非接触式超声电能传递装置的设计理论及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超声珩齿技术是将超声振动引入齿轮珩齿加工中,从而发展起来的一门新技术。该技术的使用,可以使被加工出来的齿轮具有高承载力、高精度、高表面质量、长寿命等特点,顺应了当代工业对精度和寿命的要求。
     然而,现有的超声珩齿机和其他旋转超声加工设备一样,是通过电刷配合集流环进行供电的,这种方式存在电刷和集流环滑动磨损较快、发热量大、导线裸露、转速不宜过高和容易打火等缺陷,甚至存在一定的安全隐患。
     针对现有超声珩齿机中供电方式的不足,本论文提出将非接触式电能传输技术引入设备中,来克服上述弊端,使操作机床更加安全,可靠。论文的主要研究内容如下:
     (1)介绍超声波珩齿技术的起源、现状、发展趋势以及超声加工的特点,并对现有超声珩齿机床的机构进行简要的分析,揭示出该供电方式的不足之处,进而提出改进方案。
     (2)介绍非接触式能量传输技术的原理、系统各组成部分以及可分离变压器的基本结构形式;给出可分离变压器的数学模型;分析系统的补偿网络和制约该技术实际应用的诸多因素。
     (3)为了能够对超声珩齿机的电气系统有足够的认识,为下一步可分离变压器的设计创造条件,本文对超声波发生器的内部电路进行测绘,绘制出超声电源的电路图,并通过实验的方式对超声发生器性能进行测试。
     (4)讨论压电换能器和变幅杆的结构及特性,推导出力电等效原理及换能器和变幅杆的等效电路图,并研究温度和负载对压电换能器的阻抗和谐振频率的影响。
     (5)在电源和换能器性能参数测量结果的基础上,进行可分离变压器和补偿网络的设计,包括磁芯材料和结构、线圈线径和匝数以及补偿网络拓扑结构的选择。然后,对现有超声珩齿设备的振动尾架部分,进行机械构造的改进,来适应非接触式电能传输系统对结构的要求。
     (6)利用PSIM软件对系统的电路进行电路仿真,得出电源中不同位置处的电压与电流波形。利用MAXWELL软件对可分离变压器的磁路进行磁路仿真,分析了空隙和线圈绕制方法对变压器耦合系数的影响。
     (7)建立实验平台,验证计算和仿真的结果。
Ultrasonic gear honing technology is a new technology which based on ultrasonic vibration introduced into gear honing process. The use of technology can make the processed gears have the features of high bearing capacity, high precision, high surface quality and long life and so on. All about that is adjusted to the contemporary industrial requirements for the precision and life of gear.
     However, like the other rotary ultrasonic machining devices, the existing ultrasonic vibration system is powered through the electric brush and the slip ring. In this way, there are a lot of disadvantages such as attrition wear of the electric brush and the slip ring, heating effect, bare wires, low speed of rotation, ease of strike arc, and even certain security risk.
     For the deficiencies of power supply of the ultrasonic gear honing machine, this paper presents a non-contact ultrasonic power transfer technology into the existing device in order to overcome the above drawbacks. It aims to make the machine safer and more reliable.
     In the paper, major research contents are as follows:
     (1)The origin, present status, development trend of ultrasonic gear honing technology and the characteristics of ultrasonic machining are introduced; the structures of the existing ultrasonic gear honing machine is analyzed briefly; the shortcomings of power supply is revealed, and an amendment plan is proposed.
     (2)The principle, components of non-contact power transmission system and the basic structural form of detachable transformer are introduced; the mathematical model of detachable transformer, the system compensation network and numbers of factors that constraints the practical application of the technology are analyzed.
     (3)In order to have sufficient knowledge about the electrical system of ultrasonic gear honing machine and create conditions for the design of detachable transformer, the internal circuits of ultrasonic generator is mapped, furthermore , the performance of ultrasonic generator is tested through experimental study.
     (4)The structural form and characteristics of the piezoelectric transducer and the horn is introduced; Mechano-electric equivalence principle is deduced, and their equivalent circuits are given; the effects on the impedance and harmony vibration frequency of the piezoelectric transducer with different temperature and load are studied.
     (5)Based on the measurement results of the performance parameters of the power supply and transducer, detachable transformer and compensation network are designed, including the material and structure of the core, wire diameter, turns of the coil as well as the choice of compensation network topology. Then, to adjust the structural requirements for non-contact power transmission system, the mechanical construction of the ultrasonic vibration tailstock of the existing ultrasonic gear honing machine is retrofitted.
     (6)The voltage and current waveforms at different locations in the system circuit are obtained by the use of the circuit simulation software PSIM. The magnetic circuit of the detachable transformer is simulated and the effects on the transformer coupling coefficient with different gaps and coil winding methods are analyzed by the use of the magnetic circuit simulation software MAXWELL.
     (7)The experimental table is established to verify the calculation and simulation results.
引文
[1]徐德红.超声波平行轴珩齿工艺的基础性研究[D].太原:太原理工大学硕士学位论文,2006.
    [2] Lv M.,Ma H. M.,Xu Z . L..Study on New Manufacturing Process of Gear-Honing-Tool Used for Hardened Gear[J].Key Engineering Materials,Vols.259~260 (2004):10~13,SCI收录.
    [3]范国良,陈传梁.超声加工的概况和未来展望[J].电加工,1994,6:7~11.
    [4] Ya Gang.An experimental investigation on rotary ultrasonic machining[J].Key Engineering Material,Vols.202-203 (2001),SCI、EI、ISTP收录.
    [5]林书玉.超声换能器的原理及设计[M].北京:科学出版社,2004.
    [6]张云电.超声加工及应用[M].北京:国防工业出版社,1995.
    [7]刘晋春,赵家齐,赵万生.特种加工第四版[M].北京:机械工业出版社,2005.
    [8]曹凤国.超声加工技术[M].北京:化学工业出版社,2005.
    [9]宫晓琴.超声波硬珩齿加工理论与实验的初步研究[D].太原:太原理工大学硕士学位论文,2006.
    [10]王平楠.非接触式电能传输技术的分析和研究[D].上海:上海交通大学硕士学位论文,2005.
    [11] J. T. Boys and A. W. Green.Inductively coupled Transmission– concept, design and application [J].IPENZ trans. ,1995,22(1)EMCH:1~9.
    [12]李宏.感应电能传输电力电子及电气自动化的新领域[J].电气传动,2001,(2):62~64.
    [13]赵彪,冷志伟,吕良,陈希有.小型非接触式电能传输系统的设计与实现[J].电力电子技术,2009,43(1):49~51.
    [14] J. T. Boys, C. A. Covic and A. W. Green. STab.ility and control of inductively coupled power transfer systems[J].IEEE Proc-Electr Power Appl. ,2000,147(1):37~43.
    [15]沈争,陈辉明,蒋大鹏.无接触式变压器的建模分析及设计[J].电气应用,2007,26(1):34~37.
    [16]詹厚剑,吴杰康,赵楠等.非接触感应电能传输系统松耦合变压器参数设计[J].现代电力,2009,26(1):40~44.
    [17]刘志宇.感应充电实验系统研究[D].北京:清华大学硕士学位论文,2004.
    [18]武瑛,严陆光,徐善纲.新型无接触能量传输系统[J].变压器,2003,(6):1~6.
    [19]张峰,王慧贞.非接触感应能量传输系统中松耦合变压器的研究[J].电源技术应用,2007,10(4):54~64.
    [20]朱云国.无接触电能传输系统的探索[J].皖西学院学报,2004,20(2):28~29.
    [21] Wang Chwei-Sen , Grant A. Covic, Oskar H. Stielau. General sTab.ility criterions for zero phase angle controlled loosely coupled Inductive Power transfer systems[J]. IECON’01,vol.2:1049~1054.
    [22] Chang-Gyun Kim,Dong-Hyun Seo,Jung-Sik You,etc.. Design of a Contactless Battery Charger for Cellular Phone[J].IEEE Transactions On Industrial Electronics,December 2001:1238~1247.
    [23]梁英.一种新型超声波电源的研究技术[D].西安:西北工业大学硕士学位论文,2005.
    [24]李晓明.电工电子技术-电路与模拟电子技术基础[M].北京:高等教育出版社,2003.
    [25]章福学.现代压电学下册[M].北京:科学出版社,2002.
    [26]王艳东.压电换能器在并联谐振频率附近的特性及自动频率跟踪的研究[D].西安:陕西师范大学硕士学位论文,2006.
    [27]袁易全.超声换能器[M].南京:南京大学出版社,1992.
    [28]林仲茂.超声变幅杆的原理和设计[M].北京:科学出版社,1987.
    [29]同济大学应用数学系.高等数学第五版[M].北京:高等教育出版社,2003.
    [30]夏纪真.超声波无损检测技术工艺.http://www.ndtinfo.net/hichina/tech-area/ uttech-book/uttech-book-2-2-2.htm
    [31]张占松,蔡宣三.开关电源的原理与应用[M].北京:电子工业出版社,1998.
    [32]维基百科.http://zh.wikipedia.org/wiki/%E9%9B%86%E8%86%9A%E6%95%88% E6%87%89#column-one#column-one.
    [33]野泽哲生,蓬田宏树.伟大的电能无线传输技术[J].电子设计应用,2007,6:42~54.
    [34] Albert Esser and Hans-Skudelny.A new approach to power supplies for robots [J].IEEE Trans.Ind.Appl.1991,27(5):872~875.
    [35] Heeres B J,Novotny D W,etc.Contactless underwater power delivery [J].IEEE Annual Power Electronics Specialists Conference,1994:418~423.
    [36] Jackon D K. Inductively-coupled power transfer for electromechanical systems [J].Ph.D. Dissertation.Mas-sachusetts Institute of Technology,March 1998.
    [37] Hinchliffe S, Hobson L.High efficiency DC-AC conerters suiTab.le for high frequency induction process heating[J].IEEE Power Electronics Specialists Conference,April,1988:1228~1235.
    [38]王纪龙.大学物理[M].北京:科学出版社,2003.
    [39]张肃文.高频电子线路第四版[M].北京:高等教育出版社,2004.
    [40] PSIM User’s Guide Version 8.0. Powersim Inc.
    [41]刘国强,赵凌志,蒋继娅.Ansft工程电磁场有限元分析[M].北京:电子工业出版社,2005.
    [42]浣喜明,姚为正.电力电子技术[M].北京:高等教育出版社,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700