猪骨髓基质细胞的分离培养及向软骨细胞分化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
骨髓基质干细胞(Bone marrow stromal cells,BMSCs)是一类具有多向分化潜能的组织干细胞,在体内外适当的诱导环境下可以分化成为骨、软骨、脂肪、肌肉、神经、肌腱及韧带等多种细胞和组织。该细胞来源充足,取材方便,增殖能力强,可以在体外大规模扩增而不丢失多向分化潜能,并且异体移植免疫排斥反应小。目前,已成为应用较广泛的重要种子细胞之一。为了获得充足的骨髓基质干细胞来源,我们建立了猪骨髓基质干细胞的分离方法,通过体外培养和生物学鉴定,证实其为骨髓基质干细胞,并具有成骨分化性能。通过体外转导pEGFP-C1-TGF-β1入骨髓基质干细胞,在条件培养基作用下诱导其向软骨细胞分化。以期为骨组织工程和软骨损伤修复的研究提供新的策略,获得了以下结果:
     1.无菌采取猪股骨头,采用骨钳钳破骨髓腔,收集骨髓液于无菌离心管,沉淀制成悬液接种于培养皿,于37℃、5 % CO2条件下培养。培养的细胞为单层贴壁生长,呈成纤维样形态。CD44因子免疫组化鉴定为阳性;条件培养基诱导成骨分化,ALP染色阳性,并有矿化结节生成;结合细胞形态学观察,结果表明,分离培养的细胞为骨髓基质干细胞。开始时大多为细长梭形,增殖速度快,细胞传代周期延短,待传至第7、8代时细胞铺展得宽大而扁薄,增殖速度减慢,细胞传代周期延长,细胞内颗粒物质增多。
     2.从猪外周血淋巴细胞中抽提总RNA,并用TGF-β1特异性引物扩增获得TGF-β1全基因,并将TGF-β1全基因亚克隆到带有绿色荧光蛋白报告基因的真核表达质粒pEGFP-C1。
     3.并用脂质体法转染BMSCs,通过直接荧光观察pEGFP-C1-TGF-β1融合蛋白在细胞中的分布定位,结果在转染后观察到绿色荧光,间接免疫荧光法检测TGF-β1表达均为阳性,转染后细胞失去BMSCs典型的成纤维形态,而呈现出三角、多角形态。Ⅱ型胶原免疫组化染色检测显示,转染TGF-β1基因后的BMSCs开始表达软骨细胞表面特异性标志物Ⅱ型胶原。
     综上所述,本研究在成功分离培养猪BMSCs的基础上,将TGF-β1基因转入BMSCs后,表达了软骨细胞表面标志物,说明BMSCs已向软骨细胞分化。
Bone marrow mesenchymal stem cells (BMSCs) are multipotent tissue stem cells that can be induced in vitro to differentiate into a variety of cells such as osteocytes, chondrocytes, adipocytes, musle cells, neurons tendon cells and ligament cells. Due to the characteristics of sufficient resource, being conveniently derived and having high reproductive activity,BMSCscan be widely amplified in vitro without losing its multi-directional differentiation potentiality. Moreover, when used in allotransplantation, the cells activated minor immunological rejection. Therefore,BMSCs have become an important kind of widespread used seed cells. In order to obtain sufficient BMSCs from pigs, an effective separation method was established. Through the in vitro culture and biological identification, cells isolated from pigs were verified asBMSCsand had the ability of osteoblastic differentiation. In this study, recombinant plasmid pEGFP-C1-TGF-β1 was transfected intoBMSCsin vitro and cells were cultured in conditioned medium and were induced into chondrocytes, providing a new strategy to the research of bone injury repair and bone tissue engineering. Preliminarily findings were as follows:
     1. Femoral head was aseptically cut out from pigs, bone marrow cavity was broken down, and bone marrow fluid was extracted. Cells sedimentum was suspended and inoculated into culture dish, and were cultured at 37℃in a 5 % CO2 incubator. The primary cells adhered to the dish bottom on a monolayer, presented fibroblast-like morphous. The immunochemical identification of CD44 factor was positive, cells were induced by conditioned medium to differentiate into osteogenic cells, ALP dyeing result was positive and mineralized nodules were formed. Combined with morphocytology observation, the cells isolated and cultured were determined toBMSCs. At the beginning, cells showed long fusiform, and had a high proliferation rate, and the passage cycle is shortened. After the 7th or 8th passage, cells extended to become magnanimous, flat and thin, and proliferated slow. And the passage cycle was extended, cell particulate matters increased as well.
     2. RNA was extracted from peripheral blood lymphocyte of pigs, and the TGF-β1 gene was amplified, and then was cloned into eukaryotic expression vector pEGFP-C1 which included a green fluorescent report gene.
     3.BMSCswere transfected with pEGFP-C1-TGF-β1 by Liposome-mediated method. The distribution and location of pEGFP-C1-TGF-β1 fusion protein was observed with fluorescence inverted microscope. Results showed that green fluorescence was detected in transfected cells, and TGF-β1 expression was positive by indirect immunofluorescence detection. Transfected cells lost the typical fibroblast-like morphous ofBMSCs, while showed triangle and polygon morphous. Immunohistochemistry detection of typeⅡcollagen showed thatBMSCsexpressed typeⅡcollagen, the specific surface marker of chondrocyte.
     In conclusion, on the basis of the successful and mature techniques ofBMSCsisolation and cultivation,BMSCswere transfected with TGF-β1 and cells differentiated fromBMSCsexpressed the surface marker of chondrocyte, providing a new strategy to gene therapy of cartilage injury repair.
引文
[1] Owen M E, Cave J, Joyner C J. Clonal analysis in vitro of osteogenic differentiation of marrow CFU-F [J] . J Cell Science, 1987, 87(5): 731- 738.
    [2] 赵子义, 郭希民, 王常勇,等. 成人骨髓基质干细胞的分离与纯化[J]. 中华创伤骨科杂志, 2004, 6(7): 740-743.
    [3] Lock lin RM ,William son M C, Beresfird JN , et al . In vitro effect of growth factors and dexamethason on rat marrow st romal cells[J]. Clin Orthop Relat Res,1995, 313: 27-35.
    [4] Andrades JA , Han B, Becerra J , et al . A recombinant human TGF2 beta1 fusion protein with collagen2 binding domain promotes migration, growth, and differentiation of bone marrow mesenchymal cells [J]. Exp Cell Res, 1999, 250(2): 485-498.
    [5] Kim KJ , Itoh t, Kotake S . Effect of recombinant human bone morphogenetic protein22 on human bone marrow cells cultured with various biomaterials[J]. J Biomed Mater Res, 1997, 35(3): 279-285.
    [6] Rickard DJ , Sullivan TA , Shenker BJ , et al . Induction of rapid osteoblast differentiation in rat bone marrow stromal cell cultures by dexamethasone and BM P22 [J]. Dev Biol, 1994, 161(1): 218-228.
    [7] Martin I,Muraglia A , Campanile G, et al . Fibroblast grow factor 22 supports ex vivo expansion and maintenance of osteogenic precursors from human bone mar row [J]. Endocrinology, 1997, 138 (10):4456-4462.
    [8] Hanada K, Dennis JE, Caplan A I. Stimulatory effects of basic fibroblast growth factor and bone morphogenetic protein22 on osteogenic differentiation of rat bone mar row 2 derived mesenchymal stem cells [J]. Bone Miner Res, 1997, 12(10): 1606-1614.
    [9] Beresford JN, Bennett Jn, Denlin C, et al . Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures[J]. J Cell Sci, 1992, 102(2): 341-351.
    [10] Maniatopoulos C, Sodek J, Melcher AH. Bone formation in vitro by stromal cells obstained from bone mar row of young adult rats [J]. Cell T issue Res, 1998, 254(2):317-330.
    [11] Faucheux C,Bareille R,Amedee J , et al. Effect of 1, 25(OH)2D3 on bone morphogenetic protein 23 mRNA expression[J]. J Cell Biochem, 1999, 73(1): 11-19.
    [12] Kelly KA, Cimble JM. 1, 25-Di-hydroxy vitamin D3 Inhibits adipocyte differentiation and gene expression in murine bone marrow stromal cell Clones and primary cultures [J]. Endocrinology, 1998, 139(5):2622-2628.
    [13]Deng W, Obrocka M, Fischer I, et al. In vitro differentiation of human marrow strmal cells into early progenitors of neural cells by condi-tions that increase intracellular cyclic AMP[J] . Biochem Biophys Res Commun, 2001, 282(1): 148- 152.
    [14] Woodbury D, Schwarz EJ, Prockop DJ, et al. Adult rat and human bone marrow stromal cells differentate into neurons [J]. J Neurosci Res, 2000, 61: 364- 370.
    [15] Wang Y, Deng ZF, Lai XL, et al. Differentiation of human bone marrow stromal cells into neural-like cells induced by sodium ferulate invitro[J] . Cell Mol Immunol, 2005, 2(3): 225- 229.
    [16] Hung SC, Cheng H, Pan CY, et al. In vitro differentiation of size-sieved stem cells into electrically active neural cells[J] . Stem Cells,2002, 20(6): 522- 529.
    [17] 高 博, 童 建, 等.骨髓基质干细胞分化为神经细胞的研究进展[J].中国药理学通报,2006,22(7): 792-796.
    [18] Jin K, Mao XO, Batteur S, et al. Induction of neuronal markers in bone marrowcells: Differential effects of growth factors and patterns of intracellular expression[J] . Exp Neurol, 2003 , 184(1): 78- 89.
    [19] Helen T, Renuka R, David DFM. Cytokine-induced stable neuronal differentiation of human bone marrow mesenchymal stem cells in a serum/feeder cellfree condition [J]. Devel Grow Differ, 2005, 47: 423- 433.
    [20] Sanchez-Ramos J,Song S,Cardozo-Palaez,et al.Adult bone marrow stromal cells differentiate into neural cells in vitro [J].Exp.NEUTOL,2000,164:247-256
    [21] 张 卉, 王纪佐, 孙红宇,等.诱导成人骨髓基质细胞成为干细胞及其分化的实验研究[J].中风与神经疾病杂志,2002,4,19(2):79-81.
    [22] Long X, Olszewski M, Huang W, et al. Neural cell differentiation in vitro from adult human bone marrow mesenchymal stem cells[J] . StemCells Dev, 2005, 14(1): 65- 69.
    [23] 吴 斌, 郑启新,等. 骨髓基质干细胞向神经细胞诱导分化及其机制的研究进展[J]. 国际生物医学工程杂志, 2006, 29(12): 264-268.
    [24] Zurita M, Vaquero J, Oya S, et al. Schwann cells induce neuronal differentiation of bone marrowstromal cells [J] . Neuroreport, 2005, 16(5): 505- 508.
    [25] Wislet- Gendebien S, Hans G, Leprince P, et al. Plasticity of cultured mesenchymal stemcells: Switch fromnestin-positive to excitable neu-ron-like phenotype [J] . Stem cells, 2005, 23: 392- 402.
    [26] Abouelfetouh A, Kondoh T, Ehara K, et al. Morphological differentiation of bone marrow stromal cells into neuron-like cells after co-culture with hippocampal slice[J] . Brain Res, 2004, 1029(1): 114- 119.
    [27] Jiang Y, Henderson D, Blackstad M, et al. Neuroectodermal differentiation frommouse multipotent adult progenitor cells[J]. Proc Natl Acad Sci USA, 2003, 100 Suppl 1: 11854- 11860.
    [28] Woodbury D, Reynolds K, Black I. Adult bone marrow stromal stem cells express germline, ectodermal, endodermal, and mesodermal genes prior to neurogenesis[J] . J Neurosci Res, 2002, 69 : 908- 917.
    [29] Tondreau T, Lagneaux L, Dejeneffe M, et al. Bone marrow-derived mesenchymal stem cells already express specific neural proteins before any differentiation[J] . Differentiation, 2004, 72(7): 319- 326.
    [30] Yang L Y, Huang TH , Ma L. Bone marrow st romal cells express neural phenotypes invitro and migrate in brain after transplantation invivo [J] . Biomed Environ Sci ,2006 ,19(5):329 - 335.
    [31] Lu P, Blesch A, Tuszynski MH. Induction of bone marrow stromal cells to neurons: Differentiation, transdifferentiation, or artifact [J]. J Neurosci Res, 2004, 77(2): 174- 191.
    [32] Fukuhara S, Tomita S, Yamashiro S, et al. Direct cell-cell interaction of cardiomyocytes is key for bone marrowstromal cells to go into car-diac lineage in vitro[J] . J Thorac Cardiovasc Surg, 2003, 125: 1470-1480.
    [33] Tomita S, Nakatani T, Fukuhaara S, et al. Bone marrowstromal cells contract synchronously with cardiomyocytes in a coculture system [J] . Jpn J Thorac Cardiovasc Surg, 2002, 50(8): 321- 324.
    [34] 苏 立, 陈运贞, 张晓刚,等. 5-氮胞苷诱导骨髓间充质干细胞向心肌样细胞分化的实验研究[J] . 重庆医科大学学报, 2004, 29(3): 292- 295.
    [35] 王 珍, 杨志明,等. 骨髓基质干细胞分化为心肌细胞的研究进展[J]. 国际生物医学工程杂志2006, 29(12): 212- 216.
    [36] Makino S, Fukuda K, Miyoshi S, et al. Cardiomyocytes can be gener-ated from marrow stromal cells in vitro [J]. J Clin Invest, 1999, 103(5):697- 705.
    [37] Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells[ J] . Science, 1999, 284(5411):143- 147.
    [38] Fukuda K. Development of regenerative cardiomyocytes frommsenchy-mal stemcells for cardiovas- cular tissue engineering [J] . Artif Organs,2001, 25(3): 187- 193.
    [39] 朱洪生, 连 锋, 王彦婷,等. 永生型骨髓间质干细胞体外诱导为心肌样细胞的实验研究[J] . 中华心血管病杂志, 2004, 32(1): 59-63.
    [40] 钱 晖, 许文荣, 朱伟,等. 5- 氮胞苷体外诱导大鼠骨髓间质干细胞定向分化为心肌样细胞[J] . 江苏大学学报( 医学版), 2004, 6:461- 464.
    [41] Chiu CP, Blau HM. 5-Azacytidine permits gene activation in a previ-ously noninducible cell type [J] . Cell, 1985, 40(2): 417- 424.
    [42] Dennis JE, Charbord P. Origin and differentiation of human and murine stroma[J]. Stemcell, 2002, 20: 205-214.
    [43] Lattanzi L, Salvatori G, Coletta M, et al. High efficience myogenic conversion of human fibroblast by adenoviral vector-mediated Myo2D gene transfer[J] . J Clin Invest, 1998, 101: 2119- 2118.
    [44] 史剑慧, 胡昕婴, 牛玉宏,等. 二甲亚砜诱导人骨髓基质干细胞心肌分化中的基因表达[J].复旦学报(医学版), 2004, 31(5): 454-457.
    [45] HornerA, Kemp P, Summers C, et al. Exp ressi on and distributi on of transforming growth factor2 beta is oforms and their signaling receptors in growing human bone[J]. Bone, 1998, 23(2): 95 - 102.
    [46] Shea CM, Edgar CM, Einhorn TA, et al . BMP treatment of C3H10T1 /2 mesenchymal stem cells induces both chondrogenesis and osteogenesis [J]. J Cell Bi ochem, 2003, 90(6): 1112 - 1127.
    [47] Watanabe H, de CaesteckerMP, Yamada Y . Transcrip tional cr osstalk bet ween Smad, ERK1 /2, and p38 mitogen2 activated p rotein kinase pathways regulates transforming gr owth factor2 beta2induced aggrecan gene exp ression in chondrogenic ATDC5 cells [J]. J Biol Chem, 2001, 276(17): 14466 - 14473.
    [48] Johnstone B, Hering T M, Cap lan A I , et al . In vitro chondrogenesis of bone marr ow2 derived mesenchymal progenitor cells [J]. Exp Cell Res, 1998, 238(1): 265 - 272.
    [49] Pittenger MF, Mackay AM, Beck SC, et al . Multilineage potential of adult human mesenchymal stem cells [J]. Science, 1999, 284(5411): 143 - 147.
    [50] 郑 东, 杨述华, 袁晓梅,等.TGF-β3 真核表达载体转染骨髓基质干细胞促进其向软骨分化的实验研究[J] .中国矫形外科杂志,2007, 15(3):455-458.
    [51] Wakitani S , Saito T ,Caplan AI. Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 52azacytidine. Muscle Nerve , 1995 ,18∶ 1417-1426.
    [52] 于 进,王海昌,等.骨髓基质细胞的生物学特性及向血管内皮细胞分化的研究[J]. 中华心血管病杂志, 2005, 33(3): 360- 361.
    [53] Friedenstein AJ, Chailakhyan RK, Gerasimov UV. Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers [J] .Cell Tissue Kinet , 1987 , 20 : 263 - 272.
    [54] Bruder SP, Jaiswal N, Ricalton NS. Mesenchymal stem cells in osteobiology and applied bone regeneration. Clin Orthop , 1998 ,(355)Suppl :S247 - S256.
    [55] Wakitani s Imoto K, yamamoto T saito M,et al. Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair ofcartilage defeats in osteoarthritic knees[J]. Osteoarthritis cartilage, 2002, 10 :199-206.
    [56] Pereira RF, Hara MD, Lapter AV, et al. Marrow stromal cells as a source of progenitor cells for non-hematopoietic tissues in transgenic mice with a phnotype of osteogenesis imperfecta [J]. Proc Natl Acad Sci USA 1998, 95:1142- 1147.
    [57] Kon E, Maraglia A, Corsi A, et al.Autologus bone marrow stromal cells loaded onto porous .hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones [J].J Biomed Mater Res , 2000, 49(3):328- 337.
    [58] 王文栋, 张瑾, 奚廷斐等.骨髓间充质干细胞在骨组织工程中的应用进展[J]. 组织工程与重建外科杂志 2007, 3 (4): 325- 329.
    [59] Livingston T. Repair of canine segment al bone defects using allogenic mesenchymal stem cells Transactions of the 47th [J] Annul ORS meeting ,2001,26:49.
    [60] Mullender M, El Haj AJ, Yang Y, et al. Mechanotransduction of bone cells in vitro: mechanobiol- ogy of bone tissue [J]. Med BiolEng Comput,2004,42(1):14- 21.
    [61] Sikavitsas VI, van den Dolder J, Bancroft GN, et al. Influence of the in vitro culture period on the in vivo performance of cell/titanium bone tissue- engineered constructs using a rat cranial critical size defect model [J]. J Biomed Mater Res A,2003,67(3):944- 951.
    [62] 郭晓东, 杜靖远, 郑启新,等. TGF-B1 基因修饰的间充质干细胞/仿生基质材料复合移植修复兔关节软骨缺损[J]. 中国生物医学工程学报, 2002, 21(2):111- 131.
    [63] Im GI, Kim DY, Shin JH, et al. Repair of cartilage defect in the rabbit with cultured Mesenchymal stem cells from bone marrow [J]. J Bone Joint Surg Br 2001;83(2): 289-294.
    [64] 艾国平, 粟永萍, 程天民,等.骨髓间充质干细胞的应用研究进展[J].中华创伤杂志 2002, 18(9): 22-26.
    [65] Oyama M , Tat lock A , Fukuta S, et al . Rer tovirally transduced bone marrow stromal cells isolated f rom a mounse model of human osteogenesis imperfecta(oim) persist in bone and retain the ability to form car t ilage and bone af ter extended passaging[J]. Gene Ther, 1999, 6(3): 3212329.
    [66] 金 丹, 曾位森, 裴国献, 等. 转染人骨形态发生蛋白在兔骨髓间充质干细胞中的表达[J]. 中华创伤骨科杂志, 2001, 3(4): 249-252.
    [67] Gronthos S, Chen S, Wang CY, et al. Telomerase accelerates osteogenesis of bone marrow stromal stem cells by upregulation of CBFA1, osterix, and osteocalcin[J]. J Bone Miner Res,2003,18 (4):716- 722.
    [68] Pereira RF, Halford KW, O'Hara MD, et al. Cultured adherent cells from marrow can serve as long- lasting precursor cells for bone, cartilage, and lung in irradiated mice[J]. Proc Natl Acad Sci USA,1995,92(11):4857- 4861.
    [69] Horwitz EM, Prockop DJ, Gordon PL, et al. Clinical responses to bone marrow transplantation in children with severe osteogenesis imperfecta [J]. Blood,2001,97(5):1227- 1231.
    [70] Ichioka N, Inaba M, Kushida T, et al. Prevention of senile osteopor- osisin SAMP6 mice by intrabone marrow injection of allogeneic bone marrow cells [J]. Stem Cells,2002,20(6):542- 551.
    [71] Walsh S, Jefferiss C, Stewart K, et al. Expression of the developmental markers STRO-1 and alkaline phosphatase in cultures of human marrow stromal cells: regulation by fibroblast growth factor(FGF)-2 and relationship to the expression of FGF receptors 1- 4 [J]. Bone,2000,27(2):185- 195.
    [72] Stenderup K, Justesen J, Clausen C, et al. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells [J]. Bone,2003,33(6):919- 926. [73 Mauney JR, Kaplan DL, Volloch V. Matrix- mediated retention of osteogenic differentiation potential by human adult bone marrow stromal cells during ex vivo expansion [J]. Biomaterials,2004,25 (16):3233- 3243.
    [74] Wakitani S, Saito T, Caplan AI. Myogeni cells derived from rat bone marrow mesen chymal stem cells exposed to 5 – azacytidine Muscle Nerve , 1995 , 18 :1417 - 1426.
    [75] Giuliana F, Gabriella CA, M arcello C, et al. Muscle regeneration by bone marrow derived myognic progenitors [J]. Science.1998, 279 :1528- 1530
    [76] Ferrari G, Angelis GC, Coletta M, et al. Mulscle regeneration by rat bone marrow [J].Nature, 1996, 209 :1317 - 1327.
    [77] Young RG, Butler DL, Weber W, et al. Use of mesenchymal stem cellsin a collagen matrix for Achilles tendon repair [J]. J Orthop RES, 1998, 16 :406- 413.
    [78] Koc ON, Gerson SL , Cooper BW, et al .Rapid hematopoietic recovery after coinfusion of autologous - blood stem cells and culture expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol, 2000,18 :307 - 316.
    [79] Li Y, Chopp M, Chen J, et al. Interastriatal transplantati on of bone marrow stromal cells (MSCs) imp roves functional recovery after stroke in adultmice[J]. J Cereb Blood Flow Metab, 2000, 20(9) : 1311 -1319.
    [80] Tateishi YE, Matsubara H, Murohara T . The expression of mdm2 gene related to their invasiveness of human hepatocellular carcinoma[J]. Lancet, 2002, 360: 427.
    [81] The role of sialoproteins in recognition of bone surface by osteoblasts via integrin. Materials Science & Engineering C4:303-309, 1997.
    [82] Yano S, Kuroda S, Lee JB, et al. In vivo fluores cence tracking of bone marrow s tromal cells transplanted into a pneumatic injury model of rat spinal cord. J Neurotrauma 2005,22(8):907-918
    [83] Chopp M, Zhang XH, Li Y, et al. Spinal cord injury in rat: treatment with bone marrow s tromal cell transplantation. Neuroreport 2000,11(13):3001-3005
    [84] Mahmood A, Lu D, Chopp M. Marrow stromal cell trasplantation after traumatic brain injury promotes cel luar prol iferation wi thin the brain.Neurosurgery, 2004,55(5):1185-1193
    [85] Mahmood A, Lu D, Lu M, et al. Treatment of traumatic brain injury in adult rats with intravenous adminis tration of human bone marrow stromal cells. Neurosurgery, 2003,53(3):697-702
    [86] Chen J, Li Y, Wang L, et al. Therapeutic benefit of intravenous administration of bone marrow str omal cells after cerebral ischemiain rats [J]. S troke, 2001, 32(4): 1005 - 1011.
    [87] Hofstetter C P, Schwarz E J, Hess D, et al. Marrow stromal cells from gaiding strands in the injured spinal cord and promote recovery [J]. Prac Natl Acad Sci USA, 2001, 99(4): 2199 - 2204.
    [88] Li Y, Chen J, Wang L, et al. Intracerebral transplantation of bone marrow stromal cells in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’ s disease. Neurosci Lett 2001,316(2):67-70
    [89] Lee JB, Kuroda S, Shichinohe H, et al. Apre-clinical assessment model of rat autogeneic bone marrow stromal cell transplantation into the central nervous system. Brain Res Protoc ,2004, 14(1):37-44.
    [90] Lisigno li G, Rem iddi G, Cattini L, et al. An elevated number of differentiated osteoblast co- ionies can be obstained from rat bone marrow stromal cells using agradient isolation procedure [J]. Connect T issue Res,2001, 42(1): 49-58.
    [91] Joshua R, Mauney, Claude Jaquiéry. In vitro and in vivo evaluation of differentially demineralized cancellous bone scaffolds combined with human bone marrow stromal cells for tissue engineering [J]. Biomaterials, 2005, 26(16): 3173-3185.
    [92] 孙善珍, 刘少华, 魏奉才,等. 体外培养的冠髓和根髓细胞中碱性磷酸酶的活性[J]. 上海口腔医学,2004, 13(6): 531-533.
    [93] 司徒镇强, 吴军正,等. 细胞培养[M] . 西安:世界图书出版公司,1996,114.
    [94] Abdallah BM,Jensen CH,Gutierrez G,et al. Regulation of human skeletal stem cells differentiation by Dlk1/Pref - 1 [J]. J Bone Miner Res,2004,19(5): 841-852.
    [95] Reyes M, Verfaillie CM. Characterization of multipotent adult progenitor cells, a subpopulation of mesenchymal stem cells [J]. Ann NY Acad Sci, 2001, 938: 231-235.
    [96] Service RF. Tissue Engineers Build New Bone [J]. Science, 2000,289 :1498-1500.
    [97] Lennon D P, Edmison J M, Caplan A I. Cultivation of rat marrow-derive mesenchymal stem cells in reduced oxygen tension: effects on in vitro and in vivo osteochondrogenesis [J]. J Cell Physiol, 2001, 187(3): 345-355.
    [98] Prockop D J, Sekiya I, Coltet D C. Isolation and characterization of rapidly self-renewing stem cells from cultures of human marrow stromal cells [J]. Cytotherapy,2001,3(5): 393-396.
    [99] Ohgushi H, DoLi Y,Katuda T ,et al. Biomed Mater Res [J]. 1996, 32:333-340.
    [100] Nandoe R D, Hurtado A, Lebi A D, et al. Bone marrow stromal cells for repair of the spinal cord: towards clinical application [J]. Cell Transplant, 2006, 15(7): 563-577.
    [101] 吴志明, 王 东, 栗树伟,等. 骨髓基质干细胞成骨的研究进展[J].实用骨科杂志,2007,13(8): 472-474.
    [102] 张文元,杨亚冬,贺 晨,等.骨髓间充质干细胞的生物学特性及在组织修复中的应用[J]. 中国临床康复, 2004, 8(26): 5614 -5616.
    [103] Nesic D, Whiteside R. Cartilage tissue engineering for degenerative joint disease[J]. Adv Drug Deliv Rev, 2006, 58(2): 300 - 322.
    [104] Robbins P D, Ghivizzani S C. Virus vector for gene therapy[J].Pharmacol Ther, 1998, 80(6):35-47.
    [105] Gilbert L, Toivola J, Lehtomaki E, et al. Assembly of fluorescent chimeric virus-like particles of canine parvovirus in insect cells[J]. Biochem Biophy Rese Comm, 2004, 313: 878-887.
    [106] Bentel ,Mettec ,Liselotte ,et al. differentiation of bovine bone marrow mesenchymal stem cells Bone ,2003 ,32(3): 297-310.
    [107] Summer DR, Turner TM. Locally delivered rh TGF-β2 enhances bone in growth and bone regenerati- on at local and remote sites of skeletal injury[J].J Orth Opae Rese,2001,19 :85 - 94.
    [108] Massague JI.The transforming growth factor-family[J]. Ann Biochem 1990,6 : 597-561 .
    [109] Jian H, Shen X, Liu I , et al. Smad3-dependent nuclear translocation of beta-catenin is requ ired for TGF-betal-induced proliferation of bone marrow-derived adult human mesenchymal stem cells [J]. Genes & Dev, 2006, 20(6):666-674.
    [110] Bosnakovski D, Mizuno M. Chondr ogenic differentiation of bovine bone marrow mesenchymal stem cells in pellet cultural system [J].Exp Hematol, 2004, 32(5): 502-509.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700