荧光探针聚合物微凝胶及聚合物太阳能电池材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要由两部分构成,其中第一部分为“一种带有新型荧光探针的环境敏感性微凝胶的合成与表征”,第二部分叙述了“一系列共轭聚合物太阳能电池材料的合成与表征”。
     (1)荧光探针法以其灵敏度高、时间响应范围宽、非破坏性等特点在科学研究中得到广泛的关注,本论文以荧光探针法对环境敏感性高分子凝胶的相行为进行了研究。
     首先通过能发射荧光的硫酸原黄素和带有双键的丙烯酰氯反应得到一种新型的荧光探针分子methacrylamide proflavine(MAPF);利用无皂乳液聚合的方法合成了带有荧光探针分子MAPF的温度敏感性高分子微凝胶Poly(MAPF-co-NIPAM-co-MBAAm)(PMN)和pH值、温度双敏性高分子微凝胶Poly(AA-co-MAPF-co-NIPAM-co-MBAAm)(PAMN),并采用红外光谱(IR),核磁共振谱(~1H-NMR),紫外-可见光谱(UV-Vis),扫描电子显微镜(SEM)等表征手段对单体MAPF和聚合物凝胶PMN、PAMN的结构分别进行了表征。
     然后利用以共价键形式结合到环境敏感性微凝胶上的荧光探针MAPF来研究微凝胶水溶液的性质并对其进行荧光光谱分析。考察了不同温度下带有荧光探针的PMN的荧光强度,发现随着温度的升高,其荧光强度呈现出先基本不变然后骤降最后又趋于平稳的过程,明确指示出了聚合物凝胶的最低临界溶胀温度(lower critical swelling temperature,LCST),而且其最大荧光发射波长λ_(em)~(max)随着温度的升高,向长波长方向移动。同时通过荧光强度的变化研究了具有温度和pH值敏感性的凝胶PAMN,发现其在pH值为3时荧光性质不仅随着温度的变化发生了一个荧光强度先基本保持不变然后骤升最后又趋于平稳的过程,并且其荧光强度也随着pH值的变化而变化,反映了体系中高分子凝胶的构象随pH值发生了变化。因此通过检测探针的荧光强度变化可对环境敏感性高分子微凝胶周围微环境的改变及其相行为进行研究。
     (2)除此之外,本文还介绍了近年来有机太阳能电池的研究背景,对其主要特点、工作原理、性能参数、电池结构及发展前景做了简要的综述。在聚合物太阳能电池材料合成中,得到了包括咔唑类、噻吩类、三苯胺类3个系列共13种聚合物,并运用核磁共振谱(~1H-NMR)、熔点测试、红外光谱(IR)、紫外—可见吸收光谱(UV-Vis)、凝胶渗透色谱(GPC)、热重分析(TG)、荧光光谱(FL)对所得聚合物的化学结构、分子量、热性能和光性能进行了表征。
     在以咔唑为主链的共轭聚合物PCaV、PBC、PBT和PBF(化学结构式见Scheme 2-2)中,用UV-Vis吸收光谱确定了各个聚合物的带隙,其中PBT的带隙最小,PCaV的最大荧光发射波长最长,PBT的荧光量子效率最高,PCaV的分子量最高,PBC的热稳定性最好;在噻吩类聚合物PTO、PTM和PTP(化学结构式见Scheme 2-4)中,PTP和PTM的带隙最小,PTP的荧光最大发射波长最长;在三苯胺类聚合物PNB、PNT、PNF、PNP、PNM和PNO(化学结构式见Scheme 2-6)中,PNP的带隙最小,PNP的荧光最大发射波长最长,PNB的荧光量子效率最高,PNP的分子量最大,PNB的热稳定性最好。
     最后,我们选用三苯胺类聚合物PNB制作了单层光伏器件,研究了PNB器件的电流密度—电压特性曲线,得到其开路电压为0.3 V、短路电流密度为0.765μA/cm~2、填充因子为0.21,表明其具有一定的光伏特性。
This thesis is composed of two parts, the first part is about "preparation andcharacterization of environmentally sensitive microgel particles with fluorescenceprobe", and the second part is about "preparation and characterization of a series ofconjugated polymeric solar cell materials".
     Fluorescence probe technique has been widely used in the study of microgelsbecause of its unique characteristics such as high sensitivity, wide time-responserange and non-intrusive detection. In our work, the phase transition ofenvironmentally-sensitive microgel particles were studied based on fluorescenceprobe technique.
     Firstly, a fluorescence probe molecule, methacrylamide proflavine(MAPF), wassynthesized by using methacryloyl chloride and proflavine which can emit strongfluorescence. Thermosensitive microgel Poly(MAPF-co-NIPAM-co-MBAAm) (PMN)and pH, thermo-sensitive microgel Poly(AA-co-MAPF-co-NIPAM-co-MBAAm)(PAMN) were prepared by surfactant-free emulsion copolymerization (SFEP). Thefluorescence probe molecule MAPF and microgel particles PMN and PAMN werecharacterized by using IR, ~1H-NMR, UV-Vis and SEM techniques respectively.
     Then the properties of microgel particles in aqueous solution, especially thefluorescence spectra of the obtained microgel particles were investigated by usingfluorescence probe MAPF which was covalently labeled to the particles. Thefluorescence spectra of PMN suggested that along with increasing temperature, thefluorescence intensity kept constant at the first stage and then decreased sharply atcertain temperature which clearly corresponded to lower critical swelling temperature(LCST) and finally kept constant again. In addition, the maximum fluorescenceemission wavelength was red-shifted along with increasing temperature. In the case ofPAMN, fluorescence intensity was not only changed along with temperature when itspH value was equal to 3, but also changed along with bulk pH value. Therefore themicroenvironment around the main chain of environmentally sensitive microgelparticles can be investigated by monitoring the fluorescence from the labeled probe.
     In addition, the research background, main features, principle of operation,parameters, structures and future development of organic solar cell was introducedbriefly in this thesis. In the synthesis of polymer solar cell materials, we got threeseries of polymers including carbazole, thiophene and triphenylamine moietiesrespectively. The synthesized polymers were characterized by using ~1H-NMR, meltingpoint, IR, UV-Vis, FL, GPC and TG techniques respectively.
     Among the carbazole-based polymers PCaV、PBC、PBT and PBF (the chemicalstructures were shown in Scheme 2-2), PBT had the lowest band gap, PCaV had thelongest fluorescence maximum emission wavelength, the fluorescence quantum yieldof PBT was highest, the molecular weight of PCaV was biggest and thethermo-stability of PBC was best. Among the thiophene-based polymers PTP, PTMand PTO (the chemical structures were shown in Scheme 2-4), the band gap of PTPand PTM were lowest, the fluorescence maximum emission wavelength of PTP waslongest. Among the triphenylamine-based polymers PNB, PNT, PNF, PNP, PNM andPNO (the chemical structures were shown in Scheme 2-6), the band gap of PNP waslowest, the fluorescence maximum emission wavelength of PNP was longest, thefluorescence quantum yield of PNB was highest, the molecular weight of PNP wasbiggest and the thermo-stability of PNB was best.
     At last, the triphenylamine-based polymer PNB was chosen to prepare asingle-layer structure photovoltaic device, then the current density-voltage curve ofthis device was studied with the parameters of open circuit voltage of 0.3 V, shortcurrent density of 0.765μA/cm~2, and fill factor of 0.21. This suggested that the PNBmaterial has the potential for photovoltaic application.
引文
[1] R. H. Pelton. Temperature-sensitive aqueous microgels. Adv. Colloid Interface Sci., 2000, 85: 1-33.
    [2] G. Mamytbekov, K. Bouchal. Phase transiton in swollen gels, 25.effect of the anionic comonomer concentration on the first-order phase transiton of poly(1-vinyl-2-pyrrolidone) hydrogels. Eur. Polym. J., 1999, 35:451-459.
    [3] 王昌华,曹维效.温敏水凝胶.化学通报,1996,1:33-35.
    [4] M. Yoshida, N. Nagaoka, M. Asano, et al. Nuclear instrument and methods in physics research. J. Phys. Chem(B), 1997, 122: 39-41.
    [5] Suzuki, T. Tanaka. Potential use of polymer gel in the monitoring of waste water. Nature, 1995, 376: 219-221.
    [6] M. Z. Wang, Y. Fang, D. D. Hu. Preparation and properties of chitosan poly-(N-isopropylacrylamide) full-IPN hydrogels. Reactive & Functional Polymers, 2001, 48: 215-221.
    [7] Z. B. Hu, X. Zhang, Y. Li. Synthesis and application of modulated polymer gels. Science, 1995,269: 525-526.
    [8] V. Castro Lopez, J. Hadgraft, M. J. Snowden. The use of colloidal microgels as a (trans) dermal drug delivery system. International Journal of Pharmaceutics, 2005, 292(1-2): 137-147.
    [9] B. R. Saunders, H. M. Crowther, G. E. Morris, S. J. Mears, T. Cosgrove. Vincent B., J. Colloid Surf A: Physicochem. Eng. Asp., 1999, 149: 57-64.
    [10] M. J. Garcfa-Salinas, M. S. Romero-Cano. F. J. Nieves. J. Colloid Interface Sci., 2002, 248: 54-61.
    [11] H. Senff, W. Richtering. J. Chem. Phys.,1999, 111: 1705-1711.
    [12] A. Fernandez-Nieves, A. Fernandez-Barbero, B. Vincent, F. J. Delas-Nieves. Macromolecules, 2000, 33: 2114-2118.
    [13] Kiminta DMO, P. F. Luckham, S. Lenon. Polymer, 1995, 25: 4827-4831.
    [14] J. C. Kim, J. D. Kim. Colloids Surf B: Biointerface, 2002, 24: 45-52.
    [15] R. H. Pelton, P. Chibante. Colloids Surf, 1986, 20: 247-256.
    [16] X. Wu, R. H. Pelton, A. E. Hamielec. Colloid Polym. Sci., 1994, 272: 467-477.
    [17] W. Ncphee, K. C. Yan, R. H. Pelton. J. Colloid Interface Sci., 1993, 156: 24-30.
    [18] H. Shirota, N. Endo, K. Horie. Chem. Phys, 1998, 238: 487-494.
    [19] D. J. Gan, L. A. Lyon. J. Am. Chem. Soc., 2001, 123: 7511-7517.
    [20] D. J. Dovding, B. Vincent, E. Villiams. J. Colloid Interface Sci., 2000, 221: 268-272.
    [21] C. D. Vo, D. Kuckling, HJP Alder, et al. Colloids Polym. Sci., 2002, 280: 400-409.
    [22] R. H. Pelton. Adv Colloid Interface Sci, 2000, 85: 1-33.
    [23] K. Kratz, T. Hellveg, W. Eimer. Colloids Surf A: Physicochem. Eng. Asp., 2000, 170: 137-149.
    [24] N. B. Graham, J.W. Nao. Colloids Surf. A: Physicochem. Eng. Asp., 1996, 118: 211-220.
    [25] G. Wang, R. H. Pelton, J. Zhang. Colloids Surf. A: Physicochem. Eng. Asp., 1999, 153: 335-340.
    [26] J. S. Scarpa, et al. Slow hydrogen-deuterium exchange in a non-α-helical polyamide. J. Am. Chem. Soc., 1967, 89(24): 6024-6030.
    [27] I. Masahiro, et al. Stimuli-responsive polymers: chemical induced reversible phase separation of an aqueous solution of poly(N-isopropylacrylamide) with pendent crown ether groups. Polymer, 1993, 34:4531-4535.
    [28] I. Yamamoto, et al. Light scattering study of condensation of poly(N-isopropylacrylamide) chain. J. Phy. Soc. Jpn., 1989, 58(1): 210-215.
    [29] L. D. Taylor, et al. Preparation of films exhibiting a balance temperature dependent permeation by aqueous solutions-a study of low cosolute behaviors. J. Polym. Sci. Part A: Polym. Chem., 1975, 13: 2551-2570.
    [30] B. A. Wolf. Solubility of polymers. Pure. Appl. Chem., 1985, 57(2): 323-336.
    [31] M. Heskins et al. J. Macromol. Sci., 1968, (A2): 1441-1445.
    [32] K. Otake, et al. Thermal analysis of the volume phase transition with N-isopropylarylamide gels. macromolecules, 1990; 23(1): 283-289.
    [33] Giovanna Farruggia, Stefano lotti, Luca Prodi, et al. 8-Hydroxyquinoline derivatives as fluorescent sensors for magnesium in living cells. J Am. Chem. Soc., 2006, 128: 344-350.
    [34] Hirokazu Komatsu, Takahiro Miki, Daniel Citterio, et al. Single molecular multianalye(Ca~(2+), Mg~(2+)) fluorescent probe and applications to bioimaging. J. Am. Chem. Soc., 2005, i27: 10798-10799.
    [35] Mukulesh Baruah, Wenwu Qin, et al. BODIPY-based hydroxyaryl derivatives as fluorescence pH probes. J. Org. Chem., 2005, 70: 4152-4157.
    [36] Justin D. Debord, L. Andrew Lyon. Synthesis and characterization of pH-responsive copolymer microgels with tunable volume phase transiton temperatures. Langmuir, 2003, 19: 7662-7664.
    [37] Jiangfeng Lou, T. Alan Hatton, Paul E. Laibinis. Fluorescence probes for monitoring temperature in organic solvents. Analytical Chemistry, 1997,69: 1262-1264.
    [38] N. J. Flint, S. Gardebrecht, L. Swanson. Fluorescence investigations of "smart" microgel systems. Journal of Fluorescence, 1998, 8(4): 343-353.
    [39] Kaoru Iwai, Kyoko Hanasaki, Masao Yamamoto. Fluorescence label studies of thermo-responsive poly(N-isopropylacrylamide) hydrogels. Journal of Luminescence, 2000, 87-89:1289-1291.
    [40] C. K. Chee, S. Rimmer, I. Soutar, et al. Fluorescence investigations of the thermally induced conformational transition of poly(N-isopropylacrylamide). polymer, 2000, 42: 5079-5087.
    [41] Seiichi Uchiyama, Ynkiko Mtsumura, A. Prasanna de Silva, et al. Fluorescence Molecular thermometers based on polymers showing temperature-induced phase transitions and labeled with polarity-responsive benzofurazans. Analytical Chemistry, 2003, 75: 5926-5935.
    [42] T. J. V. Prazeres, A. M. Santos, J. M. G. Martinho. Adsorption of oligomucleotide on PMMA/PNIPAM core-shell latexes: polarity of the PNIPAM shell probed by fluorescence. Langmuir, 2004, 20: 6834-6840.
    [43] M. A. Winnik. Photophysical & photochemical tools in polymer science conformation, dynamics, morphology. Boston: Reidel D. Pub. Company, 1985.
    [44] P. Wang, S. Wu. J. Photochem. Photobiol. A: Chem., 1995, 86: 109.
    [45] R. Lapouyade, K. Czeseha, W. Maijenz, et al. J. Phys. Chem., 1992, 96: 4963.
    [46] J. F. Letard, R. Lapouyade, W. Rettig. J. Am. Chem. Soc., 1993, 115: 2441.
    [47] Masahiro Miura, Taketune Miyahara, Masaru Kato, et al. Development of a new fluorescence probe for transition metal cations based upon fluorescence resonance energy transfer. Analytica Chimica Aeta, 2004, 501(1): 45-54.
    [48] W. Rettig, W. Baumann. Progress in Photochemistry and photophysics. Vol Ⅵ, 79, Ed., Rabek J. F., N. Y.: CRC Press, 1992.
    [49] A. Nakajima. Bull. Chem. Soc. Jpn., 1971, 44: 3272.
    [50] D. C. Dong, M. A. Winnik. Photochem. Photobiol., 1982, 35: 17.
    [51] Yasuhiro Shiraishi, Yasufumi Tokitoh, Go Nishimura, et al. A molecular swich with pH-controlled absolutely switchable dual-mode fluorescence. Organic Letters, 2005, 7(13): 2611-2614.
    [52] A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, et al. Signaling recognition events with fluorescent sensors and switches. Chem. Rev., 1997, 97(5): 1515-1566.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700