系列d-f异双核发光配合物的研制及性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
(1):本文采用溶剂热合成方法,合成了12种M-Ln(M=Zn,Cd;Ln=Eu,Tb,Gd,Pr,Nd,Ho,Er,Yb) d-f异双核配合物,另有3种Ln_2(Ln=Pr,Ho,Er)同双核稀土配合物。全部得到了单晶体,经过X-光衍射测定,确定了它们的分子结构,分子式如下: EuCd(C_8H_7O_3)_5(phen)(H_2O) (1) TbCd(C_8H_7O_3)_5(phen)(H_2O) (2) GdCd(C_8H_7O_3)_5(phen)(H_2O) (3) PrCd(C_8H_7O_3)_5(phen)(H_2O) (4) NdCd(C_8H_7O_3)_5(phen)(H_2O) (5) HoCd(C_8H_7O_3)_5(phen)(H_2O) (6) ErCd(C_8H_7O_3)_5(phen)(H_2O) (7) EuZn(C_8H_7O_3)_5(phen)(H_2O) (8) TbZn(C_8H_7O_3)_5(phen)(H_2O) (9) ErZn(C_8H_7O_3)_5(phen)(H_2O) (10) YbZn(C_8H_7O_3)_5(phen)(H_2O) (11) HoZn(C_8H_7O_2)_5(phen)(H_2O) (12) Pr_2(C_7H_4O_2Cl)_6(phen)_2(H_2O)2 (13) Ho_2(C_7H_4O_2Cl)_6(phen)_2 (14) Er_2(C_7H_4O_2Cl)_6(phen)_2 (15)
     (2):研究了这些化合物在可见区和近红外区的发光性能。化合物(1),(8)发射很强的红光,化合物(2),(9)发射很强的绿光;化合物(5),(6),(7),(11),(12),(14),(15)在可见区的荧光发射相对较弱,而在近红外区却表现出明显的稀土离子特征发射,化合物(13)在近红外区没有检测到文献报道的Pr(III)特征发射。
     (3):通过对d-f配合物与相应过渡金属配合物发光性能的对比研究,进一步证实了以下规律:第一,当配体激发态能级与稀土离子激发态能级相匹配时,杂双核配合物中d块与f块之间的能量传递非常有效,导致d块发射减弱,甚至完全猝灭,而相对的f块发射却很强,即d块对f块发射起到很好的敏化作用;第二,虽然稀土离子具有丰富的能级可与配体激发态能级相匹配,但是由于稀土离子的近红外发光,导致可见区稀土离子特征发射较弱,且成带状谱,而相应的d块发射却较强,d块对f块发射的敏化作用不明显。第三,当配体与稀土离子激发态能级不匹配(由于稀土离子激发态能级过高或者过低)时,d块与f块之间的能量传递不能进行,在可见区观察不到稀土离子的特征发射,而d块发射却较强,d块对f块发射没有起到敏化作用。此外,我们还对化合物进行了IR,UV-VIS-NIR光谱的测定和分析,以有利于化合物发光性能综合考察,分析和对比。
Fifteen coordination complexes, including 12 d-f hetero-binuclear M-Ln complexes (M = Zn, Cd; Ln = Eu, Tb, Gd, Pr, Nd, Ho, Er, and Yb) and 3 homo-binuclear Ln-Ln complexes (Ln=Pr, Ho and Er), have been thermally synthesized and structurally characterized by X-ray diffraction. Their formulas are presented as following: EuCd(C_8H_7O_3)_5(phen)(H_2O) (1) TbCd(C_8H_7O_3)_5(phen)(H_2O) (2) GdCd(C_8H_7O_3)_5(phen)(H_2O) (3) PrCd(C_8H_7O_3)_5(phen)(H_2O) (4) NdCd(C_8H_7O_3)_5(phen)(H_2O) (5) HoCd(C_8H_7O_3)_5(phen)(H_2O) (6) ErCd(C_8H_7O_3)_5(phen)(H_2O) (7) EuZn(C_8H_7O_3)_5(phen)(H_2O) (8) TbZn(C_8H_7O_3)_5(phen)(H_2O) (9) ErZn(C_8H_7O_3)_5(phen)(H_2O) (10) YbZn(C_8H_7O_3)_5(phen)(H_2O) (11) HoZn(C_8H_7O_2)_5(phen)(H_2O) (12) Pr_2(C_7H_4O_2Cl)_6(phen)_2(H_2O)2 (13) Ho_2(C_7H_4O_2Cl)_6(phen)_2 (14) Er_2(C_7H_4O_2Cl)_6(phen)_2 (15)
     The study on luminescent property in the visible and NIR regions reveals that complexes (1) and (8) emit strong red light, complexes (2) and (9) emit strong green light, and the left complexes besides (13) emit weak fluorescence in the visible region; all the 15 complexes except (13) show the characteristic emission of lanthanide ion in the NIR region.
     Compare and contrast the luminescence of d-f complexes and corresponding transition metal complexes (d complexes), the following rules are confirmed:
     (1) When the energy level of excited states between ligand and lanthanide ion is matching, the energy transferring between d block and f block in hetero-binuclear complexes is very efficient. This results in the strengthening of emission of f block and weakening of emission of d block, so much as quenching. That is to say, d block sensitize the emission of f block.
     (2) Although the lanthanide ion possesses abundant energy levels and which can matches the energy level of excited states of ligand, luminescence of the lanthanide ion in the NIR region leads to the weakening of its characteristic emission in the visible region and the strengthening of emission of d block in the visible region. As a result, the emission of lanthanide ion in the visible region takes on zonal spectra, the sensitized action of d block is not obvious to the emission of f block
     (3) When the energy level of excited states between ligand and lanthanide ion is not matching (the energy level of excited states of lanthanide ion is much higher or lower), the energy transferring between d block and f block in hetero-binuclear complexes does not take place. So the characteristic emission of lanthanide ion is not observed in the visible region, however the emission of d block is strong, i.e., d block does not sensitize the emission of f block.
     In addition, the IR and UV-Vis-NIR of all complexes for the analysis and contrast of luminescent property are measured and analsized.
引文
[1] Philip Lenaerts, Kris Driesen, Rik Van Deun, et al. Covalent Coupling of Luminescent Tris (2-thenoyltrifluoroacetonato) lanthanide(III) Complexes on a Merrifield Resin. Chem. Mater., 2005, 17(8): 2148-2154.
    [2] Claudio Pettinari, Fabio Marchetti, Riccardo Pettinari, et al. Synthesis, structure and luminescence properties of new raree arth metal complexes with 1-phenyl-3-methyl-4- acylpyrazol-5-ones. J .Chem. Soc., Dalton Trans., 2002, 1409- 1415.
    [3] Veli-Matti Mukkala, Christian Sund, Marek Kwiatkowski, et al. New Heteroaromatic Complexing Agents and Luminescence of Their Europium (III) and Terbium(III) Chelates. Helvetica Chimica Acta., 1992, 75(5): 1621-1632.
    [4] William T. Carnall. The absorption and fluorescence spectra of rare earth ions in solution. Handbook on the Physics and Chemistry of Rare Earths, 1979, 3: 171-208.
    [5] Philippa A. Brayshaw, Jean-Claude G. B?nzli, Pascal Froidevaux, et al. Synthetic, Structural, and Spectroscopic Studies on Solids Containing Tris (dipicolinato) Rare Earth Anions and Transition or Main Group Metal Cations. Inorg. Chem., 1995, 34(8): 2068-2076.
    [6] Nariaki Sato, Masahiro Goto, Satoshi Matsumoto, et al, Lipophilic phenylphosphonic acid-lanthanide ion complexes which show efficient energy-transfer luminescence. Tetrahedron Letters, 1993, 34 (30): 4847-4850.
    [7] Nanda Sabbatini, Massimo Guardigli and Jean-Marie Lehn. Luminescent lanthanide complexes as photochemical supramolecular devices. Coordination Chemistry Reviews, 1993, 123(1): 201-228.
    [8] Kris Driesen, Rik Van Deun, Christiane G?rller-Walrand,et al. Near-Infrared Luminescence of Lanthanide Calcein and Lanthanide Dipicolinate Complexes Doped into a Silica-PEG Hybrid Material. Chem. Mater., 2004, 16(8): 1531-1535.
    [9] Klink, S. I., Grave, L., Reinhoudt, D. N., et al. A Systematic Study of the Photophysical Processes in Polydentate Triphenylene-Functionalized Eu3+, Tb3+, Nd3+, Yb3+, and Er3+ Complexes. J. Phys. Chem. A., 2000, 104(23): 5457-5468.
    [10] L.D. Carlos, R.A. Sá Ferreira, J.P. Rainho. Fine-Tuning of the Chromaticity of the Emission Color of Organic-Inorganic Hybrids Co-Doped with EuIII, TbIII, and TmIII. Advanced Functional Materials.,2002, 12(11): 819-823.
    [11] Bin zhao, Peng Cheng, Xiaoyan Chen, et al. Design and Synthesis of 3d-4f Metal-BasedZeolite-type Materials with a 3D Nanotubular Structure Encapsulated “Water”Pipe. J. AM. CHEM.SOC. 2004, 126(10): 3012-3013.
    [12] Bin Zhai, Long Yi, Hong-Shen Wang, et al. First 3D 3d-4f Interpenetrating Structure: Synthesis, Reaction, and Characterization of {[LnCr(IDA)2(C2O4)]}n. Inorg. Chem, 2006, 45(21): 8471-8473.
    [13] Yi-Shan Song, Bing Yan, Lin-Hong Weng. Synthesis and crystal structure of a novel two-dimensional 3d-4f heterometallic coordination polymer constructed from three-ply-like layers. Inog. Chem. Comm., 2006, 9(6): 567-570.
    [14] N.Audebrand, J.P.Auffredic, D.Louer. Structure of Ag2Ce(H2O)(NO3)5 and its Thermal Decomposition Studied by Temperature-Dependent X-Ray Power Diffraction. Journal of Solid State Chemistry. 1997, 132(2): 361-371.
    [15] 梁玉仓,洪茂椿,曹荣,等。含吡啶-2,5-二羧酸稀土-锌配位聚合物的合成结构和性能. 无机化学学报,2002,18(1): 100-107.
    [16] Wen-Tong Chen, Ming-sheng Wang, Li-Zhen Cai, et al. An Effective Approach to Layered Structures of Hybrid Prussian Blue Complexes: Monolayered [Sm(DMF)2(H2O)3 (μ-CN)3 M(CN)3]n·nH2O and Bilayered [Sm(DMF)(H2O)3(μ-CN)4 M(CN)2]n·nH2O (M=Fe, Co). Crystal Growth & Design, 2006, 6(8): 1738-1741.
    [17] Rajesh Koner, Gene-Hsiang Lee, Yu Wang, et al. Two New Diphenoxo-Bridged Discrete Dinuclear CuII GdIII Compounds with Cyclic Diimino Moieties: Syntheses, Structures, and Magnetic Properties. Eur. J. Inorg. Chem., 2005, 1500-1505.
    [18] Yucang Liang, Rong Cao, Weiping Su, et al. Syntheses, Structures, and Magnetic Properties of Two Gadolinium(III)-Copper(II) Coordination Polymers by a Hydrothermal Reaction. Angew. Chem. Int. Ed. 2000, 39(18): 3304-3307.
    [19] Takafumi Kido, Shigeyuki Nagasato, Yukinari Sunatsuki, et al. A cyclic tetranuclear Cu2Gd2 complex with an s=8 ground state derived from ferromagnetic spin-couping between copper(Ⅱ) and gadolinium(III)ions arrayed alternately. Chem.Commun., 2000, 2113-2114.
    [20] Rajesh Koner, Gene-Hsiang Lee, Yu Wang, et al. Two New Diphenoxo-Bridged Discrete Dinuclear CuIIGdIII Compounds with Cyclic Diimino Moieties: Syntheses, Structures, and Magnetic Properties. Eur. J. Inog.Chem., 2005, 1500-1505.
    [21] Takuya Shiga, Masaaki Ohba, Hisashi Okawa. Structure and magnetism of trinuclear CuII-GdIII- CuII complex derived from one-pot reaction with 2,6-di (acetoacetyl) pyridine. Inorg.Chem. Commun, 2003, 6(1): 15-18.
    [22] Bunzli, J.-C. G.; Piguet, C. Lanthanide-Containing Molecular and Supramolecular Polymetallic Functional Assemblies. Chem. Rev., 2002, 102(6): 1897-1928.
    [23] Tsukube, H., Shinoda, S. Lanthanide Complexes in Molecular Recognition and Chirality Sensing of Biological Substrates. Chem. Rev., 2002, 102(6): 2389-2404.
    [24] Huihui Li, Satoshi Inoue, Ken-ichi Machida, et al Preparation and Luminescence Properties of Organically Modified Silicate Composite Phosphors Doped with an Europium(III) β-Diketonate Complex. Chem. Mater., 1999, 11(11): 3171 –3176.
    [25] Vlasoula Bekiari, Georgios Pistolis, and Panagiotis Lianos. Intensely Luminescent Materials Obtained by Combining Lanthanide Ions, 2,2'-Bipyridine, and Poly(ethylene glycol) in Various Fluid or Solid Environments. Chem. Mater., 1999, 11 (11): 3189-3195.
    [26] P. A.TANNER, BING YAN, HONGJIE ZHANG. Preparation and luminescence properties of sol-gel hybrid materials incorporated with europium complexes. JOURNAL OF MATERIALS SCIENCE, 2000, 35: 4325-4328.
    [27] Kido, J., Okamoto, Y. Organo Lanthanide Metal Complexes for Electroluminescent Materials. Chem. Rev., 2002, 102(6): 2357-2368.
    [28] S. Capecchi, O. Renault, D.-G. Moon, et al. High-Efficiency Organic Electroluminescent Devices Using an Organoterbium Emitter. Advanced Materials, 2000, 12(21): 1591-1594.
    [29] R. J. Curry and W. P. Gillin. Electroluminescence of organolanthanide based organic light emitting diodes. Current Opinion in Solid State and Materials Science, 2001, 5(6): 481-486.
    [30] Vivian Wing-Wah Yam and Kenneth Kam-Wing Lo. Recent advances in utilization of transition metal complexes and lanthanides as diagnostic tools. Coordination Chemistry Reviews, 1999, 184(1): 157-240.
    [31] Hiroshi Tsukube, Satoshi Shinoda and Hitoshi Tamiaki. Recognition and sensing of chiral biological substrates via lanthanide coordination chemistry. Coordination Chemistry Reviews, 2002, 226(1-2): 227-234.
    [32] Wai-Kwok Wong, Hongze Liang, Wai-Yeung Wong, et al. Synthesis and near-infrared luminescence of 3d-4f bi-metallic Schiff base complexes. New J. Chem, 2002, 26: 275-278.
    [33] Martinus H. V. Werts, Jan W. Verhoeven and Johannes W. Hofstraat. Efficient visible light sensitization of water-soluble near-infrared luminescent lanthanide complexes. J. Chem. Soc.,Perkin Trans.2000, 2: 433-439.
    [34] Soo-Gyun Roh, Min-Kook Nah, Jae Buem Oh, et al. Synthesis, crystal structure and luminescence properties of a saturated dimeric Er(III)-chelated complex based on benzoate and bipyridine ligands. Polyhedron, 2005, 24(1): 137-142.
    [35] Li-Ning Sun, Hong-Jie Zhang, Qing-Gou Meng, et al. Near-Infrared Luminescent Hybrid Materials Doped with Lanthanide(Ln)Complexes (Ln=Nd,Yb) and Their Possible Laser Application. J.Phys.Chem.B. 2005, 109(13): 6174-6182.
    [36] Andrew P. Bassett, Rik Van Deun, Peter Nockemann, et al. Long-Lived Near-Infrared Luminescent Lanthanide Complexes of Imidodiphosphinate“Shell” Lifands. Inorg. Chem., 2005, 44(18): 6140-6142.
    [37] Xiao-Ping Yang, Richard A. Jones, Michael M. Oye, et al. Near Infrared Luminescence and Supramolecular Structure of a Helical Triple-Decker Yb(III) Schiff Base Cluster. Crystal Growth & Desicn, 2006, 9(6): 2122-2125.
    [38] Kris Driesen, Rik Van Deun, Christiane G?rller-Walrand, et al, Near-Infrared Luminescence of Lanthanide Calcein and Lanthanide Dipicolinate Complexes Doped into a Silica-PEG Hybrid Material. Chem. Mater. 2004, 16(8): 1531-1535.
    [39] Martinus H. V.Werts, Richard H. Woudenberg, Peter G. Emmerink, et al, A Near-Infrared Luminescent Label Based on YbIII Ions and Its Application in a Fluoroimmunoassay. Angew. Chem. Int. Ed, 2000, 39(24): 4542-4544.
    [40] Graham M. Davies, Rebecca J. Aarons, Graham R. Motson, et al, Structural and near-IR photophysical studies on ternary lanthanide complexes containing po;y(pyrazolyl)borate and 1,3-diketonate ligands. Dalton Trans., 2004, 1136-1144.
    [41] J.X. Meng, K.F. Li, J. Yuan, et al. Near-IR luminescence and photophysics of Yb-porphyrinate complexes. Chem Phys Lett, 2000, 332: 313-318.
    [42] David Parker. Luminescent lanthanide sensors for pH, pO2 and selected anions. Coordination Chemistry Reviews, 2000, 205(1): 109-130.
    [43] Marian Elbanowski and Barbara M kowska. The lanthanides as luminescent probes in investigations of biochemical systems.Journal of Photochemistry and Photobiology A: Chemistry,1996, 99(2): 85-92.
    [44] Martinus H. V. Werts, Johannes W. Hofstraat, Frank A. J. Geurts et al. Fluorescein and eosin as sensitizing chromophores in near-infrared luminescent ytterbium(III), neodymium(III)and erbium(III) chelates. Chemical Physics Letters, 1997, 276(3): 196-201.
    [45] Claude Piguet, and Jean-Claude G. B?nzli. Mono-and polymetallic lanthanide - containing functional assemblies : a field between tradition and novelty. Chem. Soc. Rev, 1999, 28: 347-358.
    [46] Peter Caravan, Jeffrey J. Ellidon, Thomas J. McMurry, et al. Gadolinium(III) Chelates as MRI Contrast Agents: Structure, Dynamics, and Applications. Chem. Rev.,1999, 99(9): 2293-2352.
    [47] Rik Van Deun, Peter Nockemann, Christiane G?rller-Walrand, et al. Strong erbium luminescence in the near-infrared telecommunication window. Chemical Physics Letters,2004, 397(4): 447-450.
    [48] L.-N. Sun, H.-J. Zhang, L.-S. Fu, et al. A New Sol-Gel Material Doped with an Erbium Complex and Its Potential Optical-Amplification Application. Advanced Functional Materials, 2005, 15(6): 1041-1048.
    [49] Oun-Ho Park, Se-Young, Byeong-Soo Bae. Indirect excitation of Er3+ in sol-gel hybrid films doped with an erbium complex. Applied Physics Letters, 2003, 82(17): 2787-2789.
    [50] 尹明彩,李明,袁良杰,孙聚堂,Tb-Zn 一维配为聚合物的合成及发光性质. 发光学报, 2005, 26: 448-454.
    [51] Wing-Kit Lo, Wai-Kwok Wong, Wai-Yeung Wong, et al, Heterobimetallic Zn(II)-Ln(III) Phenylene-Bridged Schiff Base Complexes, Computational Studies, and Evidence for Singlet Energy Transfer as the Main Pathway in the Sensitization of Near-Infrared Nd3+ Luminescence. Inorg. Chem. 2006, 45(23): 9315-9325.
    [52] Ming-Cai Yin, Liang-Jie Yuan, Chang-Chun Ai, et al. Synthesis, structure and luminescence properties of europium and zinc ionic complexes. Polyhedron, 2004, 23(4): 529-536.
    [53] Md. Abdus Subhan, Hiroyasu Nakata, Takayoshi Suzuki, et al. Simultaneous observation of low temperature 4f–4f and 3d–3d emission spectra in a series of Cr(III)(ox)Ln(III) assembly. Journal of Luminescence, 2003, 101(4): 307-315.
    [54] Daniel Imbert, Martine Cantuel, Jean-Claude G. B?nzli, et al, Extending Lifetimes of Lanthanide-Based Near-Infrared Emitters (Nd, Yb) in the Millisecond Range through Cr(III) Sensitization in Discrete Bimetallic Edifices. J. AM. CHEM. SOC. 2003, 125(51): 15698-15699.
    [55] Md. Abdus Subhan, Ryouji Kawahata, Hiroyasu Nakata, et al. Synthesis, structure and spectroscopic properties of chloranilate-bridged 4f-4f dinuclear complexes: a comparative studyof the emission properties with Cr-Ln complexes. Inorganica Chinica Acta, 2004,357(11): 3139-3146.
    [56] Md. Abdus Subhan, Hiroyasu Nakata, Takayoshi Suzuki, et al, Simultaneous observation of low temperature 4f-4f and 3d-3d emission spectra in a series of Cr(III) (ox) Ln(III) assembly. Journal Luminescence, 2003, 101(4): 307-315.
    [57] Stephen I. Klink, Henk Keizer, Frank C. J. M. van Veggel. Transition Metal Complexes as Photosensitizers for Near-Infrared Lanthanide Luminescence. Angew. Chem, 2000, 39(23): 4139-4321.
    [58] Stephen I. Klink, Henk Keizer, Hans W. Hofstraat, et al. Transition metal complexes as a new class of photosensitizers for near-infrared lanthanide luminescence. Synthetic Metals, 2002, 127: 213-216.
    [59] Nail M. Shavaleev, Lucy P. Moorcraft, Simon J. A. Pope, et al, Sensitised near-infrared emission from lanthanides using a covalently-attached Pt(II) fragment as an antenna group. Chem. Commun, 2003, 1134-1135.
    [60] Qiu-Yun Chen, Qin-Hui Luo, Xue-Lei Hu, et al. Heterodinuclear Cryptates [EuML(dmf)](ClO4)2(M=Ca,Cd,Ni,Zn): Tuning the Luminescence of Europium(III) through the Selection of the Second MetalIon. Chem. Eur. J., 2002, 8(17): 3984-3990
    [61] 陈秋云,王艺宁,罗勤慧. d-f 杂核穴合物 Eu(III)-M(II)(M=Zn2+,Ni2+)的合成和荧光性质.应用化学. 2002, 19(12): 1197-1199.
    [62] Xiaoping Yang, Richard A. Jones, Qiaoyin Wu, et al. Synthesis, crystal structures and antenna-like sensitization of visible and near infrared emission in heterobimetallic Zn-Eu and Zn-Nd Schiff base compounds. Polyhedron., 2006, 25(2): 271-278.
    [63] Wai-Kwok Wong, Hongze Liang, Wai-yeung Wong, et al. Synthesis and near-infrared luminescence of 3d-4f bi-metallic Schiff base complexes. New J. Chem.,2002, 26: 275-278.
    [64] Wai-Kwok Wong, Xiaoping Yang, Richard A. Jones, et al. Multinuclear Luminescent Schiff-Base Zn-Nd Sandwich Complexes. Inorg. Chem. 2006, 45(11): 4340-4345.
    [65] Wing-Kit Lo, Wai-Kwok Wong, Jianping Guo, et al. Synthesis,structures and luminescent properties of new heterobimetallic Zn-4f Schiff base complexes. Inorganica Chimica Acta., 2004, 357(15): 4510-4521.
    [66] Takayuki Sanada, Takayoshi Suzuki, Takafumi Yoshida, et al. Heterodinuclear Complexes Containing d-and f-block Elements: Synthesis, Structural Characterization, andMetal-Metal Interactions of Novel Chromium(III)–Lanthanide (III) Compounds Bridged by Oxalate. Inorg. Chem., 1998, 37(18): 4712-4717.
    [67] Arnd Vogler, Horst Kunkely. Luminescent metal complexes: riversity of excited states. Topics in current chemistry, 2001, 213: 143-182.
    [68] Graham M. Davies, Simon J. A. Pope, Harry Adams, et al. Structural and Photophysical Properties of Coordination Networks Combining [Ru(bioy)(CN)4]2- Anions and Lanthanide(III) Cations: Rates of Photoinduced Ru-to-Lanthsnide Energy Transfer and Sensitized Neai-Infrared Luminescence. Inorg Chem., 2005, 44(13): 4656-4665.
    [69] Juan-Manuel Herrera, Simon J. A. Pope, Harry Adams, et al. Structural and Photophysical Properties of Coordination Networks Combining[Ru(Bpym)(CN)4]2- or [{Ru(CN)4}2 (μ-bpym)]4- Anions (bpym= 2,2′- Bipyrimidine) with Lanthanide(III) Cations: Sensitized Near-Infrared Luminescence from Yb(III), Nd(III), and Er(III) Following Ru-to-Lanthanide Energy Transfer. Inorg. Chem., 2006, 45(10): 3895-3904.
    [70] Nail M. Shavaleev, Gianluca Accors, Dalia Virgili, et al. Syntheses and Crystal Structures of Dinuclear Conplexes Containing d-Block and f-Block Luminophores. Sensitization of NIR Luminescence from Yb(III), Nd(III), and Er(III) Centers by Energy Transfer from Re(I)- and Pt(II)-Bipyrimidine Metal Centers.Inorg Chem., 2005, 44(1): 61-72.
    [71] Huaishan Wang, Guodong Qian, Minquan Wang, et al. Enhanced Luminescence of an Erbium(III) Ion-Association Ternary Complex with a Near-Infrared Dye. J. Phys. Chem. B. 2004, 108(23): 8084-8088.
    [72] Steve Comby, Daniel Lmbert, Anne-Sophie Chauvin, et al. Stable 8-Hydroxyquinolinate-Based Podates as Efficient Sensitizers of Lanthanide Near-Infrared Luminescence. Inorg. Chem, 2006, 45(2): 732-743.
    [73] Gerald A. Hebbink, Lennart Grave, Léon A. Woldering, et al. Unexpected Sensitization Efficiency of the Near-Infrared Nd3+, Er3+, and Yb3+ Emission by Fluorescein Compared to Eosin and Erythrosin. J. Phys. Chem. A, 2003, 107(14): 2483- 2491.
    [74] Stephen I. Klink, Patrick Oude Alink, Lennart Grave, et al. Fluorescent dyes as efficient photosensitizers for near-infrared Nd3+ emission. J. Chem. Soc., Perkin Trans. 2001, 2: 363-372.
    [75] Graham M. Davies, Rebecca J. Aarons, Graham R. Motson, et al. Structural and near-IR photophysical studies on ternary lanthanide complexes containing poly(pyrazolyl)borate and 1,3-diketonate ligands. Dalton Trans., 2004, 1136-1144.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700