AZ31镁合金变通道角挤压变形时组织性能与工艺的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金是一种很有吸引力的轻金属结构材料,其在交通工具、电子通信、航空航天等领域有着广阔的运用前景。镁是密排六方结构,只有有限的滑移系,室温下塑性成型能力差,同时也限制了镁合金的比强度的大幅度提高。目前细化晶粒成为优先考虑用来提高镁合金强度和塑性的一种有效手段。作为一种全新的深度塑性变形方式,在已有的研究中,对变通道角挤压工艺(CCAE)的微观组织演变、晶粒细化机制和CCAE变形后细晶粒镁合金的力学性能、热稳定性能的研究都未开展,而对CCAE变形工艺的理解也不够清晰。
     本文旨在研究CCAE变形过程中AZ31系镁合金的微观组织演变和变形后的力学性能以及CCAE变形工艺。重点讨论了CCAE变形过程中的晶粒细化机制和模型,变形后的室温压缩性能及断裂机制,变形后微观组织的热稳定性能,以及CCAE变形过程中的挤压力和应变。以期对AZ31系镁合金的CCAE变形机理和CCAE变形工艺本身进行初步研究和探讨。
     为此,选取了应用比较广泛的铸态AZ31镁合金作为研究对象。采用金相显微分析(OM)和X射线衍射分析等手段,对不同挤压温度下AZ31镁合金在CCAE变形过程中的显微组织和织构的演变规律进行了分析;采用室温力学性能测试,探讨了CCAE成型后AZ31镁合金的室温力学性能和室温下的断裂方式及断裂机理;采用透射电子显微技术(TEM),探讨了CCAE变形过程中AZ31镁合金的晶粒细化机制和模型;对经CCAE变形后的AZ31镁合金进行了退火处理,探讨了经CCAE变形后AZ31镁合金显微组织的热稳定性能;采用上限法对CCAE变形工艺进行了数值分析,对CCAE变形过程中挤压力和应变的计算进行了初步探讨。取得如下结果:
     AZ31镁合金经CCAE变形后,镁合金晶粒明显细化。变形后合金室温延伸率随晶粒细化而提高,屈服强度和硬度都随晶粒细化而提高,与Hall-Petch关系的趋势符合。在250~450℃温度范围内进行CCAE变形,AZ31镁合金的晶粒随变形温度的降低而减小。AZ31镁合金经CCAE热变形后,合金的室温强韧性得到综合改善。
     CCAE变形过程中AZ31镁合金的晶粒细化机制可以归结为在两不同内径的通道的交接处的剪切区的剪切作用引起的晶粒破碎和整个CCAE变形过程中发生的连续动态回复和再结晶(CDRR)。对于连续动态回复和再结晶,变形初期在粗晶粒内产生许多位错,位错会发生交互作用,重新排列形成位错界面以及亚晶界,而形成的位错界面以及亚晶界会进一步演化为小角度晶界和大角度晶界,镁合金得以细化。
     对挤压温度为250℃的挤压成型样进行晶体结构稳定性的实验,退火温度范围为200~500℃,保温时间为30min,随着退火温度的升高,晶粒不断长大,在200~275℃时,晶粒随温度上升呈平缓线性长大,从275~400℃晶粒长大趋于平缓,400℃以后,晶粒迅速长大。在这三个温度区间,其晶粒长大激活能分别为:73.6,16.7,105.1kJ/mol。在高温范围内的激活能介于纯镁的晶格自扩散能(QL=135kJ/mol)和晶界扩散能(Qgb=92kJ/mol)之间。在低温范围内,其晶粒长大激活能小于纯镁的晶界扩散能,并且与之比较接近。但是在中温范围内,晶粒长大激活能远小于QL和Qgb,其大约相当于0.18Qgb。在经过CCAE热变形后细化的晶粒在随后的退火过程中,晶粒长大的驱动力来源可能是多方面的,但最主要的而且在所有晶粒长大过程中都存在的驱动力来源是晶界的界面能。
     对CCAE变形过程中的挤压力和应变进行了上限法分析,发现理论计算和实验结果基本吻合。
Magnesium alloys have high potential as light metal structural materials for transport, electronic communications, aeronautics, astronautics and other applications due to their high specific properties, low density and high damping capacity. However, magnesium alloys have poor formability and limit ductility at room temperature ascribed to their hexagonal closed-packed (HCP) crystal structure with limited slip systems. Grain refinement is an important practice to improve the synthetic mechanical properties of magnesium alloy. As a completely new severe plastic deformation method, in recent reserch, there is still neither a detailed discription of microstructure evolution and grain refinement mechanism during CCAE process nor an investigation on the mechanical properties and thermal stability of AZ31 magnesium alloy after deformation. Moreover, the understanding for the CCAE process is still not clear.
     The purpose of this paper is to investigate the microstructure evolution, mechanical properties of AZ31 magnesium alloy by CCAE. And placed an emphasis on the understanding of grain refinement mechanism and model during CCAE, the compression deformation and fracture mechanism at room temperature, the thermal stability of deformed microstructure, the extrusion force and strain of CCAE, in order to provide a preliminary investigation and discussion for the CCAE deformation mechnism and process.
     Therefore, in this study as-casted AZ31 magnesium alloy were elected as CCAE deformation material for investigation. The AZ31 magnesium alloy microstructure and texture evolution were analyzed by Optical microscopy (OM), the mechanical properties and fracture way and mechanism were discussed by mechanical test at room temperature, the grain refinement mechanism and model were explored by transmission electron microscopy (TEM), the thermal stability of CCAE deformed AZ31 microstructure was investigated by annealing process, and the extrusion force and strain during CCAE process were calculated by upper-bound analysis. The main results can be summarized as follows:
     For AZ31 magnesium alloy, the grains were refined effectively after CCAE. The ductility, strength and microhardness were improved with the grain refinement, which is consistent with Hall-Petch relationship. The effect of grain refinement was improved with lowering the CCAE temperature. Both the ductility and synthetic mechanical properties of AZ31 magnesium alloy can be improved by CCAE.
     Grain refinement mechnism of AZ31 alloy during CCAE can be described as grain fragmentation in the shear zone and continuous dynamic recovery and recrystallization (CDRR). For the CDRR, at the initial stage of CCAE deformation, dislocation density increases and then dislocations are arranged into dislocation boundaries and sub-grain boundaries. With further deformation, these sub-boundaries evolve to low angle grain boundaries (LAGBs) and high angle grain boundaries (HAGBs), therefore the grains can be refined.
     To investigate the thermal stability of CCAE deformed AZ31 magnesium alloy, the 250℃deformed specimen was annealed at 200~500℃for 30min. The grain continually grew with elevatory temperature. The grain growth appeared gentle linear trend at 200~275℃, and the growth of grain appeared gentle trend at 275~400℃, after 400℃, the grain grew rapidly. In the three temperature intervals, the active energy of grain growth were 73.6,16.7,105.1kJ/mol respectively. In the high temperature range, the activation energy is between that for lattice self-diffusion (QL=135kJ/mol) in pure Mg and that for grain boundary diffusion (Qgb=92kJ/mol). In the low temperature range, it is less than Qgb but close to it. In the intermediate temperature range, on the hand, the Q value is considerably lower than QL and Qgb, corresponding to ~0.18Qgb. The driving forces sources of grain growth may be many ways, but the main source is interfacial energy of grain boundary.
     The extrusion force and strain during CCAE process were calculated by upper-bound analysis, and the extrusion force calculated value is well agree with the experiment result.
引文
[1] B.L.Mordike, T.Ebert. Magnesium Properties-applications-potential[J] Materials science and Engineering A, 2001, 302: 37-45.
    [2] M.M.Avedesian, H.Baker. Magnesium and Magnesium Alloys-ASM Speciality Handbook[M]. Ohio: ASM International, 1999.
    [3]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用[M].北京:机械工业出版社, 2002.
    [4] Mordike.B.L, Kainer.K.U. Magnesium Alloys and Their Applications[M]. Frankfurt: Werkstoff-Information sge sell schaft mbH, 1998.
    [5] Usk.B.R.S. Magnesium Products Design[M]. New York: The International Magnesium Association, 1987.
    [6] Roehrig.Klaus. Taschenbuch der Giesserei-Praxis[M]. Berlin: Fachverlag Schiele & Schoen Gmbh, 2000.
    [7]崔昆.钢铁材料及有色金属材料[M].北京:机械工业出版社, 1986.
    [8] Yoo.M.H. Slip, twinning and fracture in hexagonal close-pached metals[J]. Metallurgical Transaction, 1981, 12A: 409-415.
    [9] Ando.S, Tanaka.M, Tonda.H. Pyramidal slip in magnesium alloy single crystals[J]. Materials Science Forum, 2003, 87: 419-422.
    [10] Luo.A, Renaud.J, Nakatsugawa.I, et.al. Magnesium Casting for Automobile Applications[J]. JOM, 1995, 47(7): 28-31.
    [11] Avedesian Michael.M, Baker Hugh. Magnesium and Magnesium Alloys[M]. ASM International, 1999.
    [12] Jacques RP, DasGupta.R, Shearouse JD III. Hot Chamber Diecasting of Magnesium Alloy AM50A for Automotive Interior Structural Components[J]. Society of Automotive Engineers (USA), 1996: 15-22.
    [13] Robert.S.Busk. Magnesium Products Design[J]. The International Magnesium Association, 1987: 373-374.
    [14] Nishikawa.Y. Development of Electric Products Using Magnesium Alloy[J]. Function and Materials (Japan), 1999, 19(6): 21-27.
    [15]黄昌耀.两岸三地镁合金压铸工业现况与前景[J].材料热处理学报, 2001, (22): 8-16.
    [16] YU Qi, HUANG Shaodong, TANG Quanbo, et.al. Research and application of magnesium alloys in special components[C]. Materials Science Forum Vols.488-489 (June 2005). Beijing, 2004: 919-922.
    [17] Michael M.Avedesian. ASM Specialty handbook-magnesium and magnesium alloys[M]. Ohio: ASM International, Materials Park, 1999: 1-3.
    [18]陈振华等.镁合金[M].北京:化学工业出版社, 2004.
    [19] Schumann.S, Friedrich.H. Current and future use of magnesium in the automobile industry[J]. Materials Science Forum, 2003, (51): 419-422.
    [20] Kainer.K.U. The current state of technology and potential for furtherdevelopment of magnesium applications[M]. Weinheim: WILEY-VCH Verlag GmbH & Co. KG A, 2003.
    [21] Froes.F.H, Eliezer.D, Aghion.E. Proceedings of the second israeli international conference on magnesium science and technology. Dead Sea, Israel: 2000, 43.
    [22] Rozak.G.A, Purgert.R.E. Compressing forming of metals[J]. Magnesium, 1998, 27 (3): 1-5.
    [23]王渠东,丁文江.镁合金及其成型技术的国内外动态与发展[J].世界科技研究与发展, 2004, 26 (3): 39-42.
    [24] M.R.Barnett, M.D.Nave, C.J.Bettles. Deformation microstructures and textures of some cold rolled Mg alloys[J]. Materials science and Engineering A, 2004, (386): 205-211.
    [25] Perez-Prado.M.T, Del Valle.J.A. Microstructural Evolution During Large Strain Hot Rolling of an AM60 Mg Alloy[J]. Scripta Materialia, 2004, 50 (5): 661-667.
    [26] Galiyev A, Kaibyshev.R. Superplasticity in a Magnesium Alloy Subjected to Isothermal Rolling[J]. Scripta Materialia, 2004, 51 (2): 89.
    [27] Kaiser.F, Bohlen.J. Correlation of Microstructure and Machanical Properties of Rolled Magnesium Sheet AZ31. in edited by Kainer.K.U. Proceedings of the 6th International Conference in Magnesium Alloys and Their Application, Weinheim: Wiley-VCH, 2004: 456-462.
    [28] Chang.T.C, Wang.J.Y. Grain Refining of Magnesium Alloy AZ31 by Rolling[J]. Journal of Materials Processing Technology, 2003, 140 (3): 588-593.
    [29] Perez-prado.M.T, Del Valle.J.A, Ruano.O.A. Effect of Sheet Thickness on the Microstructural Evolution of an AZ61 Mg Alloy during Large Strain Hot Rolling[J]. Scripta Materialia, 2004, 50 (5): 667-673.
    [30] Klaus.B, Mueller. Indrict Extrusion of AZ31 and AZ61[J]. Magnesium Technology, 2003: 247-261.
    [31] Murai.T, Matsuoka.S, Miyamoto.S. Effects of extrusion conditions on microstructure and mechanical properties of AZ31B magnesium alloy extrusions[J]. Journal of Materials Processing Technology, 2003, 141 (2): 207-215.
    [32] Lapovok.R.Y, Barnett.M.R, Davies.C.H.J. Construction of extrusion limit diagram for AZ31magnesium alloy by FE simulation[J]. Journal of Materials Processing Technology, 2004, 146 (3): 408-413.
    [33] Kleiner.S, Uggowitzer.P.J. Mechanical anisotropy of extruded Mg-6% Al-1% Zn alloy. Materials Science and Engineering A., 2004, (379): 258-267.
    [34] Ogawa.N, Shiomi.M, Osakakd. Forming limit of magnesium alloy at elevated temperatures for precision forging[J]. International Journal of Machine tools & manufacture, 2002, (42): 607-614.
    [35]张士宏,王忠堂.镁合金的塑性加工工艺[J].金属成形工艺, 2002, 20 (5): 1-3.
    [36] Watanabe.H, Mukai.T, Ishikawa.K. High-strain-rate superplasticity at low temperature in a ZK61 magnesium alloy produced by power metallurgy[J]. Scripta Materialia, 1999, 41 (2): 209-213.
    [37] Watanabe.H, Mukai.T, Ishikawa.K, Higashi.K. High-strain-rate superplasticity in an AZ91 magnesium alloy processed by ingot metallurgy route. Materials Transactions, 2002, 43 (1): 78-93.
    [38] Watanabe.H, Mukai.T, Ishikawa.K. Superplasticity of a particle-strengthened WE43 magnesium alloy. Materials Transactions, 2001, 42(1): 157-163.
    [39] Emley. Principles of Magnesium Technology[M]. Oxford : Pergamon, 1966, 122-136.
    [40] S.K.Das, C.F.Chang. Magnesium Alloys and their Application[M]. Oberursel, FRG DGM Information Sge2 sellschaft, 1992.
    [41] Valiev.R.Z, Kovzmkov.A.V, Mnlyukov.R.R. Structure and Properties of Altrafine-grained Materials Produced by Severe Plastic Deformation[J]. Mat Sci Eng, 1993, A168: 141-148.
    [42]袁广银,孙杨善. Sb低合金化对Mg-9Al基合金显微组织和力学性能的影响[J].中国有色金属学报, 1999, 9 (4): 77-784.
    [43]彭广银,孙扬善. Sn对镁合金显微组织和力学性能的影响[J].中国有色金属学报, 1999, 9 (1): 74-79.
    [44] Sevillano.J.G, Houtte.P.V, Anernoudt.E. Large Strain Work Hardening and Textures[J]. Progr Mat Sci, 1981, 25 (2): 155-169.
    [45]杨平,孟利,毛卫民.利用道次间退火改善镁合金轧制成形性的研究[J].材料热处理学报, 2005, 26 (2): 34-38.
    [46]余琨,黎文献. Mg2Al2Zn系变形镁合金轧制及热处理后的组织与性能[J].金属热处理, 2002, 27 (5): 8~11.
    [47] Styczynski A, Hartig C, Bohlen J, et.al. Cold Rolling Textures in AZ31 Wrought Magnesium Alloy[J]. Scripta Materialia, 2004, 50: 943~947.
    [48]傅定发,张辉,夏伟军.细晶镁合金的制备方法[J].轻合金加工技术, 2004, 32 (3): 41-43.
    [49] Segal.V.M. Materials Processing by Simple Shear[J]. Mat Sci Eng, 1995, A197(2): 157-164.
    [50] Segal.V.M, Reznikovvi, Drobyshevskii.A.E, et al. Plastic working of metals by simple shear [J]. Russian Metallurgy, 1981, (1): 99-105.
    [51] Valiev.R.Z, Krailnikov.N.A, Tsenev.N.K. Plastic deformation of alloys with submicron grained structure[J]. Materials Science & Engineering A, 1991, 137: 35-40.
    [52] Valiev.R.Z, Korznikov.A.V, Mulyukov.R.R. Structure and properties of ultra-fine grained materials produced by severe plastic deformation[J]. Materials Science & Engineering A,1993, 168 (2):141-148.
    [53] Zhil Yaev.A.P, Gubicza.J, Surinach, et al. Calorimetric and X-ray measurements in ult rafine grained nickel[J] Materials Science Forum, 2003, 426-432 (5): 4507-4512.
    [54] Korchef.A, Njah.N, Masmoudi.J, et al. Evolution of the mechanical properties of aluminum containing Al8Fe2Si precipitates during equal channel angular pressing[J]. Advanced Engineering Materials, 2004, 6 (8):639-643.
    [55] Wangj.T, Cao.X.F, Du.Z.Z, et al. The effect of equal channel angular pressing routes on structure evolution in a commercial low carbon steel[A]. Materials Processing and Manufacturing Division. Ultrafine Grained Materials III[C]. Charlotte, NC,USA: TMS, 2004, 345-350.
    [56] Kim.S.M, Kim.J, Shin.D.H, et al. Microstructure development and segment formation during ECAE pressing of Ti26Al24V alloy[J]. Scripta Materialia, 2004, 50 (7):927-930.
    [57] Zherna kov.V.S, Latysh.V.V , Stol Yarov.V.V, et al. The developing of nanostructured SPD Ti for struct ural use [J]. Scripta Materialia, 2001, 44 (8-9): 1771-1774.
    [58] Cabibbo.M, Evangelista.E, Latini.V, et al. Development of nanostructured 1200 and 3103 aluminum alloys by equal channel angular pressing[J]. Materials Science Forum, 2003, 426-432 (3): 2673-2680.
    [59]杜忠泽,冯广海,符寒光,王经涛,赵西成. ECAP变形与材料组织性能控制的研究[J].材料工程, 2006 (3): 64-68.
    [60] Nakashima.K, Horita.Z, Nemoto.M, et al. Influence of channel angle on the development of ult rafine grains in equal channel angular pressing [J]. Acta Materialia, 1998, 46 (5): 1589-1599.
    [61] NaKashima.K, Horita.Z, Nemoto M, et al. Development of a multi-pass facility for equal channel angular pressing to high total strains[J]. Materials Science and Engineering A, 2000, 281 (1):82-87.
    [62] Iwahashi.Y, Wang.J, Horita.Z, et al. Principle of equal-channel angular pressing for the processing of ultra-fine grained materials[J]. Scripta Materialia, 1996, 35 (2):143-146.
    [63] Wu.Y, Baker.I. Experimental study of equal channel angular extrusion[J]. Scripta Materialia, 1997, 37 (4): 437-442.
    [64] Delo.D.P, Semita Tin.S.L. Finite element modeling of non-isothermal equal-channel angular extrusion[J]. Metallurgical and Materials Transactions A, 1999, 30 (5):1391-1402.
    [65]刘英,陈维平,张卫文.等通道转角挤压后AZ31镁合金的微观结构与性能[J].华南理工大学学报, 2004, 32 (9): 50-53.
    [66]毛卫民,赵新兵.金属的再结晶与晶粒长大[M].北京:冶金工业出版社, 1994.
    [67]黄光胜,汪凌云,范永革. AZ31B镁合金挤压工艺研究[J].金属成形工艺, 2002, 20 (5): 11-14.
    [68] Myshlyaev.M.M, McQueen.H.J, Mwembela.A, Konopleva.E. Twinning, dynamic recovery and recrystallization in hot worked Mg-Al-Zn alloy[J]. Materials Science and Engineering A, 2002, 337: 121.
    [69] Yoo.M.H, Agnew.S.R, Morris.J.R, Ho.K.M. Non-basal slip systems in hcp metals and alloys: source mechanisms[J]. Materials Science and Engineering A, 2001, 87: 319-321.
    [70] Staroselsky.A, Anand.L. A constitutive model for hcp materials deforming by slip and twinning: application to magnesium alloy AZ31B. Internationsl Journal of Plasticity, 2003, 19: 1843.
    [71] Ono.N, Rowak.R. Effect of deformation temperature on Hall-Petch relationship registered for polycrystalline magnesium[J]. Material Letters, 2003, 58: 39-45.
    [72] Mukai.T, Watanabe.H, Ishikawa.K, Higashi.K. Guide for enhancement of room temperature ductility in mg alloys at high strain rates[J]. Materials Science Forum, 2003, 171: 419-422.
    [73] Ion.S.E, Humphreys.F.J, White.S.H. Dynamic Recrystallization and the Development of Microstructure during the High Temperature Deformation of Magnesium[J]. Acta Materialia, 1982, 30 (10): 1909-1917.
    [74] Galiyev.A, Kaibyshev.R, Gottstein.G. Correlation of plastic Deformation and Dynamic Recrystallization in Magnesium Alloy ZK60[J]. Acta Materialia, 2001, 49 (7): 1199-1213.
    [75] Gourdet.S , Montheillet.F. A model of continuous dynamic recrystallization[J]. Acta Mater, 2003, 51: 2685-2699.
    [76] Igarashi.M, Khantha.M, Vitek.V. N-body inter-atomic potentials for hexagonal close-packed metals[J]. Philosophical Magazine B, 1991, 63 (3): 603-627.
    [77] Yang.X.Y, Hiromi.M , Taku.S. Dynamic evolution of fine grain structure during hot deformation of an AZ31 magnesium alloy[J]. Journal of Japan Institute of Light Metals, 2002, 52 (7): 318-323.
    [78] Yamagata.H, Ohuchida.Y, Saito.N, et al. Nucleation of new grains during discontinuousdynamic recrystallization of 99.998 mass% aluminum at 453K[J]. Scripta Mater, 2001, 45 (9): 1055-1061.
    [79]刘楚明,刘子娟,朱秀荣.镁及镁合金动态再结晶研究进展[J].中国有色金属学报, 2006, 16 (1): 1-12.
    [80] Ion.S.E, Humphreys.F.J, White S.H. Dynamic recrystallisation and the development of microstructure during the high temperature deformation of magnesium[J]. Acta Metall, 1982, 30: 1909-1919.
    [81] Belyakov.A , Miura.H , Sakai.T. Dynamic recrystallization under warm deformation of a 304 type austenitic stainless steel[J]. Mater Sci Eng A, 1998, A255:139-147.
    [82] Miura.H, Aoyam.H, Sakai.T. Effect of grain boundary misorientation on dynamic recrystallization of Cux Sibicrystals[J], Jpn Inst Metals, 1994,58 (3): 267-275.
    [83] McQueen.H.J. Development of dynamic recrystallization theory[J]. Mater Sci Eng A, 2004, A387: 203-208.
    [84] Yang.X.Y, Hiromi.M, Taku.S. Dynamic evolution of new grains in magnesium alloy AZ31 during hot deformation[J]. Mater Trans, 2003, 44 (1): 197-203.
    [85] Ponge , Bredehoft.M, Gottstein.G. Dynamic recrystallization in high purity Aluminium[J]. Scripta Mater, 1997, 37 (1): 1769-1775.
    [86] McQueen.H.J. Varieties and limitations of dynamic recrystallization mechanisms in Al alloys [J]. Light Metals, 2000, 20-23: 419-430.
    [87] Yamagata.H, Ohuchida.Y, Saito.N, et al. Dynamic recrystallization and dynamic recovery of 99.99mass% aluminum single crystal having [112] orientation[J]. J Mater Sci Lett, 2001, 20: 1947-1951.
    [88] C.W.Su, L.Lu, M.O.Lai. A model for the grain refinement mechanism in equal channel angular pressing of Mg alloy from microstructural studies[J]. Materials Science and Engineering A, 2006, 434: 227-236.
    [89] H.J.Frost, M.E.Ashby, Deformation Mechanism Maps[M]. Oxford: PergamonPress, 1982.
    [90] H.K.Kima, W.J.Kimb. Microstructural instability and strength of an AZ31 Mg alloy after severe plastic deformation[J]. Materials Science and Engineering A, 2004, 385: 300-308.
    [91]吴诗惇.挤压理论[M].北京:国防工业出版社, 1994.
    [92] B.Avitzur. Metal Forming: Processes and Analysis, 1st ed[M]. New York: McGraw-Hill, 1968.
    [93] R.Hill. The Mathematical Theory of Plasticity, 1st ed[M]. New York: Oxford University Press, 1967.
    [94] A.R.Eivani, A.Karimi Taheri. An upper bound solution of ECAE process with outer curvedcorner[J] Journal of Materials Processing Technology, 2007, 182: 555-563.
    [95] V.M.Segal. Slip line solutions, deformation mode and loading historyduring equal channel angular extrusion[J]. Mater. Sci. Eng. A, 2003, 345: 36–46.
    [96] J.Alkorta, J.G.Sevillano. A comparison of FEM and upper-bound type analysis of equal-channel angular pressing (ECAP)[J]. J. Mater. Proc. Technol, 2003, 141: 313-318.
    [97] B.S.Altan, G.Purcek, I.Miskioglu. An upper bound analysis for equal channel angular extrusion[J].J. Mater. Proc. Technol, 2005, 167: 137–146.
    [98] H.Cui, Computational modelling of equal channel angular extrusion, Ph.D. Dissertation, Department of Mechanical Engineering, TexasA&MUniversity, College Station, TX, 1996.
    [99] C.J.Luis Perez, Upper bound analysis and FEM simulation of equal fillet radii angular pressing[J]. Model. Simul. Mater. Sci. Eng, 2004, 12: 205–214.
    [100] Z.A.Khan, U.Chakkingal, P.Venugopal. Analysis of forming loads, microstructure development and mechanical property evolution during equal channel angular extrusion of a commercial grade aluminium alloy[J] J. Mater. Proc. Technol, 2003, 135: 59–67.
    [101] T.Aida, K.Matsuki, Z.Horita, T.G.Langdon. Estimating the equivalent strain in equal channel angular pressing[J]. Scr. Mater, 2001, 44: 575–579.
    [102] D.P.DeLo, S.L.Semiatin. Finite-element modelling of nonisothermal equal-channel angular extrusion[J]. Metall. Mater. Trans. A, 1999, 30: 1391–1402.
    [103] R.Srinavasan. Computer simulation of the equichannel angular extrusion (ECAE) process[J]. Scripta Mater, 2001, 44: 91–96.
    [104] H.S.Kim, M.H.Seo, S.I.Hong, On the die corner gap formation in equal channel angular pressing[J]. Mater. Sci. Eng. A, 2000, 291: 86–90.
    [105] P.B.Prangnell, C.Harris, S.M.Roberts. Finite element modelling of equal-channel angular extrusion[J] Scripta Mater, 1997, 37: 983–989.
    [106] B.S.Moon, H.S.Kim, S.I.Hong. Plastic flow and deformation homogeneity of 6061 Al during equal channel angular pressing[J]. Scripta Mater, 2002, 46: 131–136.
    [107] G.M.Stoica a, D.E.Fielden a, R.McDaniels. An analysis of the shear zone for metals deformed by equal-channel angular processing[J]. Materials Science and Engineering A, 2005, 410–411: 239–242.
    [108] A.V.Nagasekhar, Yip Tick-Hon, S.Lib, H.P.Seowa. Effect of acute tool-angles on equal channel angular extrusion/pressing[J]. Materials Science and Engineering A, 2005, 410–411: 269–272.
    [109] S.Lia, M.A.M. Bourke, I.J.Beyerlein b, D.J.Alexandera,B,Clausen. Finite element analysis of the plastic deformation zone andworking load in equal channel angular extrusion[J]. MaterialsScience and Engineering AMMO Materials Science and Engineering A
    [110] A.R.Eivani, A.Karimi Taheri. The effect of dead metal zone formation on strain and extrusion force during equal channel angular extrusion[J]. Computational Materials Science, 2007, 7: 1-7.
    [111] R.E.Goforth, K.T.Hartwig, L.R.Cornwell. Investigations and Applications of Severe Plastic Deformation[M]. Netherlands, Dordrecht: Kluwer Academic Publishers, 2000.
    [112] M.H.Paydar, M.Reihanian, R.Ebrahimi, T.A.Dean, M.M.Moshksar. An upper-bound approach for equal channel angular extrusion with circular cross-section[J]. Journal of Materials Processing Technology, 2007, 7: 1-6.
    [113] R.Ebrahimi, A.Najafizadeh. A new method for evaluation of friction in bulk metal forming[J]. J. Mater. Process. Technol, 2004, 152: 136–143.
    [114] A.R.Eivani 1, A.Karimi Taheri. Effective strain based on shear and principal strains in equal channel angular extrusion with outer curved corner[J]. Computational Materials Science, 2007, 8: 1-15.
    [115] A.R.Eivani, A.Karimi Taheri. A new method for estimating strain in equal channel angular extrusion[J]. Journal of Materials Processing Technology, 2007, 184: 148-153.
    [116] K.Xia, J.Wang. Shear, principal, and equivalent strains in equal-channel angular deformation[J]. Metall. Mater. Trans, 2001, A32 (10): 2639–2647.
    [117] Y.Iwahashi, J.Wang, Z.Horita, M.Nemoto, T.G.Langdon. An investigation of microstructural evolution during equal-channel angular pressing[J]. Acta Mater, 1997, 45: 4733–4741.
    [118] J.K.Kim, W.J.Kim. Analysis of deformation behavior in 3D during equal channel angular extrusion[J]. Journal of Materials Processing Technology, 2006, 176: 260–267.
    [119]黄光胜,汪凌云,黄光杰. AZ31镁合金高温本构方程[J].金属成形工艺, 2004, 22 (2): 41-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700