径向基函数逼近中的若干问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究径向基函数逼近中的相关问题。
     径向基函数方法是多元逼近中最流行的方法之一。它利用径向对称函数可以容易的将多元数据逼近问题转化为本质上是一元的逼近问题。径向基函数的研究是从径向基函数插值研究开始的。到现在为止,相关的理论研究已经比较完善[12,32,40,41,48,58,66,67],但是关于径向基函数空间基于小波分析的多尺度分解以及以径向基函数为核函数的针对多元散乱数据的拟插值仍然是两个没有很好解决的问题。本文的工作就是围绕这两个问题进行展开的。首先,本文从一般的Hilbert空间中的非稳定的MRA紧框架的充要条件出发,构造了径向基函数空间的非稳定的MRA紧框架。然后,在Wu[85]给出的拟插值的基础上,研究了加入形状参数后的误差分析,并重新构造了新的核函数,从而提高拟插值的逼近阶。本文的最后给出了拟插值的相关数值研究。
     下面对全文的结构安排作一下简单介绍。
     第一章是绪论。这一章中,我们简要的介绍了相关问题的背景,研究现状以及论文中的主要结果。
     第二章是准备工作。我们介绍了论文中所需要的一些相关理论基础。
     第三章我们将Chui以及Beutel等提出的MRA紧框架理论推广到一般内积空间上,给出了构造定义在一般区域上的函数Hilbert空间中的非稳定的MRA紧框架的充要条件。
     第四章我们首先给出了径向基函数的本性Hilbert空间的相关理论,然后在Hilbert空间中的非稳定的MRA紧框架的充要条件的基础上,给出了径向基函数的本性Hilbert空间中的非稳定的MRA紧框架的构造方法。
     第五章首先介绍了基于散乱数据的积分公式,然后在Wu[85]给出的多元空间中的拟插值公式的基础上,引入形状参数并给出了带参数的拟插值的误差估计。最后,我们构造新的径向基核函数,并给出了基于新的核函数的拟插值以及相关的误差估计。理论估计说明新的拟插值公式提高了逼近的阶数。
     第六章我们给出了定义在星型区域上的函数的延拓的一般方法,并且对拟插值公式进行了数值研究,数值研究表明拟插值的收敛速度比理论估计的快,而且形状参数的选择有一定的规律。
The present Ph.D.dissertation is concerned with some problems in approximation theory with radial basis function.
     Radial basis function methods is one of the most popular methods in approximation theory.The advantage of radial basis function methods is solving the multivariate problems with scattered data easily as much as that in one dimension.It begins with radial basis function interpolation,and till now,it's well-developed except two problems: one is decomposition of the native space of radial basis function based on multi-resolution analysis;the other is the quasi-interpolation for scattered data with radial kernels.The present Ph.D.dissertation is studying about these problems.First,we generalized the sufficient and necessary conditions for nonstationary MRA tight frame to the general Hilbert functions space,and constructed nonstationary MRA tight frame of native space of radial basis functions.Second,we study the influence of shape parameter in quasi-interpolation which is proposed in[85],and then constructed a new quasi-interpolation with a new radial kernel.The convergence rate of new quasi-interpolation is fast than that in[85].And last, we show a series of numerical examples with different kinds of kernels and parameters. Several aspects have been studied,including the best choice of shape parameter and the numerical convergence rate.
     The whole dissretation is organized as follows.
     Chapter One is preface.This chapter is devoted to the background of these problems, and the main results of this Ph.D.dissertation are also illustrated.
     Chapter Two is preliminaries.We introduce some related knowledge which are needed in the dissertation.
     Chapter Three generalized the theory for nonstationary MRA tight frame to general Hilbert functions space,and got the sufficient and necessary conditions for nonstationary MRA tight frame of it.
     Chapter Four first introduced the basic theory of native space,and then constructed nonstationary MRA tight frame of native space of radial basis functions based on the results of Chapter Three,in other words,we gave the decomposition of the native space based on nonstationary MRA tight frame.
     Chapter Five first introduced the integral formula based on scattered data and the quasi-interpolation for multivariate scattered data which proposed in[85].and then we study the influence of shape parameter and get the error estimation with it.At the end of this chapter,we constructed a new radial kernel and then got a new quasi-interpolation for scattered data,which was shown to provide higher approximation order than that in [85].
     Chapter Six first gave a scheme to extend the function defined the so-called starlike compact domain to whole space with Hermitian extrapolation.Then we show a series of numerical examples with different kinds of kernels and parameters,and we study the best choice of shape parameter and the numerical convergence rate.
引文
[1]吴宗敏.散乱数据拟合的模型、方法和理论,科学出版社,2007年1月.
    [2]L.Beutel.Nonstationary sibling wavelet frames on bounded intervals:the duality relation,Advances in multiresolution for geometric modelling,391-403.
    [3]R.K.Beatson and N.Dyn.Multiquadric B-splines,J.Approx.Theory 87(1996),1-24.
    [4]R.K.Beatson and N.Dyn.Quasi-interpolation by generalized univariate multiquadrics,J.Approx.Theory 91(1997),320-331.
    [5]S.Bochner.Vorlesungen uber Fouriersche integrale,Akademische Verlagsgesellschaft,Leipzig.
    [6]S.Bochner.Monotone funktionen,Stieltjes integrale und harmonische analyse,Math.Ann.108(1933),378-410.
    [7]M.D.Buhmann.Convergence of univariate quasi-interpolation using multiquadrics,IMA J.Numer.Anal.8(1988),no.3,365-383.
    [8]M.D.Buhmann.On quasi-interpolation with radial basis funcions,J.Approx.Theory 72(1993),no.1,103-130.
    [9]M.D.Buhmann.Discrete least squares approximations and prewavelets from radial function spaces,Math.Proc.Cambridge Philos.Soc.114(1993),no.3,533-558.
    [10]M.D.Buhmann.Multiquadric pre-wavelets on non-equally spaced knots in one dimension,Math.Comp.64(1995),no.212,1611-1625.
    [11]M.D.Buhmann.Pre-wavelets on scattered knots and from radial function spaces:a review,The mathematics of surfaces,Ⅵ(Uxbridge,1994),309-324,Inst.Math.Appl.Conf.Ser.New Ser.,58,Oxford Univ.Press,New York,1996.
    [12]M.D.Buhmann.Radial basis functions:theory and implementations,Cambridge Monographs on Applied and Computational Mathematics,12.Cambridge University Press,Cambridge,2003.x+259 pp.ISBN:0-521-63338-9
    [13]M.D.Buhmann;N.Dyn and D.Levin.On quasi-interpolation by radial basis functions with scattered centres,Constr.Approx.11(1995),no.2,239-254.
    [14]M.D.Buhmann and C.A.Micchelli.Spline prewavelets for non-uniform knots,Numer.Math.61(1992),no.4,455-474.
    [15]E.W.Cheney;W.A.Light and Y.Xu.On kernels and approximation orders,Approximation theory(Memphis,TN,1991),227-242,Lecture Notes in Pure and Appl.Math.,138,Dekker,New York,1992.
    [16]C.K.Chui.An introduction to wavelets,Wavelet Analysis and its Applications,1.Academic Press,Inc.,Boston,MA,1992.
    [17]C.K.Chui and J.M.De Villiers.Spline-wavelets with arbitrary knots on a bounded interval:orthogonal decomposition and computational algorithms,Commun.Appl.Anal.2(1998),no.4,457-486.
    [18]C.K.Chui;W.J.He;J.Stockier.and Q.Y.Sun.Compactly supported tight affine frames with integer dilations and maximum vanishing moments,Frames.Adv.Comput.Math.18(2003),no.2-4,159-187.
    [19]C.K.Chui;W.J.He and J.Stockier.Compactly supported tight and sibling frames with maximum vanishing moments,Appl.Comput.Harmon.Anal.13(2002),no.3,224-262.
    [20]C.K.Chui;W.J.He and J.Stockier.Nonstationary tight wavelet frames.I.Bounded intervals,Appl.Comput.Harmon.Anal.17(2004),no.2,141-197.
    [21]C.K.Chui;W.J.He and J.Stockier.Nonstationary tight wavelet frames.Ⅱ.Unbounded intervals,Appl.Comput.Harmon.Anal.18(2005),no.1,25-66.
    [22]C.K.Chui and J.Stockier.Recent development of spline wavelet frames with compact support,Beyond wavelets,151-214,Stud.Comput.Math.,10,Academic Press/Elsevier,San Diego,CA,2003.
    [23]C.K.Chui;J.Stockier and J.D.Ward.Analytic wavelets generated by radial functions,Adv.Comput.Math.5(1996),no.1,95-123.
    [24]C.K.Chui;J.D.Ward;K.Jetter and J.Stockier.Wavelets for analyzing scattered data:an unbounded operator approach,Appl.Comput.Harmon.Anal.3(1996),no.3,254-267.
    [25]A.Cohen;I.Daubechies and J.C.Feauveau.Biorthogonal bases of compactly supported wavelets,Comm.Pure Appl.Math.45(1992),no.5,485-560.
    [26]I.Daubechies.Orthonormal bases of compactly supported wavelets,Comm.Pure Appl.Math.41(1988),no.7,909-996.
    [27]I.Daubechies.Ten lectures on wavelets,CBMS-NSF Regional Conference Series in Applied Mathematics,61.Society for Industrial and Applied Mathematics(SIAM),Philadelphia,PA,1992.
    [28]I.Daubechies;B.Han;A.Ron and Z.W.Shen.Framelets:MRA-based constructions of wavelet frames,Appl.Comput.Harmon.Anal.14(2003),no.1,1-46.
    [29]J.Duchon.Splines minimizing rotation-invariant semi-norms in Sobolev spaces,in:Constructive theory of functions of several variables(Proc.Conf.,Math.Res.Inst.,Oberwolfach,1976),pp.85-100.Lecture Notes in Math.,Vol.571,Springer,Berlin,1977.
    [30]R.J.Duffin and A.C.Schaeffer.A class of nonharmonic Fourier series,Trans.Am.Math.Soc.72(1952),341-366.
    [31]N.Dyn,I.R.H.Jackson,D.Levin and A.Ron.On multivariate approximation by integer translates of a basis function,Israel J.Math.78(1992),95-130.
    [32]N.Dyn and A.Ron.Radial basis function approximation:from gridded centres to scattered centres,Proc.London Math.Soc.(3) 71(1995),no.1,76-108.
    [33]T.A.Foley.Interpolation and approximation of 3-D and 4-D scattered data,Comput.Math.Appl.13(1987),711-740.
    [34]R.Franke.Scattered data interpolation:tests of some methods,Math.Comp.38(1982),no.157,181-200.
    [35]B.Han.Compactly supported tight wavelet frames and orthonormal wavelets of exponential decay with a general dilation matrix,Approximation theory,wavelets and numerical analysis (Chattanooga,TN,2001).J.Comput.Appl.Math.155(2003),no.1,43-67.
    [36]B.Han and Q.Mo.Tight wavelet frames generated by three symmetric B-spline functions with high vanishing moments,Proc.Amer.Math.Soc.132(2004),no.1,77-86.
    [37]B.Han and Q.Mo.Symmetric MRA tight wavelet frames with three generators and high vanishing moments,Appl.Comput.Harmon.Anal.18(2005),no.1,67-93.
    [38]B.Han and Z.W.Shen.Wavelets with short support,SIAM J.Math.Anal.38(2006),no.2,530-556.
    [39]R.L.Hardy.Multiquadric equations of topography and other irregular surfaces,J.Geophys.Res.76(1971),1905-1915.
    [40]A.Iske.Radial basis functions:basics,advanced topics and meshfree methods for transport problems.Splines,radial basis functions and applications,Rend.Sem.Mat.Univ.Politec.Torino 61(2003),no.3,247-285
    [41]A.Iske.Multiresolution methods in scattered data modelling,Lecture Notes in Computational Science and Engineering,37.Springer-Verlag,Berlin,2004.
    [42]R.Q.Jia.Partition of unity and density:a counterexample,Constr.Approx.13(1997),no.2,251-260.
    [43]R.Q.Jia and J.J.Lei.A new version of the Strang-Fix conditions,J.Approx.Theory 74(1993),no.2,221-225.
    [44]R.Q.Jia;J.Z.Wang;D.X.Zhou.Compactly supported wavelet bases for Sobolev spaces,Appl.Comput.Harmon.Anal.15(2003),no.3,224-241.
    [45]E.J.Kansa.Multiquadrics-a scattered data approximation scheme with applications to computational fluid-dynamics.I.Surface approximations and partial derivative estimates,Comput.Math.Appl.19(1990),no.8-9,127-145.
    [46]E.J.Kansa.Multiquadrics-a scattered data approximation scheme with applications to computational fluid-dynamics.Ⅱ.Solutions to parabolic,hyperbolic and elliptic partial differential equations,Comput.Math.Appl.19(1990),no.8-9,147-161.
    [47]E.J.Kansa and R.E.Carlson.Improved accuracy of multiquadric interpolation using variable shape parameters.Advances in the theory and applications of radial basis functions,Comput.Math.Appl.24(1992),no.12,99-120.
    [48]W.Light.Using radial functions on compact domains,Wavelets,images,and surface fitting (Chamonix-Mont-Blanc,1993),351-370,A K Peters,Wellesley,MA,1994.
    [49]W.R.Madych and S.A.Nelson.Multivariate interpolation and conditionally positive definite functions,Approx.Theory Appl.4(1988),no.4,77-89.
    [50]W.R.Madych and S.A.Nelson.Multivariate interpolation and conditionally positive definite functions.Ⅱ,Math.Comp.54(1990),no.189,211-230.
    [51]C.A.Micchelli.Interpolation of scattered data:distance matrices and conditionally positive definite functions,Constr.Approx.2(1986),no.1,11-22.
    [52]C.A.Micchelli.Using the refinement equation for the construction of pre-wavelets,Numer.Algorithms 1(1991),no.1,75-116.
    [53]C.A.Micchelli;C.Rabut and F.I.Utreras.Using the refinement equation for the construction of pre-wavelets.Ⅲ.Elliptic splines,Numer.Algorithms 1(1991),no.4,331-351.
    [54]F.J.Narcowich.Recent developments in error estimates for scattered-data interpolation via radial basis functions,Numer.Algorithms 39(2005),no.1-3,307-315.
    [55]F.J.Narcowich and J.D.Ward.Norms of inverses and condition numbers for matrices associated with scattered data,J.Approx.Theory 64(1991),no.1,69-94.
    [56]F.J.Narcowich and J.D.Ward.Norm estimates for the inverses of a general class of scattereddata radial-function interpolation matrices,J.Approx.Theory 69(1992),no.1,84-109.
    [57]F.J.Narcowich and J.D.Ward.Scattered-data interpolation on R~n:error estimates for radial basis and band-limited functions,SIAM J.Math.Anal.36(2004),no.1,284-300
    [58]M.J.D.Powell.Radial basis functions for multivariable interpolation:a review,Algorithms for approximation(Shrivenham,1985),143-167,Inst.Math.Appl.Conf.Set.New Set.,10,Oxford Univ.Press,New York,1987.
    [59]A.Ron and Z.W.Shen.Affine systems in L_2(R~d):the analysis of the analysis operator,J.Funct.Anal.148(1997),no.2,408-447.
    [60]A.Ron and Z.W.Shen.Affine systems in L_2(R~d).Ⅱ.Dual systems,Dedicated to the memory of Richard J.Duffin.J.Fourier Anal.Appl.3(1997),no.5,617-637.
    [61]A.Ron and Z.W.Shen.Compactly supported tight affine spline flames in L_2(R~d),Math.Comp.67(1998),no.221,191-207.
    [62]A.Ron and Z.W.Shen.Construction of compactly supported affine frames in L_2(R~d),Advances in wavelets(Hong Kong,1997),27-49,Springer,Singapore,1999.
    [63]R.Schaback.Lower bounds for norms of inverses of interpolation matrices for radial basis functions,J.Approx.Theory 79(1994),no.2,287-306.
    [64]R.Schaback.Error estimates and condition numbers for radial basis function interpolation,Adv.Comput.Math.3(1995),no.3,251-264.
    [65]R.Schaback.Improved error bounds for scattered data interpolation by radial basis functions,Math.Comp.68(1999),no.225,201-216.
    [66]R.Schaback.Native Hilbert spaces for radial basis functions.I.New developments in approximation theory,(Dortmund,1998),255-282,Internat.Ser.Numer.Math.,132,Birkhauser,Basel,1999.
    [67]R.Schaback.A unified theory of radial basis functions.Native Hilbert spaces for radial basis functions.Ⅱ,Numerical analysis in the 20th century,Vol.Ⅰ,Approximation theory.J.Comput.Appl.Math.121(2000),no.1-2,165-177.
    [68]R.Schaback.Stability of radial basis function interpolants,Approximation theory,X(St.Louis,MO,2001),433-440,Innov.Appl.Math.,Vanderbilt Univ.Press,Nashville,TN,2002.
    [69]R.Schaback.Multivariate interpolation by polynomials and radial basis functions,Constr.Approx.21(2005),no.3,293-317.
    [70]R.Schaback and Z.M.Wu.Operators on radial functions,J.Comput.Appl.Math.73(1996),no.1-2,257-270.
    [71]R.Schaback and Z.M.Wu.Construction techniques for highly accurate quasi-interpolation operators,J.Approx.Theory 91(1997),no.3,320-331.
    [72]F.I.Utreras.Multiresolution and pre-wavelets using radial basis functions,Multivariate approximation:from CAGD to wavelets(Santiago,1992),321-333,Ser.Approx.Decompos.,3,World Sci.Publ.,River Edge,N J,1993.
    [73]H.Wendland.Piecewise polynomial,positive definite and compactly supported radial functions of minimal degree,Adv.Comput.Math.4(1995),no.4,389-396.
    [74]H.Wendland.Error estimates for interpolation by compactly supported radial basis functions of minimal degree,J.Approx.Theory 93(1998),no.2,258-272.
    [75]H.Wendland.Inverse and saturation theorems for radial basis function interpolation,Math.Comp.71(2002),no.238,669-681.
    [76]H.Wendland.Scattered data approximation,Cambridge Monographs on Applied and Computational Mathematics,17.Cambridge University Press,Cambridge,2005.
    [77]J.Wertz;E.J.Kansa and L.Ling.The role of the multiquadric shape parameters in solving elliptic partial differential equations,Comput.Math.Appl.51(2006),no.8,1335-1348.
    [78]Z.M.Wu.On the estimation of the convergence rate for the kriging interpolation,(Chinese)J.Numer.Methods Comput.Appl.9(1988),no.4,219-225.
    [79]Z.M.Wu.Hermite-Birkhoff interpolation of scattered data by radial basis functions,Approx.Theory Appl.8(1992),no.2,1-10.
    [80]Z.M.Wu.Characterization of positive definite radial functions,Mathematical methods for curves and surfaces(Ulvik,1994),573-578,Vanderbilt Univ.Press,Nashville,TN,1995.
    [81]Z.M.Wu.Compactly supported positive definite radial functions,Adv.Comput.Math.4(1995),no.3,283-292.
    [82]Z.M.Wu.Compactly supported radial functions and the Strang-Fix condition,Appl.Math.Comput.84(1997),no.2-3,115-124.
    [83]Z.M.Wu.Generalized Bochner's theorem for radial function,Approx.Theory Appl.(N.S.)13(1997),no.3,47-57.
    [84]Z.M.Wu.Radial basis and wavelets,Asia Conference on wavelets and its application,Singapore,11.2003.
    [85]Z.M.Wu.and J.P.Liu Generalized Strang-Fix condition for scattered data quasiinterpolation,Adv.Comput.Math.23(2005),no.1-2,201-214.
    [86]Z.M.Wu and R.Schaback.Local error estimates for radial basis function interpolation of scattered data,IMA J.Numer.Anal.13(1993),no.1,13-27.
    [87]Z.M.Wu and R.Schaback.Shape preserving properties and convergence of univariate multiquadric quasi-interpolation,Acta Math.Appl.Sinica(English Set.) 10(1994),no.4,441-446.
    [88]Z.C.Xiong and Z.M.Wu.Multivariate quasi-interpolation in L~P(R~d) with radial basis functions to scattered data,Submitted.
    [89]Z.C.Xiong and Z.M.Wu.The numerical realization of RBF's quasi-interpolation for scattered data,Submitted.
    [90]J.Yoon.Approximation in L_p(R~d) from a space spanned by the scattered shifts of a radial basis function,Constr.Approx.17(2001),no.2,227-247.
    [91]W.X.Zhang and Z.M.Wu.Some shape-preserving quasi-interpolants to non-uniformly distributed data by MQ-B-splines,Appl.Math.J.Chinese Univ.Ser.B 19(2004),no.2,191-202.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700