微弱核四极矩共振信号参数估计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核四极矩共振是一种固态射频谱分析技术,可用于检测高危险爆炸物及违禁物品。然而,极低信噪比与射频干扰制约了核四极矩共振技术的实际应用。干扰抑制、微弱核四极矩共振信号的参数估计与检测技术成为核四极矩共振技术的核心及关键。本论文从信号处理的角度出发,对核四极矩共振的概念、信号模型、信号激励方法、干扰抑制以及微弱核四极矩共振信号参数估计与检测等方面做了比较全面的分析与阐述,深入研究了微弱核四极矩共振信号的干扰抑制,信号检测及参数估计等问题。具体工作概括如下:
     1.针对干扰抑制与微弱核四极矩共振信号检测问题,提出了一种基于Hankel矩阵方式下奇异值分解的干扰抑制方法。该方法首先将原始数据构造成Hankel矩阵;然后对其进行奇异值分解,依据奇异值的大小可将原始信号分解为多个分量信号;最后对各分量信号进行谱估计,依据核四极矩共振信号的先验信息,滤除干扰信号与噪声;它有效地抑制了干扰信号,改善了信噪比。在干扰抑制的基础上,提出基于MUSIC谱估计的非线性最小二乘检测器,并以广义似然比统计量作为检测量;所提方法在降低了计算量的同时,提高了频率分辨率,达到有效检测微弱核四极矩共振信号的目的。
     2.针对含有干扰信号与热噪声的自由衰减信号的参数估计问题,提出了基于总体最小二乘的线性预测类参数估计方法。所提方法同时考虑了线性预测方程两边数据矩阵的扰动量,并在计算总体最小二乘解时,考虑了干扰噪声项,克服了常规最小二乘方法仅考虑一边扰动量,致使估计方差较大的缺点。结合自由衰减信号的衰减特性与最大似然估计准则实现了微弱自由衰减信号参数有效估计。
     3.针对强干扰信号遮蔽的微弱核四极矩共振信号参数估计问题,提出了基于改进的快速最大似然估计的残余信号迭代分解算法估计核四极矩共振信号参数。该方法将多维搜索问题转化为多个一维搜索,在频率维搜索时,结合了内插与类牛顿方法。所提方法在降低计算复杂度的同时提高了参数估计精度,解决了干扰信号对核四极矩共振信号的遮蔽问题。仿真和实测数据的结果验证了该算法的有效性。
     4.针对核四极矩共振技术探测爆炸物中干扰信号的时变性,基于各信号采样模块包含有固定的核四极矩共振信号与时变干扰信号以及噪声的实际信号模型,提出改进的多模块HTLSstack算法。首先采用HTLS方法确定出共有极点的个数;其次构造新的筛选准则确定所有模块的共有极点;最后结合核四极矩共振信号的先验信息,实现核四极矩共振信号参数的有效估计。所提方法充分利用了原始数据的信息,在低信噪比下,避免了多模块HTLS方法在第一次奇异值分解时带来的性能损失,有效地提高了参数估计精度。
     5.针对存在加性高斯白噪声多参数变量的单自旋回波串信号参数估计问题,提出一种参数分离化的2-D参数估计方法。利用2-D数据矩阵秩为1的特性,依照迭代加权最小二乘方法,从左、右主奇异值向量中以参数分离的方式分别估计出衰减因子和频率,基于最小二乘方法进一步获得信号幅度估计。该方法在相对高信噪比或大数据样本下可达到克拉美罗下界,且计算复杂度较低。
     6.针对存在加性高斯白噪声多参数变量的多谱线自旋回波串信号参数估计问题,提出基于特征向量的2-D参数估计方法。将多谱线自旋回波串信号构造成2-D数据矩阵,按照不同的方式构造Hankel块矩阵束,利用子空间转移不变结构解得特征向量,依据特征向量的结构规律获得衰减因子和频率。该方法具有自动配对的能力,在相对高信噪比以及频率可分辨的情况下能够实现参数的有效估计。仿真数据结果验证了算法的有效性。
Nuclear quadrupole resonance (NQR) is a solid-state radio frequency (RF)spectroscopic technique, allowing the detection of various high explosives and illicitmaterials. Unfortunately, the practical use of NQR is restricted by the low signal tonoise ratio (SNR) and the radio frequency interference (RFI). The interferencemitigation, parameter estimation and detection of weak NQR signals are the core andthe key of the NQR technique. From the perspective of signal processing, some topicsrelated to NQR, such as the basic concept, the signal model, the signal excitationmethods, the interference mitigation, and parameter estimation and detection of weakNQR signals, are analyzed and elaborated comprehensively in this dissertation. Theinterference mitigation, detection and parameter estimation of weak NQR signals areresearched deeply. The specific work is summarized as follows:
     1For the problem of interference mitigation and weak NQR signal detection, amethod of interference mitigation based on singular value decomposition (SVD) of theHankel matrix is proposed. In the proposed algorithm, a Hankel matrix is formed byoriginal data at first, and its SVD is implemented, then the original signal can bedecomposed into several component signals according to the singular values’ order.Finally, in accordance with the spectrum estimation of each component signal, theinterference and noise are removed on the basis of the prior information of NQR signals.It suppresses the interference effectively, and improves the SNR. After filtering theinterference, a nonlinear least square (NLS) detector based on MUSIC spectralestimation is presented, with the generalized likelihood ratio test (GLRT) as a detectionvariable. The proposed algoriyhm greatly reduces the computation load, simultaneously,guarantees a superior resolution of the frequency, so the motivation of the availabledetection for weak NQR signals is achieved.
     2Be aimed at the parameters estimation problem of the free induction decay(FID) signal contained interference and thermal noise, the linear prediction estimatorbased on the total least squares (TLS) is presented to estimate the parameters of the FIDsignal. The perturbations of the linear prediction equation on the two sides areconsidered in the proposed method, and then solved in the total least squares sense, withthe consideration of the interference and noise terms, the drawback of the conventionalleast squares method which only considers one side disturbance and leads to a relativelylarge variance, is overcomed. With the combination of the damp character of the FID signal and the criterion of the maximum likelihood estimation, the estimation of theparameters of the weak FID signal is effectively accomplished.
     3In allusion to the methods of parameters estimation of weak NQR signalsmasked by strong interference signals, residual signal iterative analysis algorithm(RSIAA) based on the improved fast maximum likelihood estimation (IFMLE) isproposed to estimate the parameters of the NQR signals. The proposed method turns themultidimensional search problem into multiple one-dimensional searches, and combinesthe interpolator and semi-Newton method. It solves the mask problem of theinterference to the NQR signal effectively, which simultaneously reduces thecomputational complexity and improves the estimated precision. The effectiveness ofthe proposed algorithm is demonstrated by the processing results of both simulated dataand experimental data.
     4For the time-variation characteristic of interference signals in the explosivedetection using the NQR technique, and according to the real world signal model ofeach signal sample block including the fixed NQR signal, time-variation interferencesignals and noise, an improved multi-block Hankel total least squares stack (HTLSstack)method is presented. Firstly, the number of common poles is determined using theHTLS scheme; secondly, a new selection criterion is constructed to choose the commonpoles; finally, the prior knowledge is employed to realize the estimation of NQR signalseffectively. This method makes full use of the information of original data, and in thecase of low signal-to-noise ratio, it avoids the performance loss of multi-block HTLSmethod in the first SVD, and improves the precision of parameter estimation availably.
     5To the problem of the multi-parameter estimation of a spin echo train (SET)signal in the presence of additive white Gaussian noise, a two-dimensional (2-D)parameter estimation method in a separable manner is proposed. By utilizing therank-one property of the2-D data matrix, and according to an iterative weighted leastsquares (WLS) method, the damping factor and frequency are estimated separately fromthe principal left and right singular vectors. The complex amplitude of SET is thenobtained on the basis of standard least squares. The parameter estimation performanceof this method achieves Cramer-Rao lower bound (CRLB) at a relatively large SNR ordata size conditions, and has a low computational complexity.
     6In allusion to multi-parameter estimation of multi-spectrum SET signal in thepresence of additive white Gaussian noise, a two-dimensional (2-D) parameterestimation method based on eigenvector is proposed. In this method, by using the SETsignal, a2-D data matrix is constructed, and according to the different manners to form the Hankel block matrix pencil (MP), and the eigenvector is solved by utilizing theshift-invariance structure of the signal subspace, and further the damping factor as wellas the frequency are estimated with the structure rule of the eigenvector. The methodhas the capability of auto association, and under a relatively large SNR and availablefrequency resolution conditions, it can estimate the parameters effectively. Simulationresults show the effectiveness of the proposed algorithm.
引文
[1] Jehuda Yinon. Counterterrorist detection techniques of explosives [M]. London:Elsevier B V,2007:157-198.
    [2] http://scienceweek.com/2005/sb050128-5.htm.
    [3] Jacques Fraissard, Olga Lapina. Explosives detection using magnetic andnuclear resonance techniques [M]. Dordrecht: Springer,2008.
    [4] A Mozayani, C Noziglia. The Forensic Laboratory Handbook: Procedures andPractice [M]. Totowa: Humana Press Inc..2005:91-115.
    [5]房旭民,徐政,徐玉清,张国进.核四极矩共振炸药探测技术在探雷中的应用[J].同济大学学报,2003,31(6):719-723.
    [6] Anthony A. Mrse. analysis of inorganic materials using advanced NMR andNQR techniques [D]. San Diego: University of California,1994.
    [7] A N Dovbnya, A M Yegorov, et al. Detection of explosives [J]. Problems ofAtomoc Science and Technology,2006,47(3):186-190.
    [8]杨文晖,王慧贤,王铮.基于软件无线电技术的核四极矩共振谱仪设计[J].波谱学杂志,2003,20(1):51-56.
    [9]石光明,徐更光,等.核四极共振在炸药探测上的应用[J].火炸药学报,2004,27(3):70-73.
    [10]房旭民,徐政.一种探测炸药的核四极矩共振/电磁感应方法[J].同济大学学报,2004,32(5):632-635.
    [11]房旭民,张国进,高攀,徐政,徐玉清.基于Apollo信号控制台的NQR炸药探测方法[J].波谱学杂志,2004,21(3):295-303.
    [12]陈春,张国进,郭华民,高攀,郝国欣.利用核四极矩共振技术探测炸药[J].波谱学杂志,2005,22(4):367-373.
    [13]房旭民,徐玉清,张国进.核四极矩共振探雷技术的发展与思考[J].工兵装备研究,2002,21(6):1-4.
    [14]原普,毛云志,郭华民.爆炸物检测中微弱NQR信号的处理[J].电波科学学报,2006,21(2):204-208.
    [15]高攀,金耀辉,张国进,周新建,张小坷.基于核四极矩共振原理的炸药探测方法研究与试验[J].波谱学杂志,2008,25(3):371-377.
    [16]赵振维,娄扬,金燕波,毛云志.基于自适应滤波技术的NQR信号处理[J].电波科学学报,2008,23(3):429-433.
    [17] V T Mikhaltsevitch, T N Rudakov. Study of quasistationary and stationarystates in the short-repetition-time sequences in the NQR of nitrogen [J]. SolidState Nuclear Magnetic Resonance,2004,25:99-111.
    [18] Dinh M TonThat, John Clarke. Direct current superconducting quantuminterference device spectrometer for pulsed nuclear magnetic resonance andnuclear quadrupole resonance at frequencies up to5MHz [J]. Rev. Sci.Instrum.,1996,67(8):2890-2893.
    [19] Souleymen Sahnoun, El-Hadi Djermoune, Charles Soussen, David Brie. Sparsemultidimensional modal analysis using a multigrid dictionary refinement [J].EURASIP Journal on Advances in Signal Processing,2012,60:1-30.
    [20] Marius Pesavento. Fast Algorithms for Multidimensional Harmonic Retrieval[D]. Bochum: Ruhr-Universit t Bochum,2005.
    [21] Daniel J mastarone, etc. A Modular System for the Synthesis of MultiplexedMagnetic Resonance Probes [J]. J Am Chem Soc,2011,133(14):5329–5337.
    [22] Yamuna Govindarajan, Sivakumar Dakshinamurthi. Quality–Securityuncompromised and Plausible Watermarking for Patent Infringement [J].International Journal of Image Processing,2007,1(2):11-20.
    [23] Norbert Muller, Alexej Jerschow. Nuclear spin noise imaging [J]. PNAS,2006,103(18):6790-6792.
    [24] A S Peshkovsky, J Forguez, L Cerioni, D J Pusiol. RF probe recovery timereduction with a novel active ringing [J]. J Magn Reson.,2005,177(1):67-73.
    [25] Arijitt Borthakur, Eric Mellon, Sampreet Niyogi, etc. Sodium and T1ρ MRI formolecular and diagnostic imaging of articular cartilage [J]. NMR Biomed,2006,19(7):781-821.
    [26] Erik Gudmundson, Andreas Jakobsson, Petre Stoica. NQR-based explosivesdetection—an overview [C].//2009International Symposium on Signals,Circuits and Systems. United States: IEEE Computer Society,2009:1-4.
    [27]何学辉,朱凯然,阳燕,苏涛,刘宏伟.一种适用于核四极矩共振信号检测的干扰对消器[P].中国,201210078673.X,2012-03-23.
    [28]何学辉,阳燕,朱凯然,苏涛,刘宏伟.一种适用于爆炸物探测的低频调谐天线[P].中国,201210046827.7,2012-02-28.
    [29]罗会俊,王复,诸培奋,潘铁英,史新梅.在反转恢复测试中磁化矢量的演化特征:辐射阻尼效应[J].波谱学杂志,2000,17(2):95-102.
    [30] Joel B Miller, Geoffrey A Barrall. Explosives detection with nuclearquadrupole resonance-An emerging technology will help to uncover landmines and terrorist bombs [J]. American Scientist,2005,93(1):50-57.
    [31]房德慧,张彼得,郑小利,刘德海.用于NQR、NMR和ESR的JFET边限振荡器[J].大学物理,1994,13(9):28-30.
    [32] A N Garroway, M L Buess, et al. Explosives Detection by Nuclear QuadrupoleResonance [R]. Washington: Naval Research Laboratory,1997.
    [33] A N Garroway. Introuduction: Nuclear Quadrupole Resonance at the NavalResearch Laboratory[R]. Washington: Naval Research Laboratory,2002.
    [34] J Pirnat, J Luznik, Z Trontelj. A Study of Continuous-Wave Two-FrequencyNQR[J]. Applied Magnetic Resonance,2006,30(2006):43-53.
    [35] David B Zax. Zero Field NMR: NMR and NQR in Zero Magnetic Field [M]
    [36] E Anoardo, G Galli, G Ferrante. Fast-Field-Cycling NMR: Applications andInstrumentation[J]. Applied Magnetic Resonance,2001,20(2001):365-404.
    [37] L A Zemnukhova, R L Davidovich.121,123Sb NQR study of antimony (III)fluoride complexes [J]. Russian Chemical Bulletin,1998,47(11):2164-2168.
    [38] Rainer Kimmich, Esteban Anoardo. Field-cycling NMR relaxometry[J].Progress in Nuclear Magnetic Resonance Spectroscopy,2004,44(2004):257–320.
    [39] J N Latosinska, M A Tomczak, J Kasprzak. Thermal stability and moleculardynamics of triclosan in solid state studied by35Cl–NQR spectroscopy andDFT calculations [J]. Chemical Physics Letters,2008,462(2008):284-288.
    [40] William L Rollwitz, J Derwin King, Stanley D Shaw. Determining the potentialof radiofrequency resonance absorption detection of explosives hidden inairline baggage [R]. Washington: Southwest Research Institute,1975.
    [41] Robert A Marino, Raymond F Connors, Lawrence Leonard. Nitrogen-14NQRstudy of energetic materials [R]. North Carolina: U. S. Army research Office,1982.
    [42] A D Gordeev, V S Grechishkin, E M Shishkin.“Slow beats” in two-frequencyspin echo [J]. Russian Physics Journal,1972,15(5):796-798.
    [43] V S Grechishkin, S A Voronkov, E M Shishkin. Characteristics of s-signalformation in programs with time division [J]. Russian Physics Journal,1975,18(8):1122-1127.
    [44] E O Azizov, V S Grechishkin, et al. Digital methods of detection alow-frequency nuclear quadrupole resonance [J]. Russian Physics Journal,2003,46(2):215-217.
    [45] V S Grechishkin. Application of Multipulse Sequences in Remote NQR [J].Applied Physics A Solods and Surfaces,1994,58:63-65.
    [46] B V Dresvyankin, V S Grechishkin, T G Balicheva, I V Pologikh.14N NQR inHexamethylenetetramine complexes with hydrogen bonding [J]. RussianPhysics Journal,1975.11(2):276-280.
    [47] V S Grechishkin, N Ya Sinyavskii, G V Mozzhukhin. A unilateral NQRexplosives detector [J]. Russian Physics Journal,1992,7:58-61.
    [48] V S Grechishkin. Detection of NQR in explosives [J]. Russian Physics Journal,1992,7:62-65.
    [49] V S Grechishkin, R V Grechishkina, Hoon Heo. Signal prcessing methods inNQR [A]. In: J Fraissard, O Lapina. Explosives Detection Using Magnetic andNuclear Resonance Techniques [C]. NATO Science for Peace and SecuritySeries B: Physics and Biophysics, B V: Springer,2009,159-170.
    [50] A N Garroway, M L Buess, J P Yesinowski, J B Miller, K J McGrath.Explosives Detection by Nuclear Quadruple Resonance (NQR)[R].Washington: Naval Research Laboratory,1997.
    [51] M L Buess, A N Garroway, J B Miller, J P Yesinowski. Explosives Detectionby14N pure NQR [A].//Juheda Yinan. Advances in Analysis and Detection ofExplosives [C]. Proceedings of the4th International Symposium on Analysisand Detection of Explosives, Jerusalem Israel.1992. London: KluwerAcademic Publishers,1992:361-369.
    [52] A D Hibbs, G A Barrall, etc.. Man portable mine detector using nuclearquadrupole resonance-First year progress and test results [C].//Proc.2nd Int.Conf. Detection of Abandoned Land Mines. Edinburgh: IEE ConferencePublication,1998:138-141.
    [53] Garroway A N, Buess M L, Miller J B, Suits B H, Hibbs A D, Barrall A G,Matthews R, Burnett L J. Remote Sensing by Nuclear Quadrupole Resonance[J]. IEEE Trans. Geoscience and Remote Sensing,2001,39(6):1108-1118.
    [54] Andreas Jakobsson, et al.. Frequency-selective detection of nuclear quadrupoleresonance signals [J]. IEEE Transactions on Geoscience and Remote Sensing,2005,43(11):2659-2665.
    [55] Guoqing Liu, Yi Jiang, Hong Xiong, Jian Li, Geoffrey A Barrall. RadioFrequency interference suppression for landmine detection by quadrupoleresonance [J]. Eurasip Journal on Applied Signal Processing,2006,1-14.
    [56] http://www.mrde2012.com/
    [57]夏佑林,叶朝辉.14N核四极共振自旋系统自旋-晶格弛豫时间的测量[J].波谱学杂志,1994,11(4):327-355.
    [58]夏佑林,叶朝辉.14N核四极共振中自旋锁定的偏共振效应[J].物理学报,1995,44(6):970-976.
    [59]夏佑林,叶朝辉.自旋I=1和32的粉末样品的核四极共振波谱学—I.对脉冲的响应[J].自然科学进展,1995,5(4):467-473.
    [60]夏佑林,叶朝辉.自旋I=1和32的粉末样品的核四极共振波谱学—II.核四极共振回波及应用[J].自然科学进展,1995,5(5):559-464.
    [61]夏佑林,胡红兵,杨保联,李丽云,叶朝辉.当能级间隔较小时三能级核四极共振自旋系统对脉冲的响应[J].波谱学杂志,1996,13(4):311-320.
    [62]李鲠颖,蒋瑜,吴先球,邬学文.氮-14远程核四极共振谱仪[J].波谱学杂志,1994,11(4):419-426.
    [63]李鲠颖,徐学诚.固体核磁共振中旋转回波激发的研究[J].物理学报,1995,44(11):1848-1853.
    [64]李鲠颖,邬学文.固体四极体系NMR及其应用[J].波谱学杂志,1995,12(4):420-429.
    [65]李鲠颖.自旋I=32核四极共振体系对梳状脉冲的响应[J].物理学报,1996,45(4):681-688.
    [66]李鲠颖,夏小建,徐学诚.含氮固体物质的核四极共振远程探测仪[J].仪器仪表学报,1997,18(4):368-372.
    [67]李鲠颖.固态磁共振中提高四极核检测灵敏度的有效方法[J].物理学报,1994,43(8):1365-1370.
    [68]李硬颖.整形滤波在远程核四极共振探测中的应用[J].波谱学杂志,1996,13(3):303-308.
    [69]李鲠颖,谢海滨,夏小建.一种简单的快恢复14N NQR探头[J].波谱学杂志,1996,13(1):95-100.
    [70]袁进胜,孙昌璞.旋转样品核四极共振的量子绝热微扰论分析[J].物理学报,1995,44(1):29-34.
    [71]刘兆和,吴滕芳等.核四极矩共振炸药探测原理与实验[J].解放军理工大学学报(自然科学版),2006,7(1):59-64.
    [72]夏小建.利用核电四极矩检测含氮爆炸物[J].泉州师专学报(自然科学),1999,17(3):24-27.
    [73]杨振磊,徐更光,王振华,刘科仲.核四极共振隐藏炸药探测信息库设计[J].波谱学杂志,2009,26(3):385-392.
    [74]姚刚,房旭民,毛云志.基于小波阀值消噪的硝铵NQR信号处理[J].波谱学杂志,2009,26(4):504-511.
    [75]郭华明,张国进,陈春,高攀.NQR炸药检测系统中激励脉冲拖尾的抑制[J].波谱学杂志,2007,24(2):199-204.
    [76]郝国欣,金燕波,周新建,张国进.NQR炸药探测系统中减少振铃拖尾影响的几种措施[J].工兵装备研究,2007,26(4):25-27.
    [77]周新建,张国进,高攀,郝国欣,高朝瑞.NQR探测系统振铃拖尾抑制方法研究[J].核电子学与探测技术,2008,28(3):477-480.
    [78]陈星,徐更光.一种快速有效的核四极共振探头恢复方法[J].原子能科学技术,2009,43(5):474-476.
    [79]杨振磊,徐更光,王振华,刘科种,郝凤龙. PETN炸药NQR信号处理方法[J].波谱学杂志,2009,26(4):518-523.
    [80] Zhu Kairan, Su Tao, He Xuehui, Niu Jinping. SVD for enhanced explosivesdetection using NQR [C].2010Symposium on Security Detection andInformation Processing, Procedia Engineering,2010,7:57-62.
    [81] Niu Jinping, Su Tao, He Xuehui, Zhu Kairan, Wu Huiyang. Weak NQR signaldetection based on generalized matched filter.2010Symposium on SecurityDetection and Information Processing, Procedia Engineering,2010,7:377-382.
    [82]张向阳.组合脉冲序列技术的研究[J].中国原子能科学研究院年报,2008(00).
    [83]何高魁.基于核四极矩共振技术的EDS-M邮件检测系统[J].中国原子能科学研究院年报,2007(00).
    [84] LI Kang-ning, et al. Research of Explosives Detection in Planar Coil Based onNQR Method [J]. Annual Report of China Institute of Atomic Energy,2010(00).
    [85] M D Rowe, J A S Smith. Mine detection by nuclear quadrupole resonance [C].//The detection of abandoned land mines. Edinburgh: IEE ConferencePublication,1996:62-66.
    [86] M E Aderin, I A Burch. Countermine hand held and vehicle mounted minedetection [C]. Second International Conference on Detection of AbandonedLand Mines, London, IEE,1998:198-202.
    [87] Julian Shaw. Detectability of Explosives Using Quadrupole Resonance [R].San Diego: Quantum Magnetics, Inc.,1994.
    [88] J A S Smith. Nitrogen-14quadrupole resonance detection of RDX and HMXbased explosives [C].//European Convention on Security and Detection.Brighton: IEE Conference Publication,1995:288-292.
    [89] T N Rudakov. Modification of SSFP technique for the effective detection ofNQR signals [J]. Physics Letters A,2006,358:322-326.
    [90] Andreas Jakobsson, Magnus Mossberg. Using Spatial Diversity to DetectNarcotics and Explosives Using NQR Signals [J]. IEEE Transactions on SignalProcessing,2007,55(9):4721-4726.
    [91] Yingyi Tan, Stacy L. Tantum and Leslie M. Collin. Landmine detection withnuclear quadrupole resonance [C].//IEEE International Geoscience andRemote Sensing Symposium, Toronto: IEEE Conference Publication,2002,3:1575-1578.
    [92] Yingyi Tan, Stacy L Tantum, Leslie M Collins. Cramer–Rao lower bound forestimating quadrupole resonance signals in Non-Gaussian noise [J]. IEEESignal Processing Letters,2004,11(5):490-493.
    [93] Yingyi Tan, et al.. Kalman filtering for enhanced landmine detection usingquadrupole resonance [J]. IEEE Transactions on Geoscience and RemoteSensing,2005,43(7):1507-1516.
    [94] Samuel D Somasundaram, Andreas Jakobsson, Erik Gudmundson. Robustnuclear quadrupole resonance signal detection allowing for amplitudeuncertainties [J], IEEE transactions Signal Processing,2008,56(3):887-894.
    [95] Samuel D Somasundaram, Andreas Jakobsson, Michael D Rowe, J A S Smith,N R Butt, K Althoefer. Robust detection of stochastic nuclear quadrupoleresonance Signals [J]. IEEE Transactions Signal Process,2008,56(9):4221-4229.
    [96] Petre Stoica, Hongbin Li, Jian Li. A New Derivation of the APES Filter [J].IEEE Signal Processing Letters,1999,6(8):205-206.
    [97] Yi Jiang, Jian Li, Petre Stoica. Array Signal Processing for QR [C].//Conference Record of the Thirty-Sixth Asilomar Conference on Signals,Systems and Computers, Pacific Grove: IEEE Conference Publication,2002:893-897.
    [98] Yi Jiang, Petre Stoica, Jian Li. Array signal processing in the known waveformand steering vector case [J]. IEEE Transactions Signal Processing,2004,52(1):23-35.
    [99]陆光华,彭学愚,张林让,毛用才.随机信号处理[M].西安:西安电子科技大学出版社,2003,104-121.
    [100] B M Bell, D B Percival. A two step burg algorithm [J]. IEEE Transactions onSignal Processing,1991,39(1):185-189.
    [101] Mostafa kaveh, George A Lippert. An optimum tapered burg algorithm forlinear prediction and spectral analysis [J]. IEEE Transactions on Acoustics,Speech, and Signal Processing,1983,31(2):438-444.
    [102] R Bos, S de Waele, P M T Broersen. AR spectral estimation by application ofthe burg algorithm to irregularly sampled data [C]. IEEE Instrumention andMeasurement Technology Conference, Budapest Hungary, May21-23,2001,1208-1213.
    [103] Willian Campbell, David N Swingler. Frequency estimation performance ofseveral weighted burg algorithms [J]. IEEE Transcation on Signal Processing,1993,41(3):1237-1247.
    [104] D N Swingler. Frequency estimation variance with the burg algrithom [J].IEEE Transactions on Signal Processing,1991,39(4):1003-1005.
    [105] Stijn de Waele, Piet M T Broersen. The burg algorithm for segments [J]. IEEETransactions on Signal Processing,2000,48(10):2876-2880.
    [106] Andreas Jakobsson, Magnus Mossberg. Multi-Channel Detection of Narcoticsand Explosives using NQR Signals [C].//Fourth IEEE Workshop on SensorArray and Multichannel Processing, Waltham: IEEE Conference Publication,2006:79-83.
    [107] Naveed R Butt, Andreas Jakobsson. Robust Multi-Sensor Detection ofPolymorphic NQR Signals [C].//Conference Record of the Forty-FirstAsilomar Conference on Signals, Systems and Computers, Pacific Grove:IEEE Conference Publication,2007:1389-1393.
    [108] Naveed R Butt, Andreas Jakobsson, Samuel D Somasundaram, John A S Smith.Robust multichannel detection of mixtures using nuclear quadrupole resonance[J]. IEEE transactions Signal Processing,2008,56(10):5042-5050.
    [109] Butt N R, Jakobsson A. Efficient removal of noise and interference inmultichannel quadrupole resonance [C].//2011Conference Record of theForty Fifth Asilomar Conference on Signals, Systems and Computers, PacificGrove: IEEE Conference Publication,2011:1072-1076.
    [110] Hong Xiong. Robust adaptive methods and their applications in quadrupoleresonance [D]. Florida, University of Florida,2006.
    [111] Hong Xiong, Jian Li, Geoffrey A Barrall. Joint TNT and RDX detection viaquadrupole resonance [J]. IEEE Transactions on Aerospace and ElectronicSystems,2007,43(4):1282-1293.
    [112] Luzhou Xu, Petre Stoica, Jian Li. Complex Amplitude Estimation in theKnown Steering Matrix and Generalized Waveform Case [J]. IEEETransactions on Signal Processing,2006,54(5):1716-1726.
    [113] Petre Stoica, Hong Xiong, Luzhou Xu, Jian Li. Adaptive beamforming forquadrupole resonance [J]. Digital Signal Processing,2007.17:634-651.
    [114] Naveed R Butta, Samuel D Somasundaram, Andreas Jakobsson, John A SSmith. Frequency-selective robust detection and estimation of polymorphic QRsignals [J]. Signal Processing,2008,88:834–843.
    [115] Stephen W Kercel, William B Dress, Andrew D Hibbs, Geoffrey A Barrall.Investigation of wavelet based enhancements to NQR explosives detectors [C].//SPIE Aerosense Symposium, Orlando: SPIE,1998:1-14.
    [116] G V Mozzhukhin, S V Molchanov. Application of the wavelete transform fordetectiong signals of nuclear quadrupole resonance [J]. Russian PhysicsJournal,2005,48(1):47-50.
    [117] Jia-Hsing Wang, Ming-Yuan Liao. Sensitivity-enhanced nuclear quadrupolecorrelation spectroscopy application of single transition operators in nuclearquadrupole resonance of half-integer nucleus [J]. Journal of Chemical Physics,2002,116(8):3270-3276.
    [118] J B Miller, A N Garroway. Applications of adiabatic half passage to NQR [J].Appl. Magn. Reson.,2004,25:475-483.
    [119] Xinwang Zhang, Sina Balkir, Micheal W Hoffman, Nethan Schemm. A robustCMOS Receiver front-end for Nuclear Quadrupole Resonance basedexplosives detection [C].//53rd IEEE International Midwest Symposium onCircuits and Systems, Seattle: IEEE Conference Publication,2010:1093-1096.
    [120] T N Rudakov, V T Mikhaltsevitch, J H Flexman, P A Hayes, W P Chisholm.Modified Multipulse Technique for the Effective Detection of Pure NuclearQuadrupole Resonance [J]. Appl. Magn. Reson.,2004,25:467-474.
    [121] T N Rudakov, V T Mikhaltsevitch, J H Flexman. Modified steady-state freeprecession pulse sequences for the detection of pure nuclear quadrupoleresonance [J]. Solid State Nuclear Magnetic Resonance,2004,25:94-98.
    [122] T N Rudakov, P A Hayes. Some aspects of quasi-steady state of nitrogen-14quadrupolar spin-system [J]. Chemical Physics Letters,2005,405:334-338.
    [123] T N Rudakov, P A Hayes. Cross-polarisation method for improvement of14NNQR signal detectability [J]. Journal of Magnetic Resonance,2006,183:96-101.
    [124] T N Rudakov. Some aspects of steady-state of nitrogen-14quadrupolarspin-system [J]. Chemical Physics Letters,2006,425:372-376.
    [125] Theagens J Abatzoglou. A fast maximum likelihood algorithm for frequencyestimation of a sinusoid based on Newton's method [J]. IEEE transactions onAcoustics, Speech, and Signal Processing,1985,33(1):77-89.
    [126] Yoram Bresler, Albert Macovski. Exact maximum likelihood parameterestimation of superimposed exponential signals in noise [J]. IEEE Transactionson Acoustics, Speech, and Signal Processing,1986,34(5):1081-1089.
    [127] Li Zhongwei, Zeng Qingfu, Xu Huanen. The asymptotic Cramer-Rao lowerbound and maximum likelihood estimation of parameters of exponentiallydamped sinusoid from noisy measurements [C].//Proceedings of the IEEEInternational Symposium on Industrial Electronics, Xi’an: IEEE ConferencePublication,1992,1:64-68.
    [128] Donald W Tufts, Hongya Ge, S Umesh. Fast maximum likelihood estimationof signal parameters using the shape of the compressed likelihood function [J].IEEE Journal of Oceanic Engineering,1993,18(4):388-400.
    [129] S Umesh, Donald W Tufts. Estimation of parameters of exponentially dampedsinusoids using fast maximum likelihood estimation with application to NMRspectroscopy data [J]. IEEE transactions on Signal Processing,1996,44(9):2245-2259.
    [130] Jeng-Kuang Hwang, Jiunn-Horng Denq. Maximum Likelihood Estimation ofMultiple Damped Sinusoids by Using Newton's Iterations and ImprovedInitialization [C].//IEEE Seventh SP Workshop on Statistical Signal and ArrayProcessing, Quebec City: IEEE Conference Publication,1994:23-26.
    [131] Ramdas Kumaresan, Donald W Tufts. Estimating the parameters ofexponentially damped sinusoids and pole-zero modeling in noise [J]. IEEETransactions on Acoustics, Speech, and Signal Processing,1982,30(6):833-840.
    [132] H C So, Frankie K W Chan, W H Lau, Cheung-Fat Chan. An efficientapproach for two-dimensional parameter estimation of a single-tone [J]. IEEETransactions on Signal Processing,2010,58(4):1999-2009.
    [133] Ye Li, Javad Razavilar, K J Ray Liu. A high-resolution technique formultidimensional NMR spectroscopy [J]. IEEE Transactions on BiomedicalEngineering,1998,45(1):78-86.
    [134] Remy Boyer, Guillaume Bouleux, Karim Abed-Meraim. Common poleestimation with an orthogonal vector method [J].14th European signalprocessing conference, Florence, Italy, September4-8,2006.
    [135] Stéphanie Rouquette, Mohamed Najim. Estimation of frequencies and dampingfactors by two-dimensional ESPRIT type methods [J]. IEEE Transactions onSignal Processing,2001,49(1):237-245.
    [136] Yingbo Hua. Estimating two-dimensional frequencies by matrix enhancementand matrix pencil [J]. IEEE Transactions on Signal Processing,1992,40(9):2267-2280.
    [137] Jean-Michel Papy, Lieven De Lathauwer, Sabine Van Huffel. Common poleestimation in multi-channel exponential data modeling [J]. Signal Processing,2006,86:846-858.
    [138] Jian Zhang, Akshya Kumar Swain, Sing Kiong Nguang. Parameter estimationof exponentially damped sinusoids using HSVD based extended complexKalman filter [C].//2008IEEE Region10Conference, Hyderabad: IEEEConference Publication,2008:1-6.
    [139] Naishadham K, Piou J E. A robust state space model for the characterization ofextended returns in radar target signatures [J]. IEEE Trans. on Antennas andPropagation,2008,56(6):1742-1751.
    [140] Kiyoshi Nishiyama. A Nonlinear Filter for Estimating a Sinusoidal Signal andIts Parameters in White Noise: On the Case of a Single Sinusoid [J]. IEEEtransactions on Signal Processing,1997,45(4):970-981.
    [141] Tufts D W, Kumaresan R. Estimation of frequencies of multiple sinusoidsmaking linear prediction perform like maximum likelihood [J]. Proceedings ofthe IEEE,1982,70(9):975-989.
    [142] L S Biradar, V U Reddy. A Newton-based Ziskind-Wax alternating projectionalgorithm applied to spectral estimation [J], IEEE transactions on SignalProcessing,1993,41(3):1435-1438.
    [143] M Feder, E Weinstein. Parameter estimation of superimposed signals using theEM algorithm [J], IEEE transactions on Acoustics, Speech, and SignalProcessing,1988,36(4):477-489.
    [144] Ilan Ziskand, David Hertz. Multiple frequencies and AR parameters estimationfrom one bit quantized signal via the EM algorithm [J]. IEEE Transactions onSignal Processing,1993,41(11):3202-3206.
    [145] V Umapathi Reddy, L S Biradar. SVD based information theoretic criteria fordetection of the number of damped undamped sinusoids and their performanceanalysis [J]. IEEE Transactions on Signal Processing,1993,41(9):2872-2881.
    [146] Zheng-She Liu, Jian Li. Implementation of the RELAX algorithm [J]. IEEEtransactions on Aerospace and Electronic Systems,1998,34(2):657-664.
    [147] Changzhi Li, Jun Ling, Jian Li and Jenshan Lin. Accurate doppler radarnoncontact vital sign detection using the RELAX algorithm [J]. IEEETransactions on Instrumentation and Measurement,2010,59(3):687-695.
    [148] Qi Cheng. On Parameter Estimation of Damped Sinusoids [C].//2006IEEERegion10Conference, Hong Kong: IEEE Conference Publication,2006:548-551.
    [149] Elias Aboutanios. Parameter estimation of a decaying exponential in noise [J].Digital Signal Processing,200916th International Conference on,2009,1-6.
    [150] El-Hadi Djermoune, Marc Tomczak. Perturbation analysis of subspace-basedmethods in estimating a damped complex exponential [J]. IEEE transactions onsignal processing,2009,57(11):4558-4563.
    [151] Juhani Dabek, Jaakko O Nieminen, Panu T Vesanen, Raimo Sepponen, Risto JIlmoniemi. Improved determination of FID signal parameters in low-fieldNMR [J]. Journal of Magnetic Resonance,2010,205:148-160.
    [152] Elias Aboutanios. Estimation of the frequency and decay factor of a decayingexponential in noise [J]. IEEE transactions on signal processing,2010,58(2):501-509.
    [153] Elias Aboutanios. Estimating the parameters of sinusoids and decayingsinusoids in noise [J]. IEEE Instrumentation&Measurement Magazine,2011,8-14.
    [154] Chien-Hung Huang, Chien-Hsing Lee, et al. A Robust Technique for FrequencyEstimation of Distorted Signals in Power Systems [J]. IEEE transactions onsignal processing,2010,59(8):2026-2036.
    [155] Andreas Jakobsson, S Lawrence Marple, et al. Computationally EfficientTwo-Dimensional Capon Spectrum Analysis [J]. IEEE transactions on signalprocessing,2000,48(9):2651-2661.
    [156] N Ya Sinyavskii, D V Karpinskii. Determination of the spectral parameters ofnuclear quadrupole resonance from mutation spectra of powdered samples [J].Russian Physics Journal,1997,40(7):3-8.
    [157] Michael J Tunhon, Michael I Miller. Maximum-Likelihood Estimation ofComplex Sinusoids and Toeplitz Covariances [J]. IEEE transactions on signalprocessing,1994,42(5):1074-1086.
    [158] G V Mozzhukhin, A V Efremov, A V Bodnya, V V Fedotov. A two-spiral flatcoil for detecting N-14NQR signals [J]. Russian Physics Journal,2005,48(9):79-84.
    [159] S Stoican. NQR detection setup [J]. Rom. Journ. Phys.,2006,51(2):311-315.
    [160] S G Kovalenko, N Ya Sinyavskii. Effect of the nonuniformity of theradio-frequency field of the sensor of an NQR detector of explosives on thesignal intensity and the possibility of its compensation [J]. Russian PhysicsJournal,2004,47(10):105-107.
    [161] Dinh M TonThat, John Clarke. Direct current superconducting quantuminterference device spectrometer for pulsed nuclear magnetic resonance andnuclear quadrupole resonance at frequencies up to5MHz [J]. Rev. Sci.Instrum.,1996,67(8):2890-2893.
    [162] Matthew P Augustine, Dinh M TonThat, John Clarke. SQUID detected NMRand NQR [J]. Solid State Nuclear Magnetic Resonance,1998,11:139-156.
    [163] Ken Sakuta, Takahiro Araya, Yoshiaki Kitamura, Makio Kamishiro, HideoItozaki. Environmental MHz Noise Reduction for SQUID Application [J].IEEE Transactions on Applied Superconductivity,2007,17(2):726-729.
    [164] Claude Hilbert, John Clarke, Tycho Sleator, Erwin L Hahn. Nuclear quadrupoleresonance detected at30MHz with a dc superconducting quantum interferencedevice [J]. Appl. Phys. Lett.,1985,47(6):637-639.
    [165] N Q Fan, Michael B Heaney, John Clarke, D Newitt, Lawrence L Wald, ErwinL Hahn, A Bielecki, A Pines. Nuclear magnetic resonance with DC SQUIDpreamplifiers [J]. IEEE Transactions on Magnetics,1989,25(2):1193-1199.
    [166] N Q Fan, John Clarke. Low-frequency nuclear magnetic resonance and nuclearquadrupole resonance spectrometer based on a dc superconducting quantuminterference device [J].1991, Review of Scientific Instruments,62(6):1453-1460.
    [167] Ronald E Sager, Andrew D Hibbs, S Kumar. Using SQUIDS For ACMeasurements [J]. IEEE Transactions on Magnetics,1992,28(5):3072-3077.
    [168] Charles Wilke, James D McCambridge, Daniel B Laubacher, Robby L Alvarez,Jiunn Sheng Guo, Charles F Carter III, Michael A Pusaten, Jeffrey L Schiano.HTS Sensors for NQR Spectroscopy [J]. IEEE MIT-S Digest,2004,143-146.
    [169] D F He, M Tachiki, H Itozaki. Detecting the14N NQR Signal Using a High-TcSQUID [J]. IEEE Transactions on Applied Superconductivity,2007,17(2):843-845.
    [170] M Pannetier-Lecoeur, C Fermon, N Biziere, J Scola, A L Walliang. RFResponse of Superconducting-GMR Mixed Sensors, Application to NQR [J].IEEE Transactions on Applied Superconductivity,2007,17(2):598-603.
    [171] M Tachiki, D F He, H Itozaki. Sensing of chemical substances usingSQUID-based nuclear quadrupole resonance [J]. Physica C,2007,463-465.
    [172] Hadrien Dyvorne, Claude Fermon, Myriam Pannetier-Lecoeur, HedwigePolovy, Anne-Laure Walliang. NMR With Superconducting-GMR MixedSensors [J]. IEEE Transactions on Applied Superconductivity,2009,19(3):819-822.
    [173] V P Anferov, G V Mozzhukhin. Composite pulse trains for nuclear quadrupoleresonance [J]. Russian Physics Journal,1999,42(9):54-57.
    [174] Alan Gregorovic, Tomaz Apih. TNT detection with14N NQR: Multipulsesequences and matched filter [J]. Journal of Magnetic Resonance,2009,198:215-221.
    [175] R A Marino, S M Klainer. Multiple spin echoes in pure quadrupole resonance[J]. The Journal of Chemical Physics,1977.67(7):3388-3389.
    [176] S M Klainer, T B Hirschfeld, R A Marino. Fourier, hadamard, and hilberttransforms in chemistry [M]. New York: Plenum,1982.
    [177] T N Rudakov, V T Mikhaltsevitch, O P Selchikhin. The use of multi-pulsenuclear quadrupole resonance techniques for the detection of explosivescontaining RDX [J]. J. Phys. D: Appl. Phys.,1997,30:1377-1382.
    [178] Gregory Fisher, Ernesto MacNamara, Robert E Santini, Daniel Raftery. Aversatile computer-controlled pulsed nuclear quadrupole resonancespectrometer [J]. Review of Scientific Instruments,1999,70(12):4676-4681.
    [179] K L Sauer, C A Klug, J B Miller, A N Garroway. Using Quaternions To DesignComposite Pulses for Spin-1NQR [J]. Appl. Magn. Reson.,2004.25:485-500.
    [180] V T Mikhaltsevitch, T N Rudakov, J H Flexman, P A Hayes, W P Chisholm.Comparative experimental analysis of composite pulses in14N NQR [J]. SolidState Nuclear Magnetic Resonance,2004,25:61-63.
    [181] T N Rudakov, V T Mikhaltsevitch, P A Hayes, W P Chisholm. Some dynamicalpoperties of nitrogen-14quadrupolar spin-system with non-symmteric electricfield gradient tensor [J]. Chemical Physics Letters,2004,387:405-409.
    [182] T N Rudakov, P A Hayes, W P Chisholm. Some Aspects of Dynamics ofNitrogen-14Quadrupole Spin-System [J]. Hyperfine Interactions,2004,159:131-136.
    [183] T N Rudakov, V T Mikhaltsevitch, J H Flexman. Spin locking spin echo innitrogen-14quadrupolar spin-system with axially symmetric electric fieldgradient tensor [J]. Solid State Nuclear Magnetic Resonance,2004,25:112-118.
    [184] T N Rudakov, P A Hayes, J H. Flexman. Optimised NQR pulse technique forthe effective detection of Heroin Base [J]. Solid State Nuclear MagneticResonance,2008,33:31-35.
    [185] David W Prescott, Joel B Miller, Chris Tourigny, Karen L Sauer. Nuclearquadrupole resonance single-pulse echoes [J]. Journal of Magnetic Resonance,2008,194:1-7.
    [186] A Jakobsson, M Mossberg, M D Rowe, J A S Smith. Exploiting TemperatureDependency in the Detection of NQR Signals [J]. IEEE Trans. SignalProcessing,2006,54(5):1610-1616.
    [187] Samuel D Somasundaram, Andreas Jakobsson, John A S Smith, KasperAlthoefer. Exploiting spin echo decay in the detection of nuclear quadruploeresonance signals [J]. IEEE Transaction on Geoscience and Remote Sensing,2007,45(4):925-933.
    [188] Erik Gudmundson, Jun Ling, Petre Stoica, Jian Li, Andreas Jakobsson. Spectralestimation of damped sinusoids in the case of irregularly sampled data [C].International Symposium on Signals, Circuits and Systems, Iasi: IEEEConference Publication,2009:1-4.
    [189] Erik Gudmundson, Petre Stoica, Jian Li, Andreas Jakobsson, et al. Spectralestimation of irregularly sampled exponentially decaying signals withapplications to RF spectroscopy [J]. Journal of Magnetic Resonance,2010,203:167-176.
    [190] Somasundaram S D, Jakobsson A, Butt N R. Countering radio frequencyinterference in single-sensor quadrupole resonance [J]. IEEE Geoscience andRemote Sensing Letters,2009,6(1):62-66.
    [191] Samuel D Somasundaram, Andreas Jakobsson, E Gudmundson. Robust NQRSignal Detection [J]. ICASSP,2007,733-736.
    [192] Naveed R Butt, Samuel D Somasundaram, Andreas Jakobsson. Robustdetection of polymorphic NQR signals [C].//15th European Signal ProcessingConference. Poland: EURASIP,2007:2434-2438.
    [193]杨福家.原子物理学[M].上海:上海科学技术出版社,1993.
    [194] Barrall G A, Derby K A, Drew A J. et al. Development of a quadrupoleresonance confirmation system [J]. Proc SPIE,2004,5415(2):1256-1267.
    [195] Smith J A S. Nuclear quadrupole resonance spectroscopy, general principles [J].Chemical Education,1971,48:39-49.
    [196] Deas R M, Burch I A, Port D M. The detection of RDX and TNT mine-liketargets by nuclear quadrupole resonance [J]. Proc SPIE,2002,4742(1):482-489.
    [197] Lee Y K. Spin-1nuclear quadrupole resonance theory with comparisons tonuclear magnetic resonance [J]. Concepts in Magnetic Resonance,2002,14:155-171.
    [198] Garroway A N, Miller J B, Zax D B, et al. A means for detecting explosivesand narcotics by stochastic nuclear quadrupole resonance (NQR)[P]. US:560832,1997-03-04.
    [199] Z Trontelj. Recent Improvements in NQR Spectroscopy: The Requirement forEasier Detection of Illicit Materials [R]. Ljubljana: University of Ljubljana,2008.
    [200]赵学智,叶邦彦,SVD和小波变换的信号处理效果相似性及其机理分析,电子学报,2008,36(8):1582-1589.
    [201] Boaz Nadler. Nonparametric Detection of Signals by Information TheoreticCriteria: Performance Analysis and an Improved Estimator [J]. IEEETransaction on Signal Processing,2010,58(5):2746-2755.
    [202] Eran Fishler, Micheal Grosmann, Hagit Messer. Detection of signals byinformation theoretic criteria: general asymptotic performance analysis [J].IEEE Transactions on Signal Processing,2002,50(5):1027-1036.
    [203] Abhijit A Shah, Donald W Tufts. Determination of the dimension of a signalsubspace from short data records [J]. IEEE Transactions on Signal Processing,1994,42(9):2531-2535.
    [204] M G Chridtensen, Andreas Jakobsson, et al. Sinusoidal order estimation usingangles between subspaces [J]. EURASIP Journal on Advances in SignalProcessing,2009,1-11.
    [205] M G Chridtensen, Andreas Jakobsson, et al. Sinusoidal order estimation usingthe subspace orthogonality and shift-invariance properties [C]. ACSSC,2007,651-655.
    [206] Debasis Kundu, Amit mitra. Detecting the number of signals for an undampedexponential model using cross-validation approach [J]. Signal Processing,2004,80(2004):525-534.
    [207] Debasis Kundu, Amit mitra. Estimating the number of signals of the dampedexponential models [J]. Computational Statistics&Data Analysis,2001,36(2001):245-256.
    [208] A K Seghouane, L De Lathauwer. A bootstrap model selection criterion basedon Kullback’s symmetric divergence [R]. Leuven: Katholieke UniversiteitLeuven,2003.
    [209]徐亮,曾操,廖桂生,等.基于特征波束形成的强弱信号波达方向与信源数估计方法[J].电子与信息学报,2011,33(2):321-325.
    [210] Petre Stoica, Arye Nehoral. MUSIC, Maximum Likelihood, and Cramer-RaoBound [J]. IEEE Transactions on Acoustics Speech And Signal Processing,1989,37(5):720-741.
    [211] A Buonanno, G B Cook, et al. Inspiral, merger and ring-down of equal-massblack-hole binaries [J]. Physical Review D,2007,1-47.
    [212] E N Dorband, et al. A numerical study of the quasinormal mode excitation ofKerr black holes [J]. Physical Review D,2006,1-21.
    [213] McDonough R, Huggins W. Best least-square representation of signals byexponentials [J]. IEEE Transactions on Automatic Control,1968,13(4):408-412.
    [214]张贤达.现代信号处理(第二版)[M].北京:清华大学出版社,2007,118-126.
    [215] Leentie Vanhamme, et al. MR spectroscopy quantitation: a review oftime-domain methods [J]. NMR in biomedicine,2001,14(2001):233-246.
    [216] Stephenson D S. Linear prediction and maximum entropy methods in NMRspectroscopy [J]. Prog. NMR Spectrosc,1988,20:515-626.
    [217] Gesmar H, Led JJ, Abildgaard F. Improved methods for quantitative spectralanalysis of NMR data [J]. Prog. NMR Spectrosc,1990,22:255-288.
    [218] Koehl P. Linear prediction spectral analysis of NMR data [J]. Prog. NMRSpectrosc,1999,34:57-299.
    [219] de Beer R, van Ormondt D. Analysis of NMR data using timedomain fittingprocedures [J]. In NMR Basic Principles and Progress,1992,26:201-248.
    [220] Barkhuysen H, et al. Retrieval of frequencies, amplitudes, damping factors, andphases from time-domain signals using a linear least-squares procedure [J]. J.Magn. Reson.,1985,61:465-481.
    [221] Tang J, Lin C P, Bowman M K, Norris J R. An alternative to FourierTransform spectral analysis with improved resolution [J]. J. Magn. Reson.,1985,62:167-171.
    [222] Gesmar H, Led JJ. Spectral estimation of complex time-domain NMR signalsby linear prediction [J]. J. Magn. Reson.,1988,76:183-192.
    [223] Tirendi C F, Martin J F. Quantitative analysis of NMR spectra by linearprediction and total least squares [J]. J. Magn. Reson.,1989,85:162-169.
    [224] Gesmar H, Hansen P C.“Fast” linear prediction (FLP) and its application toNMR spectroscopy [J]. J. Magn. Reson. Ser. A,1993,106:236-240.
    [225] Kolbel W, Schafer H. Improvement and automation of the LPSVD algorithmby continuous regularization of the singular values [J]. J. Magn. Reson.,1992,100:598-603.
    [226] Diop A, Briguet A, Graveron-Demilly D. Automatic in vivo NMR dataprocessing based on an enhancement procedure and linear prediction method[J]. Magn. Reson. Med.,1992,27:318-328.
    [227] Totz J, van den Boogaart A, Van Huffel S, Graveron-Demilly D, Dologlou I,Heidler R, Mitchel D. The use of continuous regularization in the automatedanalysis of MRS time domain data [J]. J. Magn. Reson.,1997,124:400-409.
    [228] Diop A, Kolbel W, Michel D, Briguet A, Graveron-Demilly D. Full automationof quantitation of in vivo NMR by LPSVD(CR) and EPLPSVD [J]. J. Magn.Reson. Ser. B,1994,103:217-221.
    [229] Chen H, Van Huffel S, Decanniere C, Van Hecke P. A signal enhancementalgorithm for time-domain data MR quantification [J]. J. Magn. Reson. Ser. A,1994,109:46-55.
    [230]张贤达.矩阵分析与应用[M].北京:清华大学出版社,2004:403-452.
    [231]朱凯然,何学辉,郑小保,苏涛.基于总体最小二乘的核四极矩共振参数估计[J].电波科学学报,2012,27(1):134-140.
    [232] Richard A Strobel, Greg Czarnopys. Analysis and Detection of Explosives andExplosives Residues [C]//16th International Forensic Science SymposiumInterpol, Glasgow: University of Strathclyde,2010:453-462.
    [233] Aaron J Rossini, Hiyam Hamaed, Robert W Schurko. The application offrequency swept pulses for the acquisition of nuclear quadrupole resonancespectra [J]. Journal of Magnetic Resonance,2010,206:32-40.
    [234] M Feder and E Weinstein. Parameter estimation of superimposed signals usingthe EM algorithm [J], IEEE transactions on Acoustics, Speech, and SignalProcessing,1988,36(4):477-489.
    [235]张柏华,谢文冲,王永良,等.基于最大似然估计的机载双基地雷达杂波抑制方法[J].系统工程与电子技术,2010,32(8):1591-1595.
    [236] Costas J P. Residual signal analysis [J]. Proceedings of the IEEE,1980,68(10):1351-1352.
    [237]张超峰,刘丹,程臻.采用RELAX算法提高单脉冲三维成像横向分辨率[J].系统工程与电子技术,2008,30(11):2063-2065.
    [238] Remy Boyer, Guillaume Bouleux, Karim Abed-Meraim. Common poleestimation with an orthogonal vector method [C].14th European SignalProcessing Conference,2006, Italy.
    [239] Weiming Zeng, Zhanwei Liang, Zhengyou Wang, et al. Decimativesubspace-based parameter estimation methods of magnetic resonancespectroscopy based on prior knowledge [J]. Magnetic Resonance Imaging,2008,26:401-412.
    [240] Shiyong Yang, Hongwei Li, Tao Jiang. Detecting the number of2-Dharmonics in multiplicative and additive noise using enhanced matrix [J].Digital Signal Processing,2012,22:246–252.
    [241] M P Clark, L L Scarf. Two-dimensional modal analysis based on maximumlikelihood [J]. IEEE Transactions on Signal Processing,1994,42(6):1443-1452.
    [242] Jian Li, P Stoica, D Zheng. An efficient algorithm for two-dimensionalfrequency estimation [J]. Multidimension Syst. Signal Process.,1996,7:151-178.
    [243] J W Odendaal, E Barnard, W I Pistorius. Two-dimensional superresolutionradar imaging using the MUSIC algorithm [J]. IEEE Trans. Antennas Propag.,1994,42(10):1386-1391.
    [244] A J van der Veen, M C Vanderveen, A Paulraj. Join angle and delay estimationusing shift-invariance technique [J]. IEEE Trans. Signal Process.,1998,46(2):405-418.
    [245] J Axmon, M Hansson, L Sornmo. Partial forward-backward averaging forenhanced frequency estimation of real X-texture modes [J].2005,53(7):2550-2562.
    [246] Y Hua, T N Sarkar. Matrix pencil method for estimation parameters ofexponentially damped/undamped sinusoids in noise [J]. IEEE Trans. Acoust.Speech, Signal Process.,1990,38(5):814-824.
    [247] Naishadham Krishna, Piou Jean E. A novel1-D block processing approach to2-D NMR spectroscopy [A].20074th IEEE International Symposium onBiomedical Imaging: From Nano to Macro-Proceedings [C]. New Jersey: IEEESignal Processing Society,2007.1352-1355.
    [248] Jun Liu, Xiangqian Liu. An eigenvector-based approach for multidimensionalfrequency estimation with improved identifiability [J]. IEEE Transactions onSignal Processing,2006,54(12):4543-4556.
    [249]徐少坤,刘记红,魏玺章,黎湘.基于CP-GTD模型的三维散射中心参数估计[J].电子学报,2011,39(12):2755-2760.
    [250]赵学智,叶邦彦.基于二分递推SVD的信号奇异性位置精确检测[J].电子学报,2012,40(1):53-59.
    [251]罗鹏飞,张文明,刘忠,赵艳丽.统计信号处理基础-估计与检测理论[M].北京:电子工业出版社,2003.182-225.
    [252] Jun Liu, Xiangqian Liu, Xiaoli Ma. First-order perturbation analysis of singularvectors in SVD [J]. IEEE Transactions on Signal Processing,2008,56(7):3044-3049.
    [253] Jun Liu, Xiangqian Liu, Xiaoli Ma. Multidimensional frequency estimationwith finite snapshots in the presence of identical frequencies [J]. IEEETransactions on Signal Processing,2007,55(11):5179-5194.
    [254]汪飞,王树勋,陈巧霞.基于Hamilton四元数矩阵奇异值分解的二维谐波频率参量估计[J].电子学报,2007,35(12):2441-2445.
    [255]王菁,周建江,江飞.基于GTD模型的目标二维散射中心提取[J].电子与信息学报,2009,31(4):958-962.
    [256] S Sahnoun, EH Djermoune, D Brie. A comparative study of subspace-basedmethods for2-D nuclear magnetic resonance spectroscopy signals [R]. Nancy:Nancy University,2010.1-4.
    [257] Guangmin Wang, Jingmin Xin, Nanning Zheng, Akira Sano. Computationallyefficient subspace-based method for two-dimensional direction estimation withL-shaped array [J]. IEEE Transactions on Signal Processing,2011,59(7):3197-3212.
    [258]孙厚军,李世勇,吕昕,胡伟东.基于一种超分辨率算法的三维散射中心提取方法[J].电子学报,2008,36(3):467-472.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700