the observation of these channels in the future precise experiments may provide us some useful information on the Higgs physics both in the standard model and in its possible extensions.
     We summarize our results and give an outlook in chapter6.
引文
[1]C. N. Yang and R. L. Mills, Conservation of Isotopic Spin and Isotopic Gauge Invariance, Phys. Rev.96(1954) 191.
    [2]J. Goldstone, Field theories with《 Superconductor》solutions,Ⅱ Nuovo Cimento 19 (1961) 154.
    [3]J. Schwinger, Gauge Invariance and Mass.Ⅱ , Phys. Rev.128 (1962) 2425.
    [4]P. W. Anderson, Plasmons, gauge invariance, and mass, Phys. Rev.130 (1963) 439.
    [5]F. Englert and E. Brout, Broken symmetries and the masses of vector mesons, Phys. Rev. Lett. 13(1964)321.
    [6]P.W. Higgs, Broken symmetries, massless particles and gauge fields, Phys. Lett.12 (1964) 132; Broken symmetries and the masses of gauge bosons, Phys. Rev. Lett.13 (1964) 508; Spontaneous symmetry breakdown without massless bosons, Phys. Rev.145 (1966) 1156.
    [7]G.S. Guramik, C.R. Hagen and T.W.B. Kibble, Global conservation laws and massless par-ticles, Phys. Rev. Lett.13 (1964) 585.
    [8]T.W.B. Kibble, Symmetry breaking in non-Abelian gauge theories, Phys. Rev.155 (1967) 1554.
    [9]S. L. Glashow, Partial-Symmetries of Weak Interactions, Nucl Phys.22 (1961) 579.
    [10]S. Weinberg, A Model of Leptons, Phys. Rev. Lett.19 (1967) 1264.
    [11]A. Salam, Weak and Electromagnetic Interactions, Proceedings of the 8th Nobel Sympo-sium, Stockholm,1968.
    [12]G.'t Hooft, Renormalizable Lagrangians for massive Yang-Mills fields, Nucl. Phys. B 35 (1971) 167.
    [13]ATLAS Collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214].
    [14]CMS Collaboration, Observation of a new boson at a mass of 125 GeV with the CMS ex-periment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235]; Observation of a new boson with mass near 125 GeV in PP collisions at (?)s=7 TeV and 8 TeV, JHEP 06 (2013) 081 [arXiv:1303.4571].
    [15]Y. Sun, X.-F. Wang and D.-N. Gao, CP mixed property of the Higgs-like particle in the decay channel h→ZZ*→ 4l, arXiv:1309.4171.
    [16]Y. Sun, H.-R. Chang and D.-N. Gao, Higgs decays to γl+l-in the standard model, JHEP 05 (2013)061 [arXiv:1303.2230].
    [17]Y. Sun and D.-N. Gao, Higgs decays to γ and invisible particles in the standard model, Phys. Rev. D 89 (2014) 017301 [arXiv:1310.8404].
    [18]J. F. Gunion, H. E. Haber, G. Kane and S. Dawson, The Higgs Hunter's Guide, Westview Press,1990
    [19]S. Weinberg, The Quantum Theory of Fields, Cambridge University Press,1995.
    [20]A. Zee, Qantum Field Theory in a Nutshell, Princeton University Press,2003.
    [21]M. E. Peskin and D. V. Schroeder, An Introduction to Qantum Field Theory, Westview Press, 1995.
    [22]L. H. Ryder, Qantum Field Theory, Cambridge University Press,1985.
    [23]M. Srednicki, Qantum Field Theory, Cambridge University Press,2007.
    [24]G.'t Hooft, Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking, NATO Adv. Study Inst. Ser. 59 (1980) 135.
    [25]T. Behnke et al., The International Linear Collider Technical Design Report-Volume 1: Executive Summary, arXiv:1306.6327.
    [26]H. Abramowicz et al., Physics at the CLIC e+e- Linear Collider-Input to the Snowmass process 2013, arXiv:1307.5288.
    [27]Y. Alexahin et al., Muon Collider Higgs Factory for Snowmass 2013, arXiv:1308.2143.
    [28]CDF, DO Collaborations, Higgs Boson Studies at the Tevatron, Phys. Rev. D 88 (2013) 052014 [arXiv:1303.6346].
    [29]ATLAS Collaboration, Updated coupling measurements of the Higgs boson with the ATLAS detector using up to 25fb-1 of proton-proton collision data, ATLAS-CONF-2014-009; Mea-surements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC, Phys. Lett. B 726 (2013) 88 [arXiv:1307.1427]; Evidence for Higgs Boson Decays to the τ+τ-Final State with the ATLAS Detector, ATLAS-CONF-2013-108; Search for the bb decay of the Standard Model Higgs boson in associated W/ZH production with the ATLAS detector, ATLAS-CONF-2013-079.
    [30]CMS Collaboration, Combination of standard model Higgs boson searches and measure-ments of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-13-005.
    [31]J. Ellis, M.K. Gaillard and D. V. Nanopoulos, A phenomenological profile of the Higgs boson Nucl. Phys. B 106 (1976) 292.
    [32]A.I. Vainshtein, M.B. Voloshin, V.L Zakharov and M.S. Shifman, Low-energy theorems for Higgs meson interaction with photons, Sov. J. Nucl. Phya.30 (1979) 711; L. B. Okua, Lep-tons and Quarks, North-Holland, Amsterdam,1982.
    [33]L. Bergstrom and G. Hulth, Induced Higgs couplings to neutral bosons in e+e- collisions, Nucl. Phys. B 259 (1985) 137.
    [34]ATLAS Collaboration, Search for the Standard Model Higgs boson in the H→γZ decay mode with pp collisions at (?)s 7 and 8 TeV, ATLAS-CONF-2013-009.
    [35]CMS Collaboration, Search for a Higgs boson decaying into a Z and a photon in pp collisions at sqrt(s)= 7 and 8 TeV, Phys. Lett. B 726 (2013) 587 [arXiv:1307.5515].
    [36]A. Ajaib et al., Higgs Working Group Report of the Snowmass 2013 Community Planning Study, arXiv:1310.8361.
    [37]Y. Gao, A. V. Gritsan, Z. Guo, K. Melnikov, M. Schulze, and N. V. Tran, Spin determi-nation of single-produced resonances at hadron colliders, Phys. Rev. D 81 (2010) 075022 [arXiv:1001.3396]; S. Bolognesi, Y. Gao, A. V. Gritsan, K. Melnikov, M. Schulze, N. V. Tran and A. Whitbeck, Spin and parity of a single-produced resonance at the LHC, Phys. Rev. D 86 (2012) 095031 [arXiv:1208.4018].
    [38]T. Plehn, D. Rainwater and D. Zeppenfeld, Determining the Structure of Higgs Couplings at the CERN Large Hadron Collider, Phys. Rev. Lett. 88 (2002) 051801 [hep-ph/0105325]; C. P. Buszello, I. Fleck, P. Marquard and J. J. van der Bij, Prospective analysis of spin-and CP-sensitive variables in H→ZZ→l1+l1-l2+l2-at the LHC, Eur. Phys. J. C 32(2004) 209 [hep-ph/0212396]; C. P. Buszello, P. Marquard and J. J. van der Bij, On the determination of the structure of the scalar Higgs boson's couplings to vectorbosons, hep-ph/0406181; P. Niezurawski, A. F. Zarnecki and M. Krawczyk, Model-Independent Determination of CP Violation from Angular Distributions in Higgs Boson Decays to WW and ZZ at the Photon Collider, Acta Phys. Polon. B 36 (2005) 833 [hep-ph/0410291].
    [39]D. Stolarski and R. Vega-Morales, Directly Measuring the Tensor Structure of the Scalar Coupling to Gauge Bosons, Phys. Rev. D 86 (2012) 117504 [arXiv:1208.4840]; A. Alves, Is the New Resonance Spin 0 or2? Taking a Step Forward in the Higgs Boson Discovery, Phys. Rev. D 86 (2012) 113010 [arXiv:1209.1037]; A. Djouadi, R. M.Godbole, B. Mellado and K. Mohan, Probing the spin-parity of the Higgs boson via jet kinematics in vector boson fusion, Phys. Lett. B 723 (2013) 307 [arXiv:1301.4965]; A. Djouadi and G. Moreau, The couplings of the Higgs boson and its CP properties from fits of the signal strengths and their ratios at the 7+8 TeV LHC, Eur. Phys. J. C73 (2013) 2512[arXiv:1303.6591].
    [40]P. Artoisenet et al., A framework for Higgs characterisation, JHEP 11 (2013) 043 [arXiv:1306.6464].
    [41]Ian Anderson et al., Constraining anomalous HVV interactions at proton and lepton collid-ers, Phys. Rev. D 89,035007,2014 [arXiv:1309.4819].
    [42]S. Y. Choi, D. J. Miller, M. M. Muhlleitner and P. M. Zerwas, Identifying the Higgs Spin and Parity in Decays to Z Pairs, Phys. Lett. B 553 (2003) 61 [hep-ph/0210077].
    [43]R. Boughezal, T. J. LeCompte and F. Petriello, Single-variable asymmetries for measuring the Higgs'boson spin and CP properties, arXiv:1208.4311.
    [44]R. M. Godbole, D. J. Miller and M. M. Muhlleitner, Aspects of CP violation in the H2Z coupling at the LHC, JHEP 12 (2007) 031 [arXiv:0708.0458].
    [45]ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the four lepton decay channel with the ATLAS detector using 25fb-1 of proton-proton collision data, ATLAS-CONF-2013-013.
    [46]ATLAS collaboration, Evidence for the spin-0 nature of the Higgs boson using ATLAS data, Phys. Lett. B 726 (2013) 120 [arXiv:1307.1432]; Study of the spin of the Higgs-like boson in the two photon decay channel using 20.7 fb-1 of pp collisions collected at (?)s=8 TeV with the ATLAS detector, ATLAS-CONF-2013-029; Measurements of the properties of the Higgs-like boson in the WW* → lvlv decay channel with the ATLAS detector using 25 fb-1 of proton-proton collision data, ATLAS-CONF-2013-030; Study of the spin properties of the Higgs-like particle in the h → WW* → evμv channel with 21 fb-1 of (?)s=8 TeV data collected with the ATLAS detector, ATLAS-CONF-2013-031.
    [47]CMS Collaboration, Properties of the Higgs-like boson in the decay H to ZZ to 41 in pp collisions at (?)s=7 and 8 TeV, CMS-PAS-HIG-13-002.
    [48]CMS collaboration, Study of the Mass and Spin-Parity of the Higgs Boson Candidate via Its Decays to Z Boson Pairs, Phys. Rev. Lett.110 (2013) 081803 [arXiv:1212.6639]; Evidence for a particle decaying to W+W-in the fully leptonic final state in a standard model Higgs boson search in pp collisions at the LHC, CMS-PAS-HIG-13-003.
    [49]N. Arkani-Hamed, Naturalness, talk at KITP, Beijing, December 2013.
    [50]B. A. Kniehl, Radiative corrections for H→ZZ in the standard model, Nucl. Phys. B 352 (1991) 1; A. Bredenstein, A. Denner, S. Dittmaier and M. M. Weber, Precise predictions for the Higgs-boson decay H→WW/ZZ→4 leptons, Phys. Rev. D 74 (2006) 013004 [hep-ph/0604011].
    [51]ATLAS collaboration, Observation of an excess of events in the search for the Standard Model Higgs boson in the H→ZZ*→4l channel with the ATLAS detector, ATLAS-CONF-2012-092.
    [52]CMS collaboration, Updated results on the new boson discovered in the search for the stan-dard model Higgs boson in the ZZ to 4 leptons channel in pp collisions at (?)s=7 and 8 TeV, CMS-PAS-HIG-12-041.
    [53]Y. Gao et al., HVV CP Update:Comparison of LHC and e+e- collider, talk at HEP Com-munity Summer Study, Minneapolis, August 2013.
    [54]R. Harnik et al., Measuring CP Violation in h→τ+τ- at Colliders, Phys. Rev. D 88 (2013) 076009 [arXiv:1308.1094].
    [55]S. Berge, W. Bernreuther and H. Spiesberger, Determination of the CP parity of Higgs bosons in their tau decay channels at the ILC, arXiv:1208.1507.
    [56]S. Berge, W Bernreuther and H. Spiesberger, Higgs CP properties using the tau decay modes at the ILC Phys. Lett. 727 (2013) 488 [arXiv:1308.2674].
    [57]F.J. Petriello, Kaluza-Klein effects on Higgs physics in universal extra dimensions, JHEP 05 (2002) 003 [hep-ph/0204067]; T. Han, H.E. Logan, B. McElrath and L.T. Wang, Loop induced decays of the little Higgs:H→gg,γγ, Phys. Lett. B 563 (2003) 191 [Erratum-ibid. B 603,257 (2004)] [hep-ph/0302188]; G. Cacciapaglia, A. Deandrea and J. Llodra-Perez, H→ γγ beyond the Standard Model, JHEP 06 (2009) 054 [arXiv:0901.0927]; J. Cao, Z. Heng, T. Liu and J.M. Yang, Di-photon Higgs signal at the LHC:A comparative study for different supersymmetric models, Phys. Lett. B 703 (2011) 462 [arXiv:1103.0631].
    [58]S. Heinemeyer, O. Stal and G. Weiglein, Interpreting the LHC Higgs search results in the MSSM, Phys. Lett, B 710 (2012) 201 [arXiv:1112.3026]; P. M. Ferreira, R. Santos, M. Sher and J. P. Silva, Implications of the LHC two-photon signal for two-Higgs-doublet models, Phys. Rev. D 85 (2012) 077703 [arXiv:1112.3277]; K. Cheung and T.C. Yuan, Could the excess seen at 124-126 GeV be due to the Randall-Sundrum Radion?, Phys. Rev. Lett.108 (2012) 141602 [arXiv.1112.4146]; N. Chen and H.J. He, LHC signatures of two-Higgs-doublets with fourth family, JHEP 04 (2012) 062 [arXiv:1202.3072; S. Daw-son and E. Furlan, A Higgs conundrum with vector fermions, Phys, Rev. D 86 (2012) 015021 [arXiv:1205.4733]; M. Carena, I. Low and C.E.M. Wagner, Implications of a modified Higgs to diphoton decay width, JHEP 08 (2012) 060 [arXiv:1206.1082]; J. Chang, K. Cheung, P.-Y. Tseng and T.-C. Yuan, Distinguishing various models of the 125 GeV boson in vector boson fusion, JHEP 12 (2012) 058 [arXiv:1206.5853].
    [59]H. An, T. Liu and L.T. Wang,125 GeV Higgs boson, enhanced di-photon rate, and gauged U(1)PQ-extended MSSM, Phys. Rev. D 86 (2012) 075030 [arXiv:1207.2473]; T. Abe, N. Chen, H.J. He, LHC Higgs signatures from extended electroweak gauge symmetry, JHEP 01 (2013) 082 [arxiv:1207.4103]; A. Joglekar, P. Schwaller and C.E.M. Wagner, Dark mat-ter and enhanced Higgs to di-photon rate from vector-like leptons, JHEP 12 (2012) 064 [arXiv:1207.4235]; L.G. Almeida, E. Bertuzzo, P.A.N. Machado and R.Z. Funchal, Does H→γγ taste like vanilla new physics?, JHEP 11 (2012) 085 [arXiv:1207.5254]; A. Del-gado, G. Nardini and M. Quiros, Large diphoton Higgs rates from supersymmetric triplets, Phys. Rev. D 86 (2012) 115010 [arXiv:1207.6596]; M. Hashimoto and V.A. Miransky, En-hanced diphoton Higgs decay rate and isospin symmetric Higgs boson, Phys. Rev. D 86 (2012) 095018 [arXiv:1208.1305]; T. Kitahara, Vacuum stability constraints on the en-hancement of the h→ γγ rate in the MSSM, JHEP 11(2012) 021 [arXiv:1208.4792]; S. Chang, S.K. Kang, J.P. Lee, K.Y. Lee, S.C. Park and J. Song, Comprehensive study of two Higgs doublet model in light of the new boson with mass around 125 GeV, JHEP 05 (2013) 075 [arXiv.1210.3439]; G. Moreau, Constraining extra-fermion(s) from the Higgs boson data, Phys. Rev. D 87 (2013) 015027 [arXiv:1210.3977]; M. Chala, h→γγ excess and dark matter from composite Higgs models, JHEP 01 (2013) 122 [arXiv:1210.6208]; S. Dawson, E. Furlan and I. Lewis, Unravelling an extended quark sector through multiple Higgs production?, Phys. Rev. D 87 (2013) 014007 [arXiv:1210.6663]; K. Choi, S.H. Im, K.S. Jeong and M. Yamaguchi, Higgs mixing and diphoton rate enhancement in NMSSM models, JHEP 02 (2013) 090 [arXiv:1211.0875]; C. Han, N. Liu, L. Wu, J.M. Yang and Y. Zhang, Two-Higgs-doublet model with a color-triplet scalar:a joint explanation for top quark forward-backward asymmetry and Higgs decay to diphoton, Eur. Phys. J. C 73 (2013) 2664 [arXiv:1212.6728]; W.Z. Feng and P. Nath, Higgs diphoton rate and mass en-hancement with vector-like leptons and the scale of supersymmetry, Phys. Rev. D 87 (2013) 075018 [arXiv:1303.0289]; T. Kitahara and T. Yoshinaga, Stau with large mass difference and enhancement of the Higgs to diphoton decay rate in the MSSM, JHEP 05 (2013) 035 [arXiv:1303.0461].
    [60]A. Abbasabadi, D. Bowser-Chao, D. A. Dicus and W. W. Repko, Radiative Higgs boson decays H→ffγ, Phys. Rev. D 55 (1997) 5647 [hep-ph/9611209].
    [61]A. Abbasabadi and W.W. Repko, Higgs boson decay to μμγ, Phys. Rev. D 62 (2000) 054025 [hep-ph/0004167].
    [62]Ana Firan and Ryszard Stroynowski, Internal conversions in Higgs decays to two photons, Phys. Rev. D 76 (2007) 057301 [arXiv:0704.3987].
    [63]L.B. Chen, C.F. Qiao and R.L. Zhu, Reconstructing the 125 GeV SM Higgs boson through llγ, Phys. Lett. B 726 (2013) 306 [arXiv:1211.6058].
    [64]D.A. Dicus and W.W. Repko, Calculation of the decay H→ eeγ, Phys. Rev. D 87 (2013) 077301 [arXiv:1302.2159].
    [65]A.Yu. Korchin and V.A. Kovalchuk, Polarization effects in the Higgs boson decay to γZ and test of CP and CPT symmetries, Phys. Rev. D 88 (2013) 036009 [arXiv:1303.0365].
    [66]C.S. Li, S.H. Zhu and C.F. Qiao, Radiative Higgs boson decays H→ffγ beyond the standard model, Phys. Rev. D 57 (1998) 6928 [hep-ph/9801334].
    [67]G. Passarino, Higgs Boson Production and Decay:Dalitz Sector, Phys. Lett. B 727 (2013) 424 [arXiv:1308.0422].
    [68]D. A. Dicus, C. Kao and W. W. Repko, Comparison of H→γll and H→γZ, Z→ ll including the ATLAS cuts, Phys. Rev. D 89 (2014) 033013 [arXiv:1310.4380].
    [69]ATLAS Collaboration, Performance of missing transverse momentum reconstruction in proton-proton collisions at 7 TeV with ATLAS, Eur. Phys. J. C 72 (2012) 1844 [arXiv:1108.5602].
    [70]J.F. Kamenik and C. Simth, Could a light Higgs boson illuminate the dark sector?, Phys.Rev. D 85 (2012) 093017 [arXiv:1201.4814].
    [71]H. Davoudiasl, H.-S. Lee, I. Lewis and W. J. Marciano, Higgs decays as a window into the dark sector, Phys. Rev. D88 (2013) 015022 [arXiv:1304.4935].
    [72]D. Curtin et al., Exotic Decays of the 125 GeV Higgs Boson, arXiv:1312.4992.
    [73]C. Petersson, A. Romagnoni and R. Torre, Higgs decay with monophoton+ET signature from low scale supersymmetry breaking, JHEP 10 (2012) 016. [arXiv:1203.4563].
    [74]G. Passarino and M. Veltman, One-loop corrections for e+e- annihilation into μ+μ- in the Weinberg model, Nucl. Phys. B160 (1979) 151; R. Mertig, Guide to FeynCalc 1.0, available at http://physics.indiana.edu/sg/p622/FCGuide3.ps; T. Hahn and M. Perez-Victoria, Autom-atized One-Loop Calculations in 4 and D dimensions, Comput. Phys. Commun.118 (1999) 153 [hep-pb/9807565]; Y. Sun and H.-R. Chang, One loop integrals reduction Chinese Phys. C 36 (2012) 1055 [arXiv.1204.4120].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700