不同植被恢复模式下铁尾矿物种多样性、土壤养分及生物因子研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用样地法对唐山不同植被恢复模式下铁尾矿物种多样性、土壤养分和土壤生物因子进行了调查。共计调查了12个样地,45个灌木样方和60个草本样方。取得以下研究结果:
     1不同恢复模式下铁尾矿植物群落中有灌木和草本植物共27科42属45种,并以温带植物区系为主,占总属数的52.38%。
     2铁尾矿样地人工林群落结构简单,主要分为灌木层和草本层两层。人工沙棘林和紫穗槐林植物群落的灌木层生长茂盛,盖度较大,荒坡样地灌木层不发达,盖度较小,在新尾矿地上不存在灌木层。草本层受灌木层盖度的影响较大。沙棘林和紫穗槐林植物群落的草本层生长不发达,盖度较低,主要为一些喜荫种类。说明人工植被恢复对尾矿的群落结构有明显改造作用。
     3在不同恢复模式样地中,总生物量差别较大,沙棘林的总生物量最多,达到14.25t·hm~(-2),紫穗槐林总生物量次之,达到11.64t·hm~(-2),它们都远远大于荒坡和新尾矿样地。就4个不同样地中灌木层而言,沙棘林、紫穗槐和荒坡生物量分别占群落总生物量的97.34%、94.26%和19.77%,新尾矿样地没有灌木出现。4个不同样地草本层中,沙棘林生物量最低,占群落总生物量的2.66%;紫穗槐林草本层生物量占群落总生物量的5.74%。荒坡样地草本层生物量最多,占总生物量的80.23%,新尾矿样地的草本层生物量虽然只有0.56t·hm~(-2),但它构成了其植物群落的全部生物量。
     4从物种丰富度、Simpson和Shannon-Weiner多样性指数来看,各样地从大到小依次为荒坡>沙棘林>紫穗槐林>新尾矿。从Pielou均匀度指数来看,各样地从大到小依次为新尾矿>荒坡>沙棘林>紫穗槐林;从Alatalo均匀度指数来看,其排列顺序与Pielou均匀度指数有所相同,各样地从大到小依次为新尾矿>沙棘林>荒坡>紫穗槐林。从相似性系数的结果可以看出,各样地之间的物种组成相似性系数较低,说明各样地之间的物种组成差异较大。据多样性阈值的分级评价标准,多样性评价结果显示:荒坡、沙棘林、紫穗槐属于类型Ⅱ,荒坡和人工林物种多样性丰富;新尾矿地属于类型Ⅳ,新尾矿地物种多样性一般。
     5各样地间土壤养分由多到少表现为荒坡>沙棘林>紫穗槐林>新尾矿。土壤养分在深度上分布状况均为0-20cm>20-40cm>40-60cm。说明在尾矿上种植沙棘林和紫穗槐林有利于营养成分积累。
     6在不同植被恢复模式下,细菌最多,放线菌次之,真菌最少。尾矿土壤微生物总量和主要类群数量由多到少表现为:荒坡>沙棘林>紫穗槐>新尾矿。尾矿之间微生物总量和各主要微生物类群的数量差异极显著。不同的取样深度土壤微生物的数量随土层深度的增加逐渐降低。
     7各林样地土壤酶活性指标大小顺序不完全一致,说明并不是一种酶含量高的其它酶的含量也一定高,因此仅从单一酶活性不能全面揭示土壤的酶活性特征。
     8从物种多样性与土壤有机质、速效钾、速效磷和碱解氮相关性可以看出,有机质、速效钾、速效磷是对铁尾矿地植物群落多样性具有较大影响的土壤因子。
     9植物多样性指数与土壤生物因子关系分析表明:唐山铁尾矿地区植被恢复演替过程中,土壤微生物和土壤酶活性与植物多样性之间存在一定的相关性,但因土壤酶类型的差异,土壤微生物和土壤酶活性与植物多样性相关性存在一定的差异。
     10土壤养分与生物因子之间的关系分析表明:土壤微生物、土壤酶与土壤养分循环、代谢有着重要的关系。可以将土壤微生物数量和土壤酶活性两者结合起来,作为评价土壤肥力的生物学指标。
The species diversity, soil chemical factors and biological factors of different vegetation restoration patterns in Tangshan iron tailings were studied in the paper. By investigated 12 plots, 45 shrubs and 60 herbaceous patches the results showed as following:
     1 Flora analysis showed that there are 27 families, 42 genera, 45 species of seed plants. The flora has distinct warm temperate characteristics, and temperate genera account for 52.38% in total genera.
     2 The community structure was simple in different vegetation restoration patterns tailings, and it was divided into shrub layer and herb layer. The artificial Hippophae rhamnoides and Amorpha fruticosa forest glowed lush and cover a larger plant in shrub layer, they were shades plants understory plant. Plot slopes cover less shrub layer, and there was not shrub in the new tailings. It is show that dartificial vegetation restoration played a significant role on the community structure transformation in the tailings.
     3 The total biomass were differences in different vegetation restoration patterns tailings, the Hippophae rhamnoides forest has the most of the total biomass, reaching 14.25 t·hm~(-2), and the Amorpha fruticosa forest was next, reaching 11.64 t·hm~(-2), they were much greater than the slopes and the new tailings. It is significantly affected that artificial Hippophae rhamnoides and Amorpha fruticosa forest added to plant community biomass.
     4 From the species richness, Simpson index and Shannon-Weiner index, the range from large to small are ranked in descending order as follows: slope> Hippophae rhamnoides> Amorpha fruticosa >new tailings. Pielou evenness index showed that the range from large to small are ranked in descending order as follows: new tailings>slopes> Hippophae rhamnoides> Amorpha fruticosa; From the Alatalo evenness index, its order was differences with the Pielou evenness index, range from large to small was as follows: the new tailings> Hippophae rhamnoides >slopes> Amorpha fruticosa. According to the similarity coefficient, it is the lower coefficient, and the species composition was different in different vegetation restoration patterns tailings. The diversity of evaluation showed that: slopes, Hippophae rhamnoides, Amorpha fruticosa species were diversity; new tailings species diversity was general.
     5 For the soil nutrients in different vegetation restoration patterns tailings were ranked in descending order as follows: 0-20cm> 20-40cm> 40-60cm. The result showed that planting Hippophae rhamnoides and Amorpha fruticosa were beneficial to the nutrients formation.
     6 There were significant differences in the quantity of the mostly microorganism in different restoration patterns. Overall, the bacteria was most, and the autonomics was next with the fungi least. For the soil microorganism quantity and the enzyme activity in soil layer , in addition to catalase ,different restoration patterns are ranked in descending order as follows: slopes > Hippophae rhamnoides> Amorpha fruticosa >new tailings. Both the quantity of soil microorganism and the enzyme activity decreased as the depth of soil increased. There was positive relationship between the quantity of soil microorganism and the enzyme activity. It was concluded that artificial vegetation restoration could improve the quantity of soil microorganism and the enzyme activity.
     7 The soil enzyme activity was not exactly the same order in different woodland. It showed that the high content of an enzyme did not represent other enzymes must high also, so only a single enzyme activity can not fully reveal the characteristics of the soil enzyme activity.
     8 According to the result of the species diversity and soil organic matter, available potassium, available phosphorus and nitrogen correlation. The experimental results show that soil organic matter, available potassium, available phosphorus is the soil factors that have a greater impact on the diversity in iron tailings. And it would promote the species diversity if vegetation were planted in tailings.
     9 According to the relationship of diversity index and soil biological factors. In the process of restoration of vegetation succession, soil microbial, soil enzyme activity and plant diversity have a certain degree of relevance, but it was difference in the difference soil enzymes.
     10 According to the relationship of the soil chemical properties and soil biological factors. The results suggest that soil microorganisms, soil enzymes and soil nutrient cycling, metabolism have an important relationship. Therefore, a combination of both of soil microbial and soil enzyme activity could be considered as a means of soil biological fertility evaluation.
引文
[1]杨顺梁.选矿知识问答(第2版)[M].北京:冶金工业出版社,2005.
    [2] Zhang Y.M., Zhou G.Y,Wu N..A review of studies on soil enzymology[J].Journal Of Tropical and Subtropical Botany, 2005,12(1): 83-90.
    [3]冯维波.生物多样性的丧失与保护的经济分析[J].生物多样性,1994(2):44-48.
    [4]王德艺,李东义,蔡万波.雾灵山自然保护区的生物多样性研究[J].生物多样性,1997(5):49-53.
    [5] Rapport D J ,Whitford W G. How ecosystems respond to stress [J]. BioScience.1999, 49:193-203.
    [6] Platt R H.Evolution of coastal hazards policies in the United States. Management [J].1994, 22, 265-284.
    [7] Rechcigl J E,Payee GC,Bottcher A B&Porter P S. Reduced phosphorus application onbahiagrass and water quality[J]. AgronomyJorrrnal, 1992, 84: 463-468.
    [8] Naeem S. Species and Ecosystem Reliability.Consernation Biology [J].1998, 12(1):39-45.
    [9] Grime J P. Benefits of plant diversity to ecosytems: immediate, filter and founder effects [J]. Journal of Ecology, 1998, 86: 902-910.
    [10] Edwards P J, Abivardi C. The value of biodiversity .where ecology and economy blend [J].Biological Conservation. 1998,83,239-246.
    [11] Bawa K S,Seidler R. Natural forest management and conservation of biodiversity in tropical forests [J].Conservartion Biology; 1998, 12, 46-55.
    [12] Ehrlich P R&Wilson E 0. Biodiversity Studies: Science and Policy Seience. 1991,283:758-762.
    [13] Naeem S, Thompson L J. Lawler S P et al. Declining biodiversity can alter the performance of ecosystems [J]. Nature, 1994, 368: 734-736.
    [14]马克平,钱迎倩,王晨.生物多样性研究的现状与发展趋势--生物多样性研究的原理和方法[M].北京:中国科学技术出版社,1994,1-12。
    [15] WRI,马克平译.全球生物多样性战略[M].北京:中国标准出版社,1993.
    [16]陈灵芝主编.中国的生物多样性--现状及其保护对策[M].北京:科学出版社,1993.
    [17] Solbrig O.T.,马克平译,生物多样性有关的科学问题与合作建议[M].北京:科技出版杜,1991.
    [18]马克平.试谈生物多样性的概念[J].生物多样性,1993,1(1):20-22.
    [19] Mcneely J.Conserving the Worldcs Biological Diversity [J].The World Bank, WRI, IUCN, WWF, 1990.
    [20]赵士洞.生物多样性科学的内涵及基本问题--介绍“Diversitas”的实施计划[J].生物多样性. 1997, 5(1): 1-4.
    [21]陈灵芝.对生物多样性研究的儿个观点[J].生物多样性, 1999,7(4):308-311
    [22]赵运林,江发雨.生物多样性及其研究内容[J].湘潭师范学院学报,1994,15(6):35-39.
    [23]胡志昂,王洪新.研究遗传多样性的基本原理和方法.生物多样性研究的原理和方法.北京:中国科学技术出版社,1994,117-122.
    [24]汪殿蓓,暨淑仪,陈飞鹏.植物群落物种多样性研究综述[J].生态学杂志,2001,20(4):55-60.
    [25]马克平,刘玉明.生物多样性的测度方法:Ιa-多样性的测度方法(上)[J].生物多样性,1994,2(4):231-234.
    [26]陈吉泉.1995.景观生态学的基本原理及其在生态系统经营中的应用[J].现代生态学讲座.科学出版社.北京,108-128.
    [27] Pickett S T A, Cadanasso M L. Landscape ecology, spatial heterogeneity in ecological systems[J]. Science.1995.269:331-334.
    [28]赵士洞.推进全球生物多样性研究的重大步骤“生物多样性的编目和监测”国际研讨会简介[J].应用生态学报, 1993,4(1):109-110.
    [29]马克平,钱迎倩.《生物多样性公约》的起草过程与主要内容[J].生物多样性, 1994,2(1):54-57.
    [30]刘世荣.中国暖温带森林生物多样性研究,中国科学技术出版社[M].1998.
    [31]金则新.浙江天台山七子花群落物种多样性研究[J],生态学杂志,1999,18(2):1-4.
    [32]岳明.秦岭及陕北黄土区辽东林群落物种多样性特征[J].西北植物学报,1998,18(1):124-131.
    [33]马克明.傅伯杰等.北京东灵山地区森林的物种多样性和景观格局多样性研究[J].生态学报,1999, No1.19,No.1:1-7.
    [34]王庆锁.冯宗炜等.河北北部.内蒙古东部森林——草原交错带生物多样性研究.植物生态学报,2000.24 (2 ): 141-146.
    [35]刘世荣.史作民.中国森林生物多样濒危现状——原因及其保护策略[J].世界林业研究,g(专刊): 1996,137-144.
    [36]蒋有绪.中国森林生态系统结构与规律研Vii[J].现状.中国林业出版社. 1996.
    [37]平立凤,窦森,张晋京,关松.草原及开垦后土壤有机质性质研究[J].2004, 15 (5):824-826.
    [38]蔡跃台.不同植被类型土壤理化性质及水源涵养功能研究[J].浙江林业科技,2006, 26 (3):12-16.
    [39]彭文英,张科利,陈瑶,杨勤科.黄土坡耕地退耕还林后土壤性质变化研究[J].自然资源学报,2005, 20 (2): 272-278.
    [40]游秀花,蒋尔可.不同森林类型土壤化学性质的比较研究「J}.江西农业大学学报,2005, 27(3):357-360.
    [41]耿增超,张社奇,土国栋,刘建军.黄土高原油松人工林地土壤养分及化学性质的时空效应[J].西北农林科技大学学报(自然科学版),2006,34(8):98-10.
    [42]樊后保,李燕燕,黄玉梓等.马尾松纯林改造成针阔混交林后土壤化学性质的变化[J].水土保持学报,2006, 20 (4):77-81.
    [43]魏彦昌,欧阳志云,苗鸿.尖峰岭自然保护区土壤性质空间异质性[J].生态学杂志,2007,26 (2):197-203.
    [44] Amann RL,Ludwig E,Sehleifer KH. Phylogenetic identification and in situ detection of ind ividual microbial cells without cultivation[J].Microbial Rev,1995,59:143-169.
    [45]骆世明主编.农业生态学[M].北京:中国农业出版社,2001,72-96.
    [46]张薇等.土壤微生物多样性及其环境影响因子研究[J].生态学杂志,2005,24(1):48-52.
    [47] Solbrig OT . From genes to ecosystems:a research agenda for biodiversity[A].Report of a IU BSSCOPEUNESCO workshop.The International Union of Biological and Sciences[C].Paris France : Boulevar dole Montmorenny.1991.
    [48] Watve M G,Gangal RM.Problems in measuring bacterial diversity and a possible solution [J]. Appl. Environ.Microbial,1996,62(11):4299-4301.
    [49]东秀珠,洪俊华.原核微生物的多样性[J].生物多样性,2001,9(1):18-24.
    [50]杨利民,韩梅,李建东.松嫩平原主要草地群落放牧退化演替阶段的划分[J]草地学报,1996,4(4):200-287.
    [51]刘钟龄,王炜,梁存柱,郝敦元.内蒙古草原植被在持续牧压下退化演替的模式与诊[J].草地学报,1998, 6(4): 244-251.
    [52]齐文娟,龙瑞军,冯瑞章等江河源区不同建植年限人工草地上壤微生物及酶活性研究[J].水土保持学报,2007,21(4),145-151.
    [53] AertsR. Nitrogen partitioning between resorption and decomposition pathways: a trade off between nitrogen use efficiency and litter decomposibility [J] .Oikos, 1997, 80: 593-603.
    [54] Briones M J I,Ineson P. Decomposition of eucalyptus leaves in litter mixture [J] .Soil Biol. Biochem. 1996, 28 (10/11) :1381-1388.
    [55] Caplan J A. The worldwide bioremediation industry: prospects for protits [J] .Trends Biotechnol. 1993,11:320-323.
    [56]周礼恺.土壤酶学[M].北京:科学出版社,1987,118-159.
    [57]杨万勤,王开运.森林土壤酶研究进展[[J].林业科学.2004,40(2):152-159
    [58] Decker K L M,Boerner R E J,Morris S J .Scale2dependent patterns of soil enzyme activity in a forest landscape[J].Canadian Journal of Forest Research,1999,29 (2):232-241.
    [59] Gehrke C. The impact of enhanced ultraviolet radiation on litter quality and decomposition processes in Vacciniuml. Avers from the Subarctic [J].Oikos.1995. 72: 213-222.
    [60]王仁忠.放牧影响下羊草种群生殖生态学的研究[J].应用生态学报,2000,(3):399-403.
    [61]王炜,刘钟龄,郝敦元,梁存柱.内蒙古草原退化群落恢复演替的研究A.恢复演替的时间进程分析[J].植物生态学报,1996,20(5): 460-471.
    [62]郝敦元,刘钟龄,王炜,梁存柱.内蒙古草原退化群落恢复演替的研究A.群落演替的数学模型[J].植物生态学报,1997,21(6): 503-511.
    [63]陈光升,钟章成,齐代华.给云山常绿阔叶林土坡酶活性与土壤肥力的关系[J].四川师范学院学报(自然科学版),2002, 23 (1): 19-23.
    [64]胡斌,段昌群,王震洪.植被恢复措施对退化生态系统土壤酶活性及肥力的影响[J].土壤学报,2002, 39(4):604-608.
    [65]许光辉,郑洪元.土壤微生物分析方法手册[M].北京:农业出版社,1986
    [66]马克平,黄建辉,于顺利等.北京东灵山地区植物群落多样性的研究Ⅱ.丰富度、均匀度和多样性指数[J]。生态学报,1995,15(3):268 - 277,
    [67]蔡燕红,杭州湾浮游植物生物多样性研究[D],2006,13.
    [68]吴征镒.中国种子植物属的分布类型.云南植物研究, 1991.增刊Ⅳ:1-139.
    [69]中国环境肤测总站.中国上壤元素背景值[M].北京:中国环境科学出版设,1990.
    [70]赵林森,王九龄.杨树刺槐混交林生长及土壤酶与肥力的相互关系[J].北京林业大学学报,1995, 17(4);1-7.
    [71]郑杰炳,王子芳,谭显龙等.丘陵紫色土区土地利用方式对土壤剖面理化性质影响研究[J].西南大学学报,2008,30 (3);101-106.
    [72]陈立新.施肥对落叶松人工林根际土壤生化特性的影响[J]水土保持学报,2000,17(3):133-137.
    [73]中国农业百科全书编辑部.中国农业百科全书(土壤卷)[M].北京:农业出版社,1996,388-390.
    [74]邵宝林,龚国淑,张世熔,等.横断山北部高山区不同生态条件下土壤微生物数量及其与生态因子的相关性[J].生态学杂志, 2006. 25(8):885-89
    [75]薛立,陈红跃,徐英宝,等. 2004.混交林地土壤理化性质与微生物数量及酶活性的研究.土壤通报, 35(2):155-158.
    [76]黄志宏,田大伦,梁瑞友,等.2007.南岭不同林型土壤微生物数量特征分析[J].中南林业科技大学学报, 27(3):1-4.
    [77]李涛,潘志华,安萍莉,等.2006.北方农牧交错带(武川县)土壤微生物数量分布及层化比率研究[J].水土保持学报, 20(1):99-102.
    [78]夏北成.植被对土壤微生物群落结构的影响[J].应用生态学报,1998,9(3):296-300.
    [79]李勇.试论土壤酶活性与土壤肥力[J].土壤通报,1989,20(4):190-193.
    [80]杨万勤,王开运.森林土壤酶研究进展[J].林业科学2004,40(2):152-160.
    [81]许景伟,王卫东,李成.不同类型黑松混交林土壤微生物、酶及其土壤养分关系研究[J].北京林业大学学报,2000,22(1):51-55.
    [82]杜社妮,梁银丽,徐福利等,施肥对日光温室上壤微生物与酶活性变化的影响[J].中国生态农业学报,2007,20 (4):68-71.
    [83]龙妍,惠竹梅,程建梅,等.生草葡萄园土壤微生物分布及土壤酶活性研究[J].西北农林科技大学报, 2007.35(6): 99-103.
    [84]宋海燕,李传荣,许景伟等.滨海盐碱地枣园土壤酶活性与土壤养分、微生物的关系[J].林业科学, 2007. 43(1):28-32.
    [85] Bruns R G,(ed).Soil enzyme[M].American Press,NewYork .1978.
    [86]关松荫.土壤酶及其研究法[M].北京:农业出版社,1986.
    [87]范君华,刘明,高疆生等.塔里木河上游不同林地土壤养分和微生物以及酶活性变化初探[[J].中国农学通报,2005,21(1):184-187.
    [88] Frankenberger WT, Dick WA. Relationship between enzyme activities and microbial growth and activity indices in soil [J]. Soil Sci Soc Am J, 1983.47: 945-951.
    [89]胡海波,张金池,高智慧,等.岩质海岸防护林土壤微生物数量及其与酶活性和理化性质的关系[J].林业科学研究, 2001. 15(1): 88-95.
    [90]张崇邦,金则新,柯世省.天台山小同林型土壤酶活性与土壤微生物、呼吸速率以及土壤理化特性关系研究[J].植物营养与肥料学报, 2004.10(1):51-56.
    [91]樊军,郝明德.黄土高原旱地轮作与施肥长期定位试验研究Ⅱ.土壤酶活性与土壤肥力.植物营养与肥料学报, 2003, 9(2): 146-150.
    [92]李俊,舒为群,陈济安,等.垃圾填埋场土壤酶活性与化学性质和微生物数量的关系研究[J].生态学杂志, 2005.24(9): 1043-1047.
    [93] SU YZ, ZHAO HL. Soil properties and plant species in an age sequence of Caragana microphyllaplantations in the Horqin Sandy Land, north China [J]. Ecological Engineering, 2003.20:223-235.
    [94] Gentry A H., Changes in plant community diversity and floristic composition on environmental and geographical gradients [J]. Annals of the Missouri Botanical Garden, 1988,75:1-34
    [95]白永飞,李凌浩,王其兵.锡林河流域草原群落植物多样性和初级生产力沿水热梯度变化[J].植物生态学报, 2000.24(6):667-673
    [96]李新荣,张景光,刘立超.我国干旱沙漠地区人工植被与环境演变过程中植物多样性的研究[J].植物生态学报, 200024( 3):257-261.
    [97] Tilman D. Cause,consequence and ethics of biodiversity[J] .Nature, 2000.405:208-211
    [98] Wang L.Zhang J-T.Shuangguan T-L.et al. Species diversity of mountain meadow of Lishan and the relation with the soil physicochemical properties [J].Chin J Appl Environ Biol10(1):2004.18-22.
    [99]杨万勤,钟章成,陶建平等绪云山森林土壤酶活性与植物多样性的关系[J].林学科学,2001, 37(4):124-128.
    [100]杨万勤,钟章成,韩玉萍.缙云山森林上壤酶活性的分布特征、季节动态及与四川人头茶的关系研究[J].西南师范人学学报(自然科学版),1999, 24( 3):318-324.
    [101]许景伟,王卫东,李成.不同类型黑松混交林土壤微生物、酶及其与土壤养分关系的研究[J].北京林业大学学报,2000, 22(1):51-55.
    [102]章家恩,刘文高,胡刚.不同土地利川方式下土壤微生物数量与土壤肥力的关系[J].土壤与环境,2002, 11(2):140-143.
    [103]唐艳,杨林林,叶家颖,银杏园土壤酶活性与土壤肥力的关系研究[J].广西植物,1999, 19(3):77-281
    [104]赵林森,王九龄.杨槐混交林生长及土壤酶与肥力的相互关系[J].北京林业大学学报,1995,17(4):1-7.
    [105]胡延杰,翟明普,武觐文等.杨树刺槐棍交林及纯林土壤酶活性的季节性动态研究[J].北京林业大学学报,2001,23(5): 23-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700