开链冠醚桥连螯合型有机配体及双Schiff-base配体的合成与自组装化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,配位作用驱动的超分子体系的设计、合成和性质研究引起了化学家们浓厚的兴趣与广泛的关注。化学家们利用自组装方法合成了众多配位作用驱动的超分子体系,得到了许多分子组装的新的构建模型,并发现了一批具有新奇物理和化学性质的新材料。本文合成了一系列结构新颖的开链冠醚桥连的有机配体以及双Schiff-base配体,并研究它们在水热及溶剂条件下与金属离子的自组装化学。共合成了20个新型的配位化合物,通过红外、元素分析、X-射线单晶衍射及粉末衍射等方法表征了它们的结构,并对部分化合物的阴离子交换与荧光性质进行了研究。
     一、合成了两例对称双Schiff-base有机配体,并研究了它们与过渡金属Cd(II)、Ag(I)的配位化学,得到了5个结构新颖的配位聚合物:{Cd(L_1)(SCN)_2}n (1)、{Cd(L1)_2(OTf)_2·3THF}n (2)、{Ag——2(L_2)_2(PF_6)_2·2CH_3OH}n (3)、{Ag_2(L_2)_2(SbF_6)_2·CH-3OH·H_2O}n (4)、{Ag(L_2)(ClO_4)·0.5CH3OH·0.25THF}n (5),并表征和讨论了它们的晶体结构。其中3、4、5是同构的具有一维管状隧道的超分子组装体,在隧道中填充有不同的平衡阴离子,这为我们进行阴离子交换提供了条件。
     二、利用双Schiff-base配体与Ag(I)自组装所合成的超分子化合物3、4、5,进行了阴离子交换和荧光性质研究。讨论了阴离子与主体框架之间的弱相互作用,实现了不同阴离子对主体荧光发射的调控。
     三、合成了一系列开链冠醚桥连的有机配体,研究了它们在水热及溶剂条件下与过渡金属M(II)(M = Cu、Hg、Cd、Ni和Zn)和Ag(I)的配位化学,合成了10个结构新颖的配位化合物:{Cu(L_3)_2(NO_3)_2} (6)、{Ni_(0.5)(L_3)Cl·CH_3CN} (7)、{Cu(L_3)_2(ClO_4)_2} (8)、{Cu(L_3)_2(ClO_4)_2} (9)、{Hg(L_3)_(0.5)I_2} (10)、{Cd_(0.5)(L_4)(SCN)·CH_3CN}_n (11)、{Cu_2(L5)_2(SCN)_2(ClO_4)_2·0.5CH_3OH·0.5H_2O} (12)、{Cd_2(L_5)_3 (ClO_4)_4·2.5CH_3OH·CH_2Cl_2} (13)、{Ag_2(L6)_2(SbF_6)_2} (14)、{Cu(L_7)Cl_2}n (15),并表征和讨论了它们的晶体结构。
     四、将芳香羧酸共配体引入到超分子体系中,介绍了开链冠醚配体L3及芳香羧酸与金属的混配自组装化学,合成了5个结构新颖的配位聚合物:{Cu_2(L_3)_2(C_8H_4O_4)_2·3H_2O}n (16)、{Cd(L_3)(C_8H_4O_4)·2H_2O}n (17)、{Cu(L_3) (C_9H_4O_6)·H_2O}n (18)、{Cu(L_3)(C_9H_4O6)·H_2O}n (19)、{Cd(L_3)(4, 4’-bpy)_2(ClO_4)_2·4H_2O}_n (20)。讨论了共配体对配位化合物结构的影响,并研究了它们的固态荧光性质。
     我们设计合成了一系列结构新颖的开链冠醚桥连的有机配体及对称双Schiff-base配体,并研究了它们与过渡金属的自组装化学。研究结果证明这些配体是构建结构新颖的超分子组装体的良好前体。此外,我们还对部分化合物的阴离子交换性质与荧光性质进行了初步研究,为设计合成可调谐发光材料及功能材料奠定了实验基础。
The design and construction of coordination-driven supramolecular complexes are recently attracting significant interest and extensive attention. Currently, chemists have synthesized numerous supramolecular complexes through the approach of self-assembly and thus constructed novel materials with remarkable physical and chemical properties. In this thesis, a series of novel open-chain polyether-bridged ligands and double Schiff-base ligand were synthesized. The self-assembly chemistry based on these new ligands and metal ions under hydrothermal and solvent conditions was investigated. Totally 20 new coordination compounds were prepared and fully characterized by IR, elemental analysis, X-ray single-crystal diffraction and powdered X-ray diffraction. The anion-exchange and luminescent properties based on some compounds were investigated.
     1. Two symmetrical Schiff-base ligands were synthesized, and we have investigated their coordination chemistry with Cd(II), Ag(I) salts. Five new coordination polymers were synthesized based on them: {Cd(L_1)(SCN)_2}n (1), {Cd(L_1)_2(OTf)_2·3THF}_n (2), {Ag_2(L_2)2(PF_6)2·2CH_3OH}n (3), {Ag_2(L_2)_2(SbF_6)_2·CH_3OH·H_2O}n (4), {Ag(L_2)(ClO_4)·0.5CH_3OH·0.25THF}n (5), and their cystal structure were discussed as well. Besides, compounds 3, 4, 5 are the isomorphic nano-tubes with one-dimension channel, and in the channel there are different anions. This provides possibility for the study of anion-exchange.
     2. We have investigated anion-exchange and luminescent properties based on compounds 3, 4, 5. The weak interactions between anions and host frameworks were demonstrated. The tunable fluorescence emission based on these supramolecular systems were successfully realized.
     3. A series of open-chain polyether-bridged ligands were synthesized. The coordination chemistry based on open-chain polyether-bridged ligands and inorganic Cu(II), Hg(II), Cd(II), Ni(II), Zn(II) and Ag(I) salts has been investigated. Ten new supramolecular compounds were synthesized based on them: {Cu(L_3)_2(NO_3)_2} (6), {Ni_(0.5)(L_3)Cl·CH_3CN} (7), {Cu(L_3)_2(ClO_4)_2} (8), {Cu(L_3)_2(ClO_4)_2} (9), {Hg(L_3)_(0.5) I2} (10), {Cd0.5(L4_)(SCN)·CH_3CN}n (11), {Cu_2(L_5)2(SCN)_2(ClO_4)_2·0.5CH_3OH·0.5H_2O} (12), {Cd_2(L5)_3(ClO_4)_4·2.5CH_3OH·CH_2Cl_2} (13), {Ag_2(L_6)_2(SbF_6)_2} (14), {Cu(L7) Cl_2}n (15), and their cystal structures were characterized.
     4. The aromatic acid was introduced into the supramolecular complexes. The self-assembly chemistry based on ligand L3, aromatic acid and metal ions under hydrothermal condition was investigated, five new supramolecular compounds were synthesized based on them: {Cu_2(L_3)_2(C_8H_4O_4)_2·3H_2O}_n (16), {Cd(L3)(C_8H_4O_4)·2H_2O}n (17), {Cu(L_3)(C_9H_4O_6)·H_2O}_n (18), {Cu(L_3)(C_9H_4O_6)·H_2O}_n (19), {Cd(L_3) (4, 4’-bpy)_2(ClO_4)2·4H_2O}_n (20). The results demonstrated that aromatic acid has the impact on the structure of coordination compounds, and their luminescent properties were investigated in the solid state.
     In this thesis, a series of novel open-chain polyether-bridged ligands and double Schiff-base ligand were synthesized. The self-assembly chemistry based on these new ligands and metal ions was investigated. The results indicate that these new ligands are the favorable precursors of constructing novel supramolecular complexes. Futhermore, anion-exchange and luminescent properties based on some compounds have been investigated. This sets experiment foundation for designing and synthesing tunable luminescent materials and functional materials.
引文
[1]. (a) Zaworotko, M. J.; Moulton, B. Chem. Rev. 2001, 101, 1629. (b) Hagrman, P. J.; Hagrman, D.; Zubieta, J. Angew. Chem. Int. Ed. 1999, 38, 2638. (c) Eddaoudi, M.; Moler, D. B.; Li, H.; Chen, B.; Reineke, T. M.; Keeffe, M. O.; Yaghi, O. M. Acc. Chem. Res. 2001, 34, 319. (d) Evans, O. R.; Lin, W. Acc. Chem. Res. 2002, 35, 511. (e) Kitagawa, S.; Kitayra, R.; Noro, S. Angew. Chem. Int. Ed. 2004, 43, 2334. (f) Rao, C. N. R.; Natarajan, S.; Vaidhyanathan, R. Angew. Chem. Int. Ed. 2004, 43, 1466. (g) Leininger, S.; Olenyuk, B.; Stang, P. J. Chem. Rev. 2000, 100, 853.
    [2]. (a) Yaghi, O. M.; Li, G.; Li, H. Nature 1995, 378, 703. (b) Yaghi, O. M.; Li, G.; Li, H. J. Am. Chem. Soc. 1995, 117, 10401. (c) Yaghi, O. M.; Li, G.; Li, H.; Groy, T. L. J. Am. Chem. Soc. 1996, 118, 9096. (d) Fujita, M.; Oka, H.; Yamaguchi, K.; Ogura, K. Nature 1995, 378, 469. (e) Fujita, M.; Kwon, Y. J.; Sasaki, O.; Yamaguchi, K.; Ogura, K. J. Am. Chem. Soc. 1995, 117, 7287. (f) Losier, T. P.; Zaworotko, M. J. Angew. Chem. Int. Ed. Engl. 1996, 35, 2779. (g) Dong, Y.-B.; Smith, M. D.; zur Loye, H.-C. Angew. Chem. Int. Ed. 2000, 39, 4271.
    [3]. (a) Heintz, R. A.; Zhao, H.; Ouyang, X.; Grandinetti,G.; Cowen, J.; Dunbar, K. R. Inorg. Chem. 1999, 38, 144. (b) Mayr, A.; Guo, J. Inorg. Chem. 1999, 38, 921. (c) Mayr, A.; Mao, Li. F. Inorg. Chem. 1998, 37, 5776. (d) Mao, L. F.; Mayr, A. Inorg. Chem. 1996, 35, 3183. (e) Choi, H. J.; Suh, M. P. J. Am. Chem. Soc. 1998, 120, 10622. (f) Sharma, C. V. K.; Broker, G. A.; Huddleston, J. G.; Baldwin, J. W.; Metzger, R. M.; Rogers, R. D. J. Am. Chem. Soc. 1999, 121, 1137. (g) Li, M.-X.; Cheung, K.-K.; Mayr, A. J. Solid State Chem. 2000, 152, 247. (h) Pschirer, N. G.; Ciurtin, D. M.; Smith, M. D.; Bunz, U. H. F.; zur Loye, H.-C. Angew. Chem. Int. Ed. 2002, 41, 583. (i) Su, C.-Y.; Goforth, A. M.; Smith, M. D.; zur Loye, H.-C. Chem. Commun. 2004, 2158.
    [4]. (a) Fujita, M.; Kwon, Y. J.; Washizu, S.; Ogura, K. J. Am. Chem. Soc. 1994, 116, 1151. (b) Lin, W.; Evans, O. R.; Xiong, R.-G.; Wang, Z. J. Am. Chem. Soc. 1998, 120, 13272. (c) Garder, G. B.; Venkataraman, D.; Moore, J. S.; Lee, S. Nature 1995, 374, 792. (d) Garder, G. B.; Kiang, Y.-H.; Lee, S.; Asgaonkar, A.; Venkataraman, D. J. Am. Chem. Soc. 1996, 118, 6946. (e) Kahn, O.; Pei, Y.; Verdguer, M.; Renard, J. P.; Sletten, J. J. Am. Chem. Soc. 1998, 110, 782. (f) Inoue, K.; Hayamizu, T.; Iwamura, H.; Hashizume, D.; Ohashi, Y. J.Am. Chem. Soc. 1996, 118, 1803. (g) Tamaki, H.; Zhong, Z. J.; Matsumoto, N.; Kida, S.; Koikawa, M.; Achiwa, N.; Hashimoto, Y.; Okawa, H. J. Am. Chem. Soc. 1992, 114, 6974. (h) Su, C.-Y.; Cai, Y.-P.; Chen, C.-L.; Smith, D. M.; zur Loye, H.-C. J. Am. Chem. Soc. 2003, 125, 8595.
    [5]. (a) Lehn, J. M. Angew. Chem. Int. Ed. 1988, 27, 89. (b) Lehn, J. M.; Wipff, G. J. Am. Chem. Soc. 1974, 96(12), 4048. (c) Behr, J. P.; Lehn, J. M. J. Am. Chem. Soc. 1976, 98(7), 1743. (d) Hosseini, M. W.; Lehn, J. M. J. Am. Chem. Soc. 1982, 104(12), 3525.
    [6]. (a) Cram, D. J.; Cram, J. M. Acc. Chem. Res. 1971, 4(6), 204. (b) Cram, D. J.; Cram, J. M. Acc. Chem. Res. 1978, 11(1), 8.
    [7]. (a) Pedersen, C. J. J. Am. Chem. Soc. 1967, 89(10), 2495. (b) Pedersen, C. J. J. Am. Chem. Soc. 1967, 89(26), 7017. (c) Pedersen, C. J. J. Org. Chem. 1971, 36(12), 1690. (d) Pedersen, C. J. J. Org. Chem. 1971, 36(2), 254.
    [8]. (a) Dietrich, B. etal. Tetrahedron Lett. 1969, 2889. (b) Cram, D. J. etal. Science (Washington) 1974, 183, 803. (c) Pedersen, C. J. J. Am. Chem. Soc. 1967, 89, 2495.
    [9]. (a) Stoddart, J. F. Pure Appl. Chem. 1988, 60, 467. (b) Ashton, P. A. etal. Angew. Chem. Int. Ed. Engl. 1989, 28, 1396.
    [10]. Ashton, P. R. etal. Chem. Eur. J. 1997, 3, 152.
    [11]. (a) O. M. Yaghi; M. O’Keeffe; N. W. Ockwig; H. K. Chae; M. Eddaoudi; J. Kim Nature 2003, 423, 706. (b) S. Kitagawa; R. Kitaura; S.-I. Noro Angew. Chem. Int. Ed. 2004, 43, 2334. (c) M. J. Zaworotko; B. Moulton Chem. Rev. 2001, 101, 2619. (d) M. Eddaoudi; D. B. Moler; H. Li; B. Chen; T. M. Reineke; M. O. Keeffe; O. M. Yaghi Acc. Chem. Res. 2001, 34, 319. (e) E. C. Constable Prog. Inorg. Chem. 1994, 42, 67. (f) K. R. Dunbar; K. R. Heintz Prog. Inorg. Chem. 1996, 283. (g) J. A. Whiteford; E. M. Rachlin; P. J. Stang Angew. Chem. Int. Ed. Engl. 1996, 35, 2524. (h) Hagrman, P. J.; Hagrman, D.; Zubieta, J. Angew. Chem. Int. Ed. Engl., 1999, 38, 2639. (i) A. J. Blake; N. R. Champness; P. Hubberstey; W.-S. Li; M. A. Withersby; M. Schr?der Coord. Chem. Rev. 1999, 183, 117. (j) S. Batten; R. Robson Angew. Chem. Int. Ed. 1998, 37, 1460. (k) D. L. Caulder; K. N. Raymond Acc. Chem. Res. 1999, 32, 975. (l) S. A. Barnett; N. R. Champness; Coord. Chem. Rev. 2003, 246, 145. (m) R. Vilar Angew. Chem. Int. Ed. 2003, 42, 1460.
    [12]. Barton, T. J.; Bull, L. M.; Klemperer, W. G.; Loy, D. A.; McEnaney, B.; Misono, M.;monsoon, P. A.; Pez, G.; Yaghi, O. M. Chem. Mater. 1999, 11, 2633.
    [13]. (a) Maruoka, K.; Murase, N.; Yamamoto, H. J. J. Org. Chem. 1993, 58, 2938.
    [14]. Lin, W.–B.; Evens, O. R.; Xiong, R.–G., J. Am. Chem. Soc. 1998, 120, 13272.
    [15]. Venkataraman, D.; Gardner, G. F.; Lee, S.; Moore, J. S. J. Am. Chem. Soc. 1995, 117, 11600.
    [16]. (a) Stumpf, H. O.; Ouahab, L.; Pei, Y.; Grandjean, D.; Kahn, O. Science 1993, 261, 447. (b) Lloret, F.; Munno, G. D.; Julve, M.; Cano, J.; Ruiz, R.; Caneschi, A. Angew. Chem. Int. Ed. 1998, 37, 135.
    [17]. Hoskin, B. F.; Robson, R. J. Am. Chem. Soc. 1990, 112, 1546.
    [18]. (a) Kuroda-Sowa, T.; Horrino, T.; Yamamoto, M.; Ohno, Y.; Maekawa, M.; Munakata, M. Inorg. Chem. 1997, 36, 6382. (b) Hennigar, T. L.; MacQuarrie, D. C.; Losier, P.; Rogers, R. D.; Zaworotoko, M. J. Angew. Chem. Int. Ed. 1997, 36, 972.
    [19]. Lu, L.; Paliwala, T.; Lim, S. C.; Yu, C.; Niu, T.; Jacobson, A. J. Inorg. Chem. 1997, 36, 923.
    [20]. Fujita, M.; Kwon, Y. J.; Sasaki, O.; Yamaguchi, K. J. Am. Chem. Soc. 1995, 117, 7287.
    [21]. (a) Blake, A. J.; Champness, N. R.; Hubberstey, P.; Li, W.–S.; Withersby, M. A.; Schr?der, M. Coord. Chem. Rev. 1999, 183, 117. (b) Lu, J. Y.; Cahrera, B. R.; Wang, R–J.; Li, J. Inorg. Chem. 1999, 38, 4608.
    [22]. (a) Carluccil, L.; Ciani, G.; Proserpio, M. J. Am. Chem. Soc. 1995, 117, 4562. (b) Hagraman, P. J.; Hagraman, D.; Zubieta, J. Angew. Chem. Int. Ed. 1999, 38, 2638. (c) Bradshaw, D.; Warren, J. E.; Rosseinsky, M. J. Science 2007, 315, 977. (d) Dai, F.-N.; He, H.-Y.; Sun, D.-F. J. Am. Chem. Soc. 2008, 130, 14064-14065. (e) Biradha, K.; Hongo, Y.; Fujita, M. Angew. Chem. Int. Ed. 2000, 39, 3843. (f) Leininger, S.; Olenyuk, B.; Stang, P. J. Chem. Rev. 2000, 100, 853. (g) Chand, D. K.; Biradha, K.; Fujita, M. Chem. Commun. 2001, 1652 (h) Suzuki, K.; Kawano, M.; Fujita, M. Angew. Chem. Int. Ed. 2007. 46, 2819.
    [23]. Yoshizawa, M.; Kusukawa, T.; Kawano, M.; Ohhara, T.; Tankn, I.; Kurihara, K.; Niimura, N.; Fujita, M. J. Am. Chem. Soc. 2005, 127, 2798.
    [24]. Tetsuo Iwasawa; Richard J. Hooley; Julius Rebek Jr Science 2007, 317, 493.
    [25]. Prasenjit Mal; Boris Breiner; Kari Rissanen; Jonathan R. Nitschke1 Science 2009, 324, 1697.
    [26]. Yuji Furutani; Hideki Kandori; Masaki Kawano; Koji Nakabayashi; Michito Yoshizawa; Makoto Fujita J. Am. Chem. Soc. 2009, 131, 4764.
    [27]. Tomohisa Sawada and Makoto Fujita J. Am. Chem. Soc. 2010, 132, 7194-7201.
    [28]. Pluth, M. D.; Bergman, R. G.; Raymond, K. N. Science 2007, 316, 85.
    [29]. Pluth, M. D.; Bergman, R. G.; Raymond, K. N. Angew. Chem. Int. Ed. 2007, 46, 8587.
    [30]. Nishioka, Y.; Yamaguchi, T.; Yoshizawa, M.; Fujita, M. J. Am. Chem. Soc. 2007, 129, 7000.
    [31]. Abraham M. Shultz; Omar K. Farha; Joseph T. Hupp, SonBinh T.Nguyen J. Am. Chem. Soc. 2009, 131, 4204-4205.
    [32]. Dongbin Dang; Pengyan Wu; Cheng He; Zhong Xie; Chunying Duan J. Am. Chem. Soc. 2010, 132, 14321-14323.
    [33]. Neville, S. M.; Halder, G. J.; Chapman, K. W.; Duriska, M. B.; Southon, P. D.; Cashion, J. D.; Letard, J.; Moubaraki, B.; Murray, K. S.; Kepert, C. J. J. Am. Chem. Soc. 2008, 130, 2869-2876.
    [34]. Ono, K.; Yoshizawa, M.; Akita, M.; Kato, T.; Tsunobuchi, Y.; Ohkoshi, S.; Fujita, M. J. Am. Chem. Soc. 2009, 131, 2782.
    [35]. Zhiming Duan; Yan Zhang; Bin Zhang; Daoben Zhu J. Am. Chem. Soc. 2009, 131, 6934-6935.
    [36]. Das, S.; Kim, H.; Kim, K. J. Am. Chem. Soc. 2009, 131, 3814.
    [37]. Andrea Deak; Tunde Tunyogi; GaborPa linka′s J. Am. Chem. Soc. 2009, 131, 2815-2817.
    [38]. Jihyun An; Chad M. Shade; Demetra A. Chengelis-Czegan; St_ephane Petoud; Nathaniel L. Rosi J. Am. Chem. Soc. 2011, 133, 1220-1223.
    [39].Ohmori, O.; Kawano, M.; Fujita, M. J. Am. Chem. Soc. 2004, 126, 16292-16293.
    [40]. Luc Alaerts; Michael Maes; Lars Giebeler; Pierre A. Jacobs; Johan A. Martens; Joeri F. M. Denayer; Christine E. A. Kirschhock; Dirk E. De Vos J. Am. Chem. Soc. 2008, 130, 14170.
    [41]. Zhen-Zhong Lu; Rui Zhang; Yi-Zhi Li; Zi-Jian Guo; He-Gen Zheng J. Am. Chem. Soc. 2011, 133, 4172-4174.
    [42]. Sanhita Pramanik; Chong Zheng; Xiao Zhang; Thomas J. Emge; Jing Li J. Am. Chem. Soc. 2011, 133, 4153-4155.
    [43]. Seo, J. S.; Whang, D.; Lee, H.; Jun, S. I.; Oh, J.; Jeon, Y. J.; Kim, K. Nature 2000, 404, 982.
    [44]. Zhenqiang Wang and Seth M. Cohen J. Am. Chem. Soc. 2009, 131, 16675-16677.
    [45]. Mainak Banerjee; Sunirban Das; Minyoung Yoon; Hee Jung Choi; Myung Ho Hyun; Se Min Park; Gon Seo; Kimoon Kim J. Am. Chem. Soc. 2009, 131, 7524-7525.
    [46]. Tendai Gadzikwa; Omar K. Farha; Christos D. Malliakas; Mercouri G. Kanatzidis; Joseph T. Hupp; SonBinh T. Nguyen J. Am. Chem. Soc. 2009, 131, 13613-13615.
    [47]. Sava, D. F.; Kravtsov, V.; Nouar, F.; Wojtas, L.; Eubank, J. F.; Eddaoudi, M. J. Am. Chem. Soc. 2008, 130, 3768.
    [48]. Caskey, S. R.; Wong-Foy, A. G.; Matzger, A. J. J. Am. Chem. Soc. 2008, 130, 10870.
    [49]. Bae, Y. S.; Mulfort, K. L.; Frost, H.; Ryan, P.; Punnathanam, S.; Broadbelt, L. J.; Hupp, J. T.; Snurr, R. Q. Langmuir 2008, 24, 8592.
    [50]. Cussen, E. J.; Claridge, J. B.; Rosseinsky, M. J.; Kepert, C. J. J. Am. Chem. Soc. 2002, 124, 9574.
    [51]. Park, Y. K.; etal. Angew. Chem., Int. Ed. 2007, 46, 8230.
    [52]. Papaefstathiou, G. S.; Hamilton, T. D.; Friscic, T.; MacGillivray, L. R. Chem. Commun. 2004, 270.
    [53]. Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O’Keeffe, M.; Yaghi, O. M. Science 2002, 295, 469.
    [54]. Liqing Ma; David J. Mihalcik; Wenbin Lin J. Am. Chem. Soc. 2009, 131, 4610-4612.
    [55]. Jihyun An; Steven J. Geib; Nathaniel L. Rosi J. Am. Chem. Soc. 2010, 132, 38-39.
    [56]. Eric D. Bloch; David Britt; Chain Lee; Christian J. Doonan; Fernando J. Uribe-Romo; Hiroyasu Furukawa; Jeffrey R. Long; Omar M. Yaghi J. Am. Chem. Soc. 2010, 132, 14382-14384.
    [57]. Shuting Wu; Liqing Ma; La-Sheng Long; Lan-Sun Zheng; Wenbin Lin Inorg. Chem., 2009, 48, 2436-2442.
    [58]. Leslie J. urray; Mircea Dinca; Junko Yano; Sachin Chavan; Silvia Bordiga; Craig M. BroMwn; Jeffrey R. Long J. Am. Chem. Soc. 2010, 132, 7856-7857.
    [59]. (a) Dong, Y.-B.; Zhang, Q.; Liu, L.-L.; Ma, J.-P.; Tang, B.; Huang, R.-Q. J. Am. Chem. Soc. 2007, 129, 1514. (b) Zhang, Q.; Ma, J.-P.; Wang, P.; Shi, Z.-Q.; Dong, Y.-B.; Huang, R.-Q.Crystal Growth & Design. 2008, 8, 2581.
    [60]. Dong, Y.-B.; Zhao X.-X.; Ma, J.-P.; Huang, R.-Q.; Lai, T.-S. Crystal Growth & Design. 2007, 7, 1058.
    [61]. Dong, Y.-B.; Sun, T.; Ma, J.-P.; Zhao X.-X.; Huang, R.-Q. Inorg. Chem. 2006, 45, 10613.
    [62]. Dong, Y.-B.; Xu, H.-X.; Ma, J.-P.; Huang, R.-Q. Inorg. Chem. 2006, 45, 3325.
    [63]. Dong, Y.-B.; Zhang, Q.; Wang, L.; Ma, J.-P.; Huang, R.-Q.; Shen D.-Z.; Chen, D.-Z. Inorg. Chem. 2005, 44, 6591.
    [64]. Ma, J.-P.; Dong, Y.-B.; Huang, R.-Q.; Smith, M. D.; Su, C.-Y. Inorg. Chem. 2005, 44, 6143.
    [65]. Dong, Y.-B.; Wang, H.-Y.; Ma, J.-P.; Shen, D.-Z.; Huang, R.-Q. Inorg. Chem. 2005, 44, 4679.
    [66]. Dong, Y.-B.; Cheng, J.-Y.; Ma, J.-P.; Huang, R.-Q.; Smith, M. D. Crystal Growth & Design. 2005, 5, 585.
    [67]. Dong, Y.-B.; Wang H.-Y.; Ma, J.-P.; Huang, R.-Q.; Smith, M. D. Crystal Growth & Design. 2005, 5, 789.
    [68]. Dong,Y.-B.; Cheng, J.-Y.; Huang, R.-Q.; Smith, M. D.; zur Loye, H.-C. Inorg. Chem. 2003, 42, 5699.
    [69]. Dong, Y.-B.; Cheng, J.-Y.; Wang, H.-Y.; Huang, R.-Q.; Tang, B.; Smith, M. D.; zur Loye, H.-C. Chem. Mater. 2003, 15, 2593.
    [70]. Dong, Y.-B.; Ma, J.-P.; Smith, M. D.; Huang, R.-Q.; Liang. F.-Z. Dalton Trans. 2003, 9, 1472.
    [71]. Dong, Y.-B.; Ma, J.-P.; Smith, M. D.; Huang, R.-Q.; zur Loye, H.-C. Inorg. Chem. 2003, 42, 294.
    [72]. Hou, G.-G.; Ma, J.-P.; Sun, T.; Dong, Y.-B.; Huang, R.-Q. Chem. Eur. J. 2009, 15, 2261.
    [73]. Liu, Q.-K.; Ma, J.-P.; Dong, Y.-B. Chem.-Eur. J. 2009, 15, 10364.
    [74]. Wang, P.; Ma, J.-P.; Dong, Y.-B. Chem.- Eur. J. 2009, 15, 10432.
    [75]. Wang, H.-Y.; Cheng, J.-Y.; Ma, J.-P.; Dong, Y.-B. Inorg. Chem. 2010, 49, 2416.
    [76]. Dong, Y.-B.; Geng, Y.; Ma, J.-P.; Huang, R.-Q. Organometallics 2006, 25, 447.
    [77]. Dong, Y.-B.; Zhang, Q.; Wang, L.; Ma, J.-P.; Huang, R.-Q., Shen, D.-Z.; Chen, D.-Z. Inorg. Chem. 2005, 44, 6591.
    [78]. Dong, Y.-B.; Geng, Y.; Ma, J.-P.; Huang, R.-Q. Inorg. Chem. 2005, 44, 1693.
    [79]. Wang, P. Dong, Y.-B.; Ma, J.-P.; Huang, R.-Q.; Smith, M. D. Crystal Growth & Design 2005, 5, 701.
    [80]. Dong, Y.-B.; Wang, P.; Huang, R.-Q.; Smith, M. D. Inorg. Chem. 2004, 43, 4727.
    [81]. Dong, Y.-B.; Jin, G.-X.; Zhao, X.; Huang, R.-Q.; Smith, M. D.; Stitzer, K. E.; zur Loye, H.-C. Organometallics 2004, 23, 1604.
    [82]. Dong, Y.-B.; Ma, J.-P.; Jin, G.-X.; Huang, R.-Q.; Smith, M. D. Dalton Trans. 2003, 22, 4324.
    [83]. Dong, Y.-B.; Jin, G.-X.; Mark, D. Smith; Huang, R.-Q.; Tang, B.; zur Loye, H.-C. Inorg. Chem. 2002, 41, 4909.
    [84]. Li, J.; Ma, J.-P.; Liu, F.-L.; Wu, X.-W.; Dong, Y.-B.; Huang, R.-Q Organometallics 2008, 27, 5446.
    [85]. Dong, Y.-B.; Wang, L.; Ma, J.-P.; Shen, D.-Z.; Zhao, X.-X.; Huang, R.-Q. Crystal Growth & Design. 2006, 6, 2475.
    [86]. Dong, Y.-B.; Wang, L.; Ma, J.-P.; Huang, R.-Q. Inorg. Chem. 2006, 45, 9157.
    [87]. Dong, Y.-B.; Zhang, H. Q.; Ma, J. P.; Su, C.-Y.; Huang, R.-Q. Crystal Growth & Design. 2005, 5, 1857.
    [88]. Dong, Y.-B.; Zhao, X.; Huang, R.-Q.; Smith, M. D.; zur Loye, H.-C. Inorg. Chem. 2004, 43, 5603.
    [89]. Dong, Y.-B.; Zhao, X.; Tang, B.; Wang, H.-Y.; Huang, R.-Q.; Smith, M. D.; zur Loye, H.-C. Chem. Commun. 2004, 2, 220.
    [90]. Dong, Y.-B.; Jiang, Y.-Y.; Li, J.; Ma, J.-P.; Liu, F.-L.; Tang, B.; Huang, R.-Q.; Batten, S. R. J. Am. Chem. Soc. 2007, 129, 4520.
    [91]. Jiang, Y.-Y.; Ren, S.-K.; Ma, J.-P.; Liu, Q.-K.; Dong, Y.-B. Chem.- Eur. J. 2009, 15, 10742.
    [92]. Dong, Y.-B.; Wang, P.; Ma, J.-P.; Zhao, X.-X.; Tang, B.; Huang, R.-Q. J. Am. Chem. Soc. 2007, 129, 4782-4783.
    [93]. Wang, P.; Ma, J.-P.; Dong, Y.-B.; Huang, R.-Q. J. Am. Chem. Soc. 2007, 129, 10620-10621.
    [1]. M. Eddaoudi; J. Kim; N. Rosi; D. Vodik; J. Wachter; M. O’Keeffe; Yaghi Science 2001, 295, 469.
    [2]. (a) Fujita, M.; Kwon, Y. J.; Washizu, S.; Ogura, K. J. Am. Chem. Soc. 1994, 116, 1151. (b) Lin, W.; Evans, O. R.; Xiong, R.-G.; Wang, Z. J. Am. Chem. Soc. 1998, 120, 13272.
    [3]. (a) Yaghi, D. M.; Li, H. J. Am. Chem. Soc. 1995, 117, 10401. (b) Yaghi, D. M.; Li, H.; Groy, T. L. J. Am. Chem. Soc. 1996, 118, 9096.
    [4]. (a) Garder, G. B.; Venkataraman, D.; Moore, J. S.; Lee, S. Nature, 1995, 374, 792. (b) Garder, G. B.; Kiang, Y.-H.; Lee, S.; Asgaonkar, A.; Venkataraman, D. J. Am. Chem. Soc. 1996, 118, 6946. (c) Maggard, P. A.; Stern, C. L.; Poeppelmeier, K. R. J. Am. Chem. Soc. 2001, 123, 7742.
    [5]. (a) Kahn, O.; Pei, Y.; Verdguer, M.; Renard, J. P.; Sletten, J. J. Am. Chem. Soc. 1988, 110, 782. (b) Inoue, K.; Hayamizu, T.; Iwamura, H.; Hashizume, D.; Ohashi, Y. J. Am. Chem. Soc. 1996, 118, 1803. (c) Tamaki, H.; Zhong, Z. J.; Matsumoto, N.; Kida, S.; Koikawa, M.; Achiwa, N.; Hashimoto, Y.; Okawa, H. J. Am. Chem. Soc. 1992, 114, 6974.
    [6]. (a) Kuroda-Sowa, T.; Horrino, T.; Yamamoto, M.; Ohno, Y.; Maekawa, M.; Munakata, M. Inorg. Chem. 1997, 36, 6382. (b) Munakata, M.; Wu, L. P.; Kuroda-Sowa, T. Bull Chem. Soc. Jpn. 1997, 70, 1727. (c) Munakata, M.; Wu, L. P.; Kuroda-Sowa, T.; Maekawa, M.; Moriwaki, K.; Kitagawa, S. Inorg. Chem. 1997, 36, 5416. (d) Hennigar, T. L.; MacQuarrie, D. C.; Losier, P.; Rogers, R. D.; Zaworotko. M. J. Angew. Chem. Int. Ed. Engl. 1997, 36, 972. (e) Lloret, F.; Munno, G. D.; Julve, M.; Cano, J.; Ruiz, R.; Caneschi, A. Angew. Chem. Int. Ed. Engl. 1998, 37, 135.
    [7]. (a) Dong, Y.-B.; Zhao, X.; Tang, B.; Wang, H.-Y.; Huang, R.-Q.; Smith, M. D.; zur Loye, H.-C. Chem. Commun. 2004, 2, 220. (b) Dong,Y.-B.; Zhao, X.; Huang, R.-Q.; Smith, M. D.; zur Loye, H.-C. Inorg. Chem., 2004 43, 5603. (c) Dong, Y.-B.; Zhang, H. Q.; Ma, J. P.; and Huang, R.-Q. Cryst. Growth.&. Des. 2005, 5, 1857. (d) Dong, Y.–B.; Wang, L.; Ma, J.–P.; Zhao, X.–X.; Shen, D.–Z.; Huang, R.–Q. Cryst. Growth.&. Des. 2006, 6, 2475. (e) Dong, Y.–B.; Wang, L.; Ma, J.–P.; Huang, R.–Q. Inorg. Chem. 2006, 45, 9157.
    [8]. (a) Hagrman, P. J.; Hagrman, D.; Zubieta, J. Angew. Chem. Int. Ed. 1999, 38, 2638. (b) Gergory, M. et al. Inorg. Chem. 2000, 40, 3222.
    [9]. Fujita, M.; Kwon, Y. J.; Washizu, S.; Ogura, K. J. Am. Chem. Soc. 1994, 116, 1151. (b) Lin, W.; Evans, O. R.; Xiong, R.-G.; Wang, Z. J. Am. Chem. Soc. 1998, 120, 13272.
    [10]. (a) Yaghi, D. M.; Li, H. J. Am. Chem. Soc. 1995, 117, 10401. (b) Yaghi, D. M.; Li, H.; Groy, T. L. J. Am. Chem. Soc. 1996, 118, 9096.
    [11]. (a) Garder, G. B.; Venkataraman, D.; Moore, J. S.; Lee, S. Nature, 1995, 374, 792. (b) Garder, G. B.; Kiang, Y.-H.; Lee, S.; Asgaonkar, A.; Venkataraman, D., J. Am. Chem. Soc. 1996, 118, 6946. (c) Maggard, P. A.; Stern, C. L.; Poeppelmeier, K. R. J. Am. Chem. Soc. 2001, 123, 7742.
    [12]. (a) Kahn, O.; Pei, Y.; Verdguer, M.; Renard, J. P.; Sletten, J. J. Am. Chem. Soc. 1988, 110, 782. (b) Inoue, K.; Hayamizu, T.; Iwamura, H.; Hashizume, D.; Ohashi, Y. J. Am. Chem. Soc. 1996, 118, 1803. (c) Tamaki, H.; Zhong, Z. J.; Matsumoto, N.; Kida, S.; Koikawa, M.; Achiwa, N.; Hashimoto, Y.; Okawa, H. J. Am. Chem. Soc. 1992, 114, 6974.
    [13]. Bein, T. Supramolecular Architecture: Synthetic Control in Thin Film and Solids; American Chemical Society: Washington, DC, 1992.
    [14]. Amabilino, D. B.; Stoddart, J. F. Chem. Rev. 1995, 95, 2725.
    [15]. Herrman, W. A.; Huber, N. W.; Runte, O. Angew. Chem., Int. Ed. Engl. 1995, 34, 2187.
    [16]. Stein, A.; Keller, S. W.; Mallouk, T. E. Science 1993, 259, 1558.
    [17]. (a) Dong, Y.-B.; Wang, L.; Ma, J.-P.; Shen, D.-Z.; Zhao, X.-X.; Huang, R.-Q., Crystal Growth & Design, 2006, 6, 2475. (b) Dong, Y.-B.; Wang, L.; Ma, J.-P.; Huang, R.-Q., Inorg. Chem., 2006, 45, 9157. (c) Dong, Y.-B.; Zhang, H. Q.; Ma, J. P.; Su, C.-Y.; Huang, R.-Q., Crystal Growth & Design, 2005, 5, 1857. (d) Dong, Y.-B.; Zhao, X.; Huang, R.-Q.; Smith, M. D.; zur Loye, H.-C., Inorg. Chem., 2004, 43, 5603. (e) Dong, Y.-B.; Zhao, X.; Tang, B.; Wang, H.-Y.; Huang, R.-Q.; Smith, M. D.; zur Loye, H.-C., Chem. Commun., 2004, 2, 220.
    [18]. Dong, Y. B.; Zhang, Q.; Liu, L. L.; Ma, J. P.; Tang, B.; Huang, R. Q. J. Am. Chem. Soc. 2007, 129, 1514-1515.
    [19]. Zhang, Q.; Ma, J. P.; Wang, P.; Shi, Z. Q.; Dong, Y. B.; Huang, R. Q. Crystal Growth & Design. 2008, 8, 2581-2587.
    [1]. (a) O. M. Yaghi; M. O’Keeffe; N. W. Ockwig; H. K. Chae; M. Eddaoudi; J. Kim. Nature 2003, 423, 706. (b) S. Kitagawa; R. Kitaura; S.-I. Noro. Angew. Chem. Int. Ed. 2004, 43, 2334. (c) M. J. Zaworotko; B. Moulton Chem. Rev. 2001, 101, 2619. (d) M. Eddaoudi; D. B. Moler; H. Li, B. Chen; T. M. Reineke; M. O. Keeffe; O. M. Yaghi Acc. Chem. Res. 2001, 34, 319. (e) E. C. Constable, Prog. Inorg. Chem. 1994, 42, 67. (f) K. R. Dunbar; K. R. Heintz, Prog. Inorg. Chem. 1996, 283. (g) J. A. Whiteford; E. M. Rachlin; P. J. Stang Angew. Chem. Int. Ed. Engl. 1996, 35, 2524. (h) Hagrman, P. J.; Hagrman, D.; Zubieta, J. Angew. Chem. Int. Ed. Engl., 1999, 38, 2639. (i) A. J. Blake; N. R. Champness; P. Hubberstey; W.-S. Li; M. A. Withersby; M. Schr?der, Coord Chem. Rev. 1999, 183, 117. (j) S. Batten; R. Robson. Angew. Chem. Int. Ed. 1998, 37 1460. (k) D. L. Caulder; K. N. Raymond Acc. Chem. Res. 1999, 32, 975. (l) S. A. Barnett; N. R. Champness, Coord Chem. Rev. 2003, 246, 145. (l) R. Vilar. Angew. Chem. Int. Ed. 2003, 42, 1460.
    [2]. (a) G. B. Gardner; D. Venkataraman; J. S. Moore; S. Lee Nature 1995, 374, 792. (b) Y.-H. Kiang; G. B. Gardner; S. Lee; Z. Xu J. Am. Chem. Soc. 2000, 122, 6871. (c) T. K. Maji; K. Uemura; H.-C. Chang; R. Matsuda; S. Kitagawa J. Am. Chem. Soc. 2004, 126, 3269. (e) D. N. Dybtsev; H. Chun; S. H. Yoon; D. Kim; K. Kim J. Am. Chem. Soc. 2004, 126, 32. (f) Y.-F. Zhou; F.-L. Jiang; D.-Q. Yuan; B.-L. Wu; R.-H. Wang; Z.-Z. Lin; M.-C. Hong Angew. Chem. Int. Ed. 2004, 43, 5665. (g) J.-P. Zhang; S.-L. Zheng; X.-C. Huang; X.-M. Chen Angew. Chem. Int. Ed. 2003, 43, 206. (h) B. Zhao; X.-Y. Chen; P. Cheng; D.-Z. Liao; S.-P. Yan; Z.-H. Jiang J. Am. Chem. Soc. 2004, 126, 15394. (i) C.-D. Wu; W. Lin Angew. Chem. Int. Ed. 2005, 44, 1958. (j) L.-Y Kong, Z.-H. Zhang, H.-F. Zhu, H. Kawaguchi, T.-a, Doi, M. Okamura, Q. Chu, W.-Y. Sun, N. Ueyama. Angew. Chem. Int. Ed. 2005, 44, 4352. (k) K. Hanson; N. Calin; D. Bugaris; M. Scancella; S. C. Sevov. J. Am. Chem. Soc. 2004, 126, 10502. (l) A. N. Khlobystov; M. T. Brett; A. J. Blake; N. R. Champness; P. M. W. Gill; D. P. O’Neill; S. J. Teat; C. Wilson; M. Schr?der J. Am. Chem. Soc. 2003, 125, 6753. (m) K. Takaoka; M. Kawano; M. Tominaga; M. Fujita. Angew. Chem. Int. Ed. 2005, 44, 2151. (n) Z. Lin; A. M. Z. Slawin; R. E. Morris; J. Am. Chem. Soc. 2007, 129, 4880. (o) J. Y. Lee; S. Y. Lee; W. Sim; K.-M. Park; J. Kim; S. S. Lee J. Am. Chem. Soc. 2008, 130, 6902. (p) J. H. Cavaka; S. Jakobsen; U. Olsbye; N. Guillou; C. Lamberti; S. Bordiga;P. Lillerud. J. Am. Chem. Soc. 2008, 130, 13850.
    [3]. (a) L. J. Barbour; G. William Orr; J. L. Atwood Nature 1998, 393, 671. (b) D. L. Caulder; R. E. Powers; T. N. Parac; K. N. Raymond Angew Chem. Int. Ed. 1998, 37, 1840. (c) D. A. McMorran; P. J. Steel Angew Chem. Int. Ed. 1998, 37, 3295. (d) S. Hiraoka; M. Fujita J. Am. Chem. Soc. 1999, 121, 10239. (e) J. Xu; K. N. Raymond Angew. Chem. Int. Ed. 2000, 39, 2745. (f) T. D. Owens; F. J. Hollander; A. G. Oliver; J. A. Ellman J. Am. Chem. Soc. 2001, 123, 1539. (g) H. Amouri; L. Mimassi; M. N. Rager; B. E. Mann; C. Guyard-Duhayon; L. Raehm Angew. Chem. Int. Ed. 2005, 44, 4543. (h) T. Megyes; H. Jude; T. Grósz; I. Bakó; T. Radnai; G. Tárkányi; G. Pálinkás; P. J. Stang J. Am. Chem. Soc. 2005, 127, 10731. (i) D. Moon; S. Kang; J. Park; K. Lee; R. P. John; H. Won; G. H. Seong; Y. S. Kim; G. H. Kim; H. Rhee; M. S. Lah J. Am. Chem. Soc. 2006, 128, 3530. (j) V. Chandrasekhar; P. Thilagar; J. F. Bickley; A. Steiner J. Am. Chem. Soc. 2005, 127, 11556. (k) M. Yoshizawa; T. Kusukawa; M. Kawano; T. Ohhara; I. Tanaka; K. Kurihara; N. Niimura; M. Fujita J. Am. Chem. Soc. 2005, 127, 2798. (l) Y. K. Kryschenko; S. R. Seidel; D. C. Muddiman; A. I. Nepomuceno; P. J. Stang J. Am. Chem. Soc. 2003, 125, 9647. (m) C. G. Glaessens; T. Torres J. Am. Chem. Soc. 2002, 124, 14522. (n) M. Hong; Y. Zhao; W. Su; R. Cao; M. Fujita; Z. Zhou; A. S. C. Chan J. Am. Chem. Soc. 2000, 122, 4819. (o) S. Hiraoka; K. Harano; N. Shiro; M. Shionoya Angew. Chem. Int. Ed. 2005, 44, 2727. (p) Z. R. Bell; J. C. Jeffery; J. A. McCleverty; M. D. Ward Angew. Chem. Int. Ed. 2002, 41, 2515. (q) S. M. Biros; R. M. Yeh; K. N. Raymond Angew. Chem. Int. Ed. 2008, 47, 6062. (r) K. Suzuki; M. Kawano; S. Sato; M. Fujita J. Am. Chem. Soc. 2007, 129, 10652. (s) I. S. Tidmarsh; T. B. Faust; H. Adams; L. P. Harding; L. Russo; W. Clegg; M. D. Ward J. Am. Chem. Soc. 2008, 130, 15167.
    [4]. Scott J. Dalgarno; Gareth W. V. Cave; Jerry L. Atwood Angew. Chem. Int. Ed. 2006, 45, 570-574.
    [5]. G. Dan Pantos; Paolo Pengo; Jeremy K. M. Sanders Angew. Chem. Int. Ed. 2007, 46, 194-197.
    [6]. Ross S. Johnson; Takeshi Yamazaki; Andriy Kovalenko; Hicham Fenniri J. Am. Chem. Soc. 2007, 129, 5735-5743.
    [7]. Miao Du; a Xiao-Jun Zhao; a Jian-Hua Guoa; Stuart R. Batten Chem. Commun.2005, 4836-4838.
    [8]. Yu-Bin Dong; Peng Wang; Jian-Ping Ma; Xia-Xia Zhao; Bo Tang; Ru-Qi Huang J. Am. Chem. Soc. 2007, 129, 4782-4783.
    [9]. Peng Wang; Jian-Ping Ma; Yu-Bin Dong; Ru-Qi Huang J. Am. Chem. Soc. 2007, 129, 10620-10621.
    [10]. Stylianou, K.C.; Heck, R.; Chong, S.Y.; Bacsa, J.; Jone, J. T. A.; Khimyak, Y. Z.; Bradshaw, D.; Rosseinsky, M. J. J. Am. Chem. Soc. 2010, 132, 4119.
    [11]. Qi-Kui Liu; Jian-Ping Ma; Yu-Bin Dong Chem.-Eur. J. 2009, 15, 10364.
    [1]. Pederson, C. J. J. Am. Chem. Soc. 1967, 89, 7071.
    [2].汪德熙.中国化学会1978年年会学术报告会论文集[C]. 1979.
    [3]. Ammann, D.; Pretsch E.; Simon, W. Helv. Chime. Acta. 1973, 56, 1780.
    [4]. Weber, E.; V?gtle, F. Angew. Chem. Int. Ed. Engl. 1979, 18, 753.
    [5].王彦博,石燕,王彦红.化学世界. 2002, 43(1), 27.
    [6]. (a) Kahn, O.; Pei, Y.; Verdaguer, M.; Renard, J. P.; Sletten, J. J. Am. Chem. Soc. 1988, 110(3), 782-789. (b) Stumpf, H.; Ouahab, L.; Pei, Y.; Grandjean, D.; Kahn, O. Science 1993, 261, 447. (c) Dong, Y.-B.; Smith, M. D.; zur Loye, H.-C. Angew. Chem. Int. Ed. 2000, 39(23), 4271-4273 (d) Dong, Y.-B.; Smith, M. D.; zur Loye, H.-C. Inorg. Chem. 2000, 39(9), 1943-1949. (e) Coronado, E.; GaLán-Mascarós, J.-R.; Gómez-Garcia, C.-J.; Ensling, J.; Gütlich, P. Chem.- Eur. J. 2000, 6(3), 552-563. (f) Zhao, B.; Cheng, P.; Chen, X.; Cheng, C.; Shi, W.; Liao, D; Yan, S.; Jiang, Z. J. Am. Chem. Soc. 2004, 126(10), 3012-3013. (g) Ren, Y. P.; Long, L. S.; Mao, B. W.; Yuan, Y. Z.; Huang, R. B.; Zheng, L. S. Angew. Chem. Int. Ed. 2003, 42(5), 532-535. (h) Pereira, C. L. M.; Pedroso, E. F.; Stumpf, H. O.; Novak, M. A.; Ricard, L.; Ruiz-Garc?a, R.; Riviére, E.; Journaux, Y. Angew. Chem. Int. Ed. 2004, 43(8), 956-958. (i) Lin, Z.-E.; Zhang, J.; Zhao, J.-T.; Zheng, S.-T.; Pan, C.-Y.; Wang, G.-M.; Yang, G.-Y. Angew. Chem. Int. Ed. 2005, 44(42), 6881-6884.
    [7]. (a) Miyasaka, H.; Nakata, K.; Sugiura, K.; Yamashita, M.; Clérac, R. Angew. Chem. Int. Ed. 2004, 43(6), 707-711. (b) Lo, S. M-F.; Chui, S. S-Y.; Shek, L.-Y.; Lin, Z.; Zhang, X. X.; Wen, G.; Williams, I. D. J. Am. Chem. Soc. 2000, 122(26), 6293-6294. (c) Okubo, T.; Kawajiri, R.; Mitani, T.; Shimoda, T. J. Am. Chem. Soc. 2005, 127(50), 17598-17599. (d) Tao, J.; Zhang, Y.; Tong, M.-L.; Chen, X.-M.; Yuen, T.; Lin, C. L.; Huang, X.; Li, J. Chem. Commun. 2002, 13,1342-1343.
    [8]. Kabasakaloglu, M.; Kiyak, T.; Hüseyin, T. Appl. Surf. Sci. 1999, 152, 115.
    [1]. Dong, Y.-B.; Jiang, Y-Y.; Li J.; Ma J-P.; Liu F-L.; Tang B.; Huang R-Q.; Stuart R. Batten. J. Am. Chem. Soc. 2007, 129, 4520-4521
    [2]. Liu, G.-X; Huang, Y.-Q.; Chu, Q.; Okamura, T.-aki; Sun, W.-Y.; Liang, H.; Ueyama, N. Crystal Growth & Design. 2008, 8, 3233-3245.
    [3] Zhang, J.-J; Wojtas, L.; Larsen, R. W.; Eddaoudi, M.; Zaworotko, M. J. J. Am. Chem. Soc. 2009, 131, 6911-6913.
    [4]. Wang, M.-S.; Guo, G.-C.; Zou, W.-Q.; Zhou, W.-W.; Zhang, Z.-J.; Xu, G.; Huang, J.-S. Angew. Chem. Int. Ed. 2008. 47, 3565-3567.
    [5]. Kitaura, R.; Seki, K.; Akiyamam, G.; Kitagawa, S. Angew. Chem. Int. Ed. 2003, 42, 428-431.
    [6].任淑奎,以开链冠醚型羧酸与含氮模板的混配自组装及其可调谐荧光性质究,山东师范大学硕士毕业论文,2010。
    [7]. Jiang, Y.-Y.; Ren, S.-K.; Ma, J.-P.; Liu, Q.-K.; Dong, Y.-B. Chem. Eur. J. 2009, 15, 10742.
    [8]. (a) Yaghi, O. M.; O’Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim. J. Nature 2003, 423, 706. (b) Kitagawa, S.; Kitaura, R.; Noro, S. I. Angew. Chem. Int. Ed. 2004, 43, 2334. (c) Eddaoudi, M.; Moler, D. B.; Li, H.; Chen, B.; Reineke, T. M.; Keeffe, M. O.; Yaghi, O. M. Acc. Chem. Res. 2001, 34, 319.
    [9]. (a) Whiteford, J. A.; Rachlin, E. M.; Stang, P. J. Angew. Chem. Int. Ed. Engl. 1996, 35, 2524. (b) Hagrman, P. J.; Hagrman, D.; Zubieta, J. Angew. Chem. Int. Ed. Engl. 1999, 38, 2639. (c) Barnett, S. A.; Champness, N. R. Coord. Chem. Rev. 2003, 246, 145.
    [10]. (a) Hong, M. et al., Angew. Chem. Int. Ed. 2000, 39, 2911. (b) Feng, S.-H. et al., Angew. Chem. Int. Ed 2000, 39, 2325. (c) You, X.-Z., et al., Angew. Chem. Int. Ed. 2000, 39, 3633. (d) Bu, X.-H. et al., Angew. Chem. Int. Ed. 2001, 40, 3201. (e)Tong, M.-L.; Chen, X.-M.; et al., J. Am. Chem. Soc., 2003, 125, 16170. (f) Yan, C.-H.; et al., J. Am. Chem. Soc., 2003, 125, 4984. (f) Cheng, P.; Liao, D.-Z.; et al., Angew. Chem. Int. Ed. 2003, 42, 934. (g) Long, L.-S.; Zheng, L. S.; et al., Angew. Chem. Int. Ed. 2003, 42, 532. (h) Su, C.-Y.; et al., J. Am. Chem. Soc. 2004, 126, 3576.
    [11]. (a) Eillis, W. M.; Schmitz, M.; Arif, A. A.; Stang, P. J. Inorg. Chem., 2000, 29, 2547. (b) Tominaga, M.; Suzuki, K.; Murase, T.; Fujita, M. J. Am. Chem. Soc. 2005, 127, 11950. (b) Tominaga, M.; Suzuki, K.; Kawano, M.; Kusukawa, T.; Ozeki, T.; Sakamoto, S.;Yamaguchi, K.; Fujita, M. Angew. Chem. Int. Ed. 2004, 43, 5621. (c) Tominaga, M.; Suzuki, K.; Murase, T.; Fujita, M. J. Am. Chem. Soc. 2005, 127, 11950. (d) Tominaga, M.; Suzuki, K.; Kawano, M.; Kusukawa, T.; Ozeki, T.; Sakamoto, S.; Yamaguchi, K.; Fujita, M. Angew. Chem. Int. Ed. 2004, 43, 5621. (e) Huang, Z.; Song, H.-B.; Du, M.; Chen, S.-T.; Bu, X.-H.; Ribas, J. Inorg. Chem. 2004, 43, 931. (i) Du. M.; Guo, Y.-M.; Chen, S.-T.; Bu, X.-H.; Batten, S. R.; Ribas, J.; Kitagawa, S. Inorg. Chem. 2004, 43, 1287.
    [12]. (a) Dong, Y.-B.; Zhang, Q.; Liu, L.-L.; Ma, J.-P.; Tang, B.; Huang, R.-Q. J. Am. Chem. Soc. 2007, 129, 1514-1515. (b) Dong, Y.-B.; Ma, J.-P.; Huang, R.-Q.; Smith, M. D.; zur Loye, H.-C. Inorg. Chem. 2003, 42, 294.
    [13]. (a) Bunzli, J.; C. G. Acc. Chem. Res. 2006, 39, 53. (b) Fabbrizzi, L.; Licchelli, M.; Pallavicini, P. Acc. Chem. Res. 1999, 32, 846. (c) Sagara, Y.; Mutai, T.; Yoshikawa, I.; Araki, K. J. Am. Chem. Soc. 2007, 129, 1520. (d) Zhao, Y.; Zhong, Z. J. Am. Chem. Soc. 2006, 128, 9988.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700