仿生理状态组织工程角膜上皮、基质层的构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:(1)探讨C02激光打标机处理的有序排列微模板培养兔角膜基质细胞的生长特征及其细胞生物学变化。(2)探索角膜上皮、口腔黏膜上皮细胞在UpCellTM温敏型表面培养皿上的合适接种密度及生长特性,利用温敏特性获得无载体细胞片以及构建口腔黏膜上皮细胞片的意义。(3)探讨重组Maxadilan(MAX)对角膜基质微环境下培养的口腔黏膜上皮细胞的CK3表达的影响;不同浓度的MAX对角膜基质细胞的影响。
     方法:(1)用CO2激光打标机刻制的聚苯乙烯有序排列微模板培养兔角膜基质细胞,模板沟槽划线间隔距离0.25mmm者为窄间隔组,间隔距离1mm者为宽间隔组,平板组作为对照组。将角膜基质细胞悬液1×105/ml细胞密度接种于培养板,倒置显微镜下每日观察细胞生长情况、HE染色观察细胞排列的形态学差异、免疫荧光法检测培养板上细胞的波形蛋白、实时监测显微镜下观察24h窄间隔组细胞的接触指引特性及细胞的动态生长过程。(2) UpCellTM温敏型表面培养皿及普通培养皿上接种不同密度的原代兔角膜上皮、口腔黏膜上皮细胞,置于37℃,5%CO2培养箱培养。通过倒置显微镜观察两种细胞在温敏培养皿上生长状况、形态学差异,同时寻求合适的接种密度;吖啶橙染色显示即将获取细胞片的活性;获取细胞片后石蜡切片HE染色以及扫描电镜观察细胞片的结构。(3)用RT-PCR检测PAC1受体在角膜基质细胞中的表达情况;Western-Blot检测PACl受体在角膜上皮细胞、角膜基质细胞及口腔粘膜上皮细胞中的表达检测;采用普通培养法及24h饥饿法分别添加不同浓度的MAX,培养兔角膜基质细胞,运用CCK8检测MAX对角膜基质细胞的促增殖作用;用免疫荧光定量Real-TimePCR检测以下4组细胞角蛋白CK3的表达差异:第一组,口腔黏膜上皮细胞+角膜基质细胞(通过插入式培养皿)。第二组,口腔黏膜上皮细胞+角膜基质细胞+100nM MAX。第三组,单纯口腔黏膜上皮细胞。第四组,单纯角膜上皮细胞。
     结果:(1)培养第1天倒置显微镜下见角膜基质细胞贴壁生长,窄间隔组和宽间隔组细胞逐渐围绕沟槽接触指引生长,表现为有序排列,且窄间隔组较宽间隔组明显。HE染色与免疫荧光染色显示培养细胞在窄间隔组沟槽的接触指引下呈有序排列,呈现10余层细胞排列的平行板层结构。3组细胞波形蛋白免疫荧光染色均呈阳性反应。实时监测显微镜下可见窄宽间隔组细胞体部首先贴壁,在接触指引下生长,而细胞在干燥环境下的凋亡始于细胞伪足突起处。(2)不同密度接种于UpCellTM温敏型表面培养皿及普通培养皿中的原代兔角膜上皮、口腔黏膜上皮细胞,早期没有表现出形态学上的差别,且在温敏型表面培养皿及普通培养皿中生长状况一致。随时间延长5×104/ml密度细胞生长缓慢,2×105/ml密度的细胞容易出现凋亡态,1×105/ml密度接种细胞出现铺路石状细胞,有较多细胞克隆中心形成,细胞呈复层,8天后生长状态最佳。20℃-25℃低温培养后见培养皿的局部有细胞片脱离温敏材料的表面,呈卷曲状,随时间延长发现脱离的细胞片越来越大,石蜡切片HE染色细胞呈复层,扫描电镜观察细胞片细胞间交错连接明显,排列紧密。(3)RT-PCR证实角膜基质细胞上有PAC1受体的表达,Western-Blot证实角膜上皮细胞、角膜基质细胞及口腔黏膜上皮细胞上PAC1受体的表达阳性;CCK8细胞增殖实验显示MAX对角膜基质细胞有促进作用;Real-Time PCR证实MAX促进与角膜基质细胞共培养的口腔黏膜上皮细胞的CK3表达。
     结论:(1)利用CO2激光打标机制备的有序排列微模板可获得有序排列角膜基质细胞,有利于在接近于生理状态条件下角膜基质层的构建。(2)UpCellTM温敏型表面培养皿获取无载体细胞片,符合构建生理状态的角膜上皮层的要求。(3)角膜上皮细胞、角膜基质细胞及口腔黏膜上皮细胞均表达]PAC1受体;PAC1受体激动剂Maxadilan对角膜基质细胞具有促增殖作用,并促进口腔黏膜上皮细胞CK3的表达,Maxadilan有利于组织工程角膜种子细胞的生长。
Objective:(1) In order to investigate the property of rabbit corneal keratocytes cultured in physiological status, keratocyte alignment cultured on microgrooved patterns of polystyrene plates and cellular biology were studied. (2) To explore the proper density and the cellular biological characteristics when corneal epithelial cells and oral mucosal epithelial cells were seeded on temperature-responsive Nunc UpCell Surface. The carrier-free cell sheets fabricated on the temperature-responsive culture surfaces. (3) To investigate the influence of recombinant maxadilan to keratin CK3 expression of oral mucosal epithelial cells when co-culturing keratocytes. The proliferation effects of different concentration maxadilan to keratocytes were also studied.
     Methods:(1) The alignment patterns were designed as alternating grooves and ridges, including 0.25mm lineation space (narrow groove group), lmm lineation space (wide groove group), and no alignment pattern worked as control group. The suspension of rabbit P2 keratocytes was inoculated on the culture plates at a density of 1×105 cells/ml. Morphology of cultured cells was observed under the phase contrast microscope daily. The cellular growth and contact guidance property were investigated with HE staining and immunofluorescence staining of vimentin. Cells in narrow groove group was incubated at 37℃in a closed dry 5% CO2 environment and the processes of cellular adherence, contact guidance proliferation, and apoptosis of 24 hour time-lapse were observed under real-time microscope. (2) Different densities of primary corneal epithelial cells and oral mucosal epithelial cells were seeded on Nunc UpCell surface and tissue culture plate (TCP) surface of 6 well plates and incubated. Phase contrast microscope examination was performed daily to observe morphological differences in different cellular densities. Acridine orange (AO) staining was used to evaluated the cell viability. HE staining was carried to observe the paraffin longitudinal section of the cell sheets. SEM examination was carried out to observe the cell junction and the structure. (3) RT-PCR assay was used to detect the expression of PAC1 receptor in keratocytes. Western-Blot assay was used to detect the expression of PAC1 receptor in corneal epithelial cells, keratocytes and oral mucosa epithelial cells. The proliferation effects of keratocytes in 1nM~500nM maxadilan using DMEM medium with 0.3% FBS or 10% FBS were assessed by CCK-8 method. Real-Time PCR assay was established for detection of CK3 gene expression of four groups as bellow:rabbit mucosal epithelial cells co-culture with keratocytes through transwell culture (group one), group one +100nM recombinant maxadilan (group two), rabbit mucosal epithelial cells (group three) and corneal epithelial cells (group four) as control group.
     Results:(1) Keratocytes in groove groups grew along the grooves, but cells in control group showed no alignment pattern. Histological evaluation of HE staining and immunofluorescence staining showed that keratocytes in groove groups had contact guidance feature and elongated on the surface with microgrooved patterns and aligned along that patterns, the cells of three groups presented the positive response for Vimentin. Comparison to the wide group, the cells in narrow group showed more obvious growing characteristics of alignment. The images of cells in narrow group under the real-time microscope confirmed that cells proliferated along the arranged grooves to abide by the contact guidance. The cellular adherence was firstly observed in cell body, but its apoptosis occurred firstly in cell foot processes. (2) There were not obvious discrimination in different densities of primary corneal epithelial cells and oral mucosal epithelial cells seeded on Nunc UpCell surface and TCP surface during the early stage. With the time prolongs, the cells of 5×104/ml density presented retardation, the cells of 2×105/ml density displayed apoptosis state, while the cells of 1×105/ml density were easy to form cobble-like morphology and colony formation. There were multilayer cells and cells reached confluence on day 8. Cell sheets were harvested by reducing the culture temperature to 20℃-25℃. HE staining showed that the cell sheets were carrier-free. SEM showed tight junction of the cells. (3)RT-PCR assay demonstrated the expression of PAC1 receptor in keratocytes. Western-Blot detected the expression of PAC1 receptor in corneal epithelial cells, keratocytes and oral mucosa epithelial cells at protein level. The CCK8 assay revealed that maxadilan promoted the proliferation of keratocytes. Real-Time PCR demonstrated that maxadilan promoted the expression of CK3 in oral mucosal epithelial cells when co-culture keratocytes.
     Conclusions:(1) Keratocytes cultured on microgrooved surfaces have alignment pattern, especially in the pattern of 0.25mm lineation space. Keratocytes show contact guidance feature in alignment growth and close to the physiological status, which is suitable to the three-dimensional corneal stroma reconstruction in vitro. (2) Cell sheets obtained from Nunc UpCell surface show carrier-free without exogenous materials, which corresponds the requirements of reconstructing physiological condition of cornea cellular layers. (3) There is the expression of PAC1 receptor in corneal epithelial cells, keratocytes and oral mucosa epithelial cells. Maxadilan, an agonist of PAC1 receptor, can promote the proliferation of keratocytes and the expression of CK3 of oral mucosa epithelial cells. So Maxadilan is to the benefit of seeding cells of corneal tissue engineering.
引文
[1]Whitcher JP, Srinivasan M, Upadhyay MP. Corneal blindness:a globalperspective [J]. Bull World Health Organ,2001,79:214-221.
    [2]Griffith M, Hakim M, Shimmure S, Watsky MA, Li F, Carlsson D, Doillon CJ, Nakamura M, Suuronen E, Shinozaki N, Nakata K, Sheardown H. Artifical human corneas:scaffolds for transplantation and host regeneration[J]. Cornea, 2002,21(7 suppl):S54-S61.
    [3]张士元,邹留河,高永庆.全国盲及低视力的流行病调查[J].中国眼科杂志,2000,36:10-12.
    [4]Minami Y, Sugihara H, Oono S. Reconstruction of comea in three-dimensional collagen gel matrix culture[J]. Invest Ophthalmol Vis Sci,1993,34(7) 2316-2324.
    [5]Griffith M, Osborne R, Munger R, Xiong X, Doillon CJ, Laycock NL, Hakim M, Song Y, Watsky MA. Functional human corneal equivalents constructed from cell lines[J]. Science,1999,286:2169-2172.
    [6]Germin L, Carrier P, Auger FA, Salesse C, Guerin SL. Can we produce a human corneal equivalent by tissue engineering[J]. Prog Retin Eye Res,2000,19(5) 497-527.
    [7]Li F, Carlsson D, Lohmann C, Suuronen E, Vascotto S, Sheardown K, Sheardown H, Munger R, Nakamura M, Griffith M. Cellular and nerve regeneration within a biosynthetic extracellular matrix for corneal transplantation[J]. Proc Natl Acad Sci USA,2003,100(26):15346-15351.
    [8]Graf J, Ogle RC, Robey FA, Sasaki M, Martin GR, Yamada Y, Kleinman HK. A pentapeptide from the laminin B1 chain mediates cell adhesion and binds the 67000 laminin receptor[J]. Biochemistry 1987,26:6896-6900.
    [9]Proulx S, d'Arc Uwamaliya J, Carrier P, Deschambeault A, Audet C, Giasson CJ, Guerin SL, Auger FA, Germain L. Reconstruction of a human cornea by the self-assembly approach of tissue engineering using the three native cell types[J]. Mol Vis,2010,16:2192-2201.
    [10]Cox JL, Farrell RA, Hart RW, Langham ME. The transparency of the mammalian cornea[J]. J Physiol,1970,210(3):601-616.
    [11]Benedek G. Theory of transparency of the eye[J]. Applied Optics,1971,10:459-473
    [12]Komai Y, Ushiki T. The three-dimensional organization of collagen fibrils in the human cornea and sclera[J]. Invest Ophthalmol Vis Sci.1991,32(8):2244-2258.
    [13]Guillemette MD, Cui B, Roy E, Gauvin R, Giasson CJ, Esch MB, Carrier P, Deschambeault A, Dumoulin M, Toner M, Germain L, Veres T, Auger FA. Surface topography induces 3D self-orientation of cells and extracellular matrix resulting in improved tissue function[J]. Integr Biol (Camb),2009,1(2):196-204.
    [14]Varghese VM, Raj V, Sreenivasan K, Kumary TV. In vitro cytocompatibility evaluation of a thermoresponsive NIPAAm-MMA copolymeric surface using L929 cells [J]. J Mater Sci Mater Med,2010,22(15):1589-1596.
    [15]Stile RA, Burghard WR, Healy KE. Synthesis and characterization of injectable poly(N-isopropyl-acrylamide)-based hydrogels that support tissue formation in vitro [J]. Macromolecules,1999,32:73-70.
    [16]Kushida A, Yamato M, Konno C, Kikuchi A, Sakurai Y, Okano T. Temperature-responsive culture dishes allow nonenzymatic harvest of differentiated Madin-Darby canine kidney (MDCK) cell sheets[J]. J Biomed Mater Res,2000,51:216-223.
    [17]Kushida A, Yamato M, Konno C, Kikuchi A, Sakurai Y, Okano T. Decrease in culture temperature releases monolayer endothelial cell sheets together with deposited fibronectin matrix from temperature-responsive culture surfaces[J]. Biomed Mater Res,1999,45(4):355-362.
    [18]Vunjak-Novakovic G, Scadden DT. Biomimetic platforms for human stem cell research[J]. Cell Stem Cell. 2011,8(3):252-61.
    [19]Wray LS, Orwin EJ. Recreating the microenvironment of the native cornea for tissue engineering applications[J]. Tissue Eng Part A.2009,15(7):463-472.
    [20]Li DQ, Tseng SC. Three patterns of cytokine expression potentially involved in epithelial-fibroblast interactions of human ocular surface[J]. J Cell Physiol,1995, 163(1):61-79.
    [21]Nishimura T, Toda S, Mitsumoto T, Oono S, Sugihara H. Effects of hepatocyte growth factor, transforming growth factor-betal and epidermal growth factor on bovine corneal epithelial cells under epithelial-keratocyte interaction in reconstruction culture[J]. Exp Eye Res,1998,66(1):105-116.
    [22]Friend J, Kinoshita S, Thoft RA, Eliason JA.Corneal epithelial cell cultures on stromal carriers[J]. Invest Ophthalmol Vis Sci,1982,23(1):41-49.
    [23]Guillemette MD, Cui B, Roy E, Gauvin R, Giasson CJ, Esch MB, Carrier P, Deschambeault A, Dumoulin M, Toner M, Germain L, Veres T, Auger FA. Surface topography induces 3D self-orientation of cells and extracellular matrix resulting in improved tissue function[J]. ntegr Biol (Camb),2009,1(2):196-204.
    [24]Vrana E, Builles N, Hindie M, Damour O, Aydinli A, Hasirci V. Contact guidance enhances the quality of a tissue engineered corneal stroma[J]. J Biomed Mater Res A,2008,84(2):454-463.
    [25]Vrana E, Elshekh A, Builles N, Damour O, Hasirci V. Effect of human corneal keratocytes and retinal pigment epithelial cells on the mechanical properties of micropatterned collagen films[J]. Biomaterials,2007,28(29):4303-4310.
    [26]Torbet J, Malbouyres M, Builles N, Justin V, Roulet M, Damour O, Oldberg A, Ruggiero F, Hulmes DJ. Orthogonal scafold of magnetically aligned collagen lamellae for corneal stroma reconstruction[J]. Biomaterials,2007,28(29):4268-4276.
    [27]Jiang FZ, Horber H, Howard J, Miiller DJ. Assembly of collagen into microribbons:effects of pH and electrolytes[J]. J Struct Biol,2004,148:268-278.
    [28]Isenberg BC, Tsuda Y, Williams C, Shimizu T, Yamato M, Okano T, Wong JY. A thermoresponsive, microtextured substrate for cell sheet engineering with defined structural organization[J]. Biomaterials,2008,29:565-2572.
    [29]Bettinger CJ, Cyr KM, Matsumoto A, Langer R, Borenstein JT, Kaplan DL. Silk fibroin microfluidic devices[J]. Adv Mater Deerfield,2007,19(5):2847-2850.
    [30]Lawrence BD, Marchant JK, Pindrus MA, Omenetto FG, Kaplan DL. Silk film biomaterials forcornea tissue engineering[J]. Biomaterials,2009,30(7):1299- 1308.
    [31]Hirokawa Y, Tanaka T, Matsuo ES. Volume phase transition in a nonionic gel[J]. J Chem Phys,1984,81(12):6379-6380.
    [32]HeskinsM, Guillet JE. Solution properties of poly(N-isop ropylacrylamide) [J]. J Macromol Sci Chem,1968, A2:1441-1455.
    [33]王永成,李元宗,常文保,慈云祥NIPA系温度敏感水凝胶及分析应用[J].分析科学学报,1999,15(6):510-515.
    [34]Shimmura S, Doillon CJ, Griffith M, Nakamura M, Gagnon E, Usui A, Shinozaki N, Tsubota K. Collagen-poly(N-Iso-propylacrylamide)-based membranes for corneal stroma scaffolds[J]. Cornea,2003,22(7Suppl):S81-88.
    [35]Akiyama Y, Kikuchi A, Yamato M, Okano T. Ultrathin poly(N-isopropylacrylamide) grafted layer on Polystyrene Surfaces for Cell adhesion /detachment control[J]. Langmuir,2004,20(13):5506-5511.
    [36]Nagira T, Matthew SB, Yamakoshi Y, Tsuchiya T. Enhancement of gap junctional intercellular communication of normal human dermal fibroblasts cultured on polystyrene dishes grafted with poly-N-isopropylacrylamide[J]. Tissue Eng,2005,11(9-10):1392-1397.
    [37]Murakami D, Yamato M, Nishida K, Ohki T, Takagi R, Yang J, Namiki H, Okano T. Fabrication of transplantable human oral mucosal epithelial cell sheets using temperature-responsive culture inserts without feeder layer cells[J]. J Artif Organs,2006,9(3):185-191.
    [38]Tsuda Y, Kikuchi A, Yamato M, Nakao A, Sakurai Y, Umezu M, Okano T. The use of patterned dual thermoresponsive surfaces for the collective recovery as co-cultured cell sheets[J]. Biomaterials,2005,26(14):1885-1893.
    [39]Sumide T, Nishida K, Yamato M, Ide T, Hayashida Y, Watanabe K, Yang J, Kohno C, Kikuchi A, Maeda N, Watanabe H, Okano T, Tano Y. Functional human corneal endothelial cell sheets harvested from temperature-responsive culture surfaces[J]. FASEB J,2006,20(2):392-394.
    [40]Hayashida Y, Nishida K, Yamato M, Yang J, Sugiyama H, Watanabe K, Hori Y, Maeda N, Kikuchi A, Okano T, Tano Y. Transplantation of tissue-engineered epithelial cell sheets after excimer laser photoablation reduces postoperative corneal haze [J]. Invest Ophthalmol Vis Sci,2006,47(2):552-557.
    [41]Perng CK, Kao CL, Yang YP, Lin HT, Lin WB, Chu YR, Wang HJ, Ma H, Ku HH, Chiou SH. Culturing adult human bone marrow stem cells on gelatin scaffold with pNIPAAm as transplanted grafts for skin regeneration[J]. J Biomed Mater Res A,2008,84(3):622-630.
    [42]Kushida A, Yamato M, Isoi Y, Kikuchi A, Okano T. A noninvasive transfer system for polarized renal tubule epithelial cell sheets using temperature-responsive culture dishes[J]. Eur Cell Mater,2005,10:23-30.
    [43]Shiroyanagi Y, Yamato M, Yamazaki Y, Toma H, Okano T. Transplantable urothelial cell sheets harvested noninvasively from temperature-responsive culture surfaces by reducing temperature[J]. Tissue Eng,2003,9(5):1005-1012.
    [44]Shiroyanagi Y, Yamato M, Yamazaki Y, Toma H, Okano T. Urothelium regeneration using viable cultured urothelial cell sheets grafted on demucosalized gastric flaps[J]. BJU Int,2004,93(7):1069-1075.
    [45]Tsuda Y, Kikuchi A, Yamato M, Nakao A, Sakurai Y, Umezu M, Okano T. The use of patterned dual thermorespon- sive surfaces for the collective recovery as co-cultured cell sheets[J]. Biomaterials,2005,26(14):1885-1893.
    [46]Isenberg BC, Tsuda Y, Williams C, Shimizu T, Yamato M, Okano T, Wong JY. A thermoresponsive, microtextured substrate for cell sheet engineering with defined structural organization[J]. Biomaterials,2008,29(17):2565-2572.
    [47]Elloumi-Hannachi I, Yamato M, Okano T. Cell sheet engineering:a unique nanotechnology for scaffold-free tissue reconstruction with clinical applications in regenerative medicine[J]. J Intern Med,2010,267(1):54-70.
    [48]Nithya J, Kumar PR, Tilak P, Leena J, Sreenivasan K, Kumary TV. Intelligent thermoresponsive substrate from modified overhead projection sheet as a tool for construction and support of cell sheets in vitro[J]. Tissue Eng Part C Methods, 2011,17(2):181-191.
    [49]Nithya J, Tilak P, Vidya R, Anil KPR, Sreenivasan K, Kumary TV. A cytocompatible poly(N-isopropylacrylamide-co-glycidylmethacrylate) coated surfaces as new substrate for corneal tissue engineering[J]. J Bioact Compat Polym,2010,25(1):58-74.
    [50]Schermer A, Galvin S, Sun TT. Differentiation-related expression of a major 64K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells[J]. J Cell Biol,1986,103(1):49-62.
    [51]Hata K, Kagami H, Ueda M, Torii S, Matsuyama M. The characteristics of cultured mucosal cell sheet as a material for grafting:comparison with cultured epidemal cell sheet[J]. Ann Plast Surg,1995,34(5):530-538.
    [52]Shore JW, Foster CS, Westfall CT, Rubin PA. Results ofbuccal mucosal grafting for patients with medically controlled ocular cicatricial pemphigoid[J]. Ophthalmology,1992,99(3):383-395.
    [53]Nakamura T, Endo K, Cooper LJ, Fullwood NJ, Tanifuji N, Tsuzuki M, Koizumi N, Inatomi T, Sano Y, Kinoshita S. The successful culture and autologous transplantation of rabbit oral mucosal epithelial cells on amniotic membrane[J]. Invest Ophthalmol Vis Sci,2003,44(1):106-116.
    [54]Nakamura T, Inatomi T, Sotozono C, Amemiya T, Kanamura N, Kinoshita S. Transplantation of cultivated autologous oralmucosal epithelial cells in patients with severe ocular surface disorders.[J]. Br J Ophthalmol,2004,88(10):1280-1284.
    [55]Nishida K, Yamato M, Hayashida Y, Watanabe K, Yamamoto K, Adachi E, Nagai S, Kikuchi A, Maeda N, Watanabe H, Okano T, Tano Y. Corneal Reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium[J]. N Engl J Med,2004,351:1187-1196.
    [56]Pellegrini G, Dellambra E, Golisano O, Martinelli E, Fantozzi I, Bondanza S, Ponzin D, McKeon F, De Luca M. P63 identifies keratinocyte stem cells[J]. Proc Natl Acad Sci USA,2001,98(6):3156-3161.
    [57]Oie Y, Hayashi R, Takagi R, Yamato M, Takayanagi H, Tano Y, Nishida K. A novel method of culturing human oral mucosal epithelial cell sheet using post-mitotic human dermal fibroblast feeder cells and modified keratinocyte culture medium for ocular surface reconstruction[J]. Br J Ophthalmol,2010, 94(9):1244-1250.
    [58]Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains[J]. Exp Cell Res 1961;25:585e621.
    [59]Moll I, Troyanovsky SM, Moll R. Special program of differentiation expressed in keratinocytes of human haarscheiben:an analysis of individual cytokeratin polypeptides[J]. J Invest Dermatol,1993,100(1):69-76.
    [60]Hayashida Y, Nishida K, Yamato M, Watanabe K, Maeda N, Watanabe H, Kikuchi A, Okano T, Tano Y. Ocular surface reconstruction using autologous rabbit oral mucosal epithelial sheets fabricated ex vivo on a temperature-responsive culture surface[J]. Invest Ophthalmol Vis Sci,2005, 46(5):1632-1639.
    [61]Moll R, Franke WW, Schiller DL, Geiger B, Krepler R. The catalog of human cytokeratins:patterns of expression in normal epithelia, tumors and cultured cells[J]. Cell,1982,31(1):11-24.
    [62]Cooper D, Schermer A, Sun TT. Classification of human epithelia and their neoplasms using monoclonal antibodies to keratins:strategies, applications, and limitations[J]. Lab Invest,1985,52(3):243-256.
    [63]Chen HC, Chen HL, Lai JY, Chen CC, Tsai YJ, Kuo MT, Chu PH, Sun CC, Chen JK, Ma DH. Persistence of transplanted oral mucosal epithelial cells in human cornea[J]. Invest Ophthalmol Vis Sci,2009,50(10):4660-4668.
    [64]Miyata A, Arimura A, Dahl RR, Minamino N, Uehara A, Jiang L, Culler MD, Coy DH.Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells[J]. Biochem Biophys Res Commun,1989,164(1):567-574.
    [65]Shioda S, Shuto Y, Somogyvari-Vigh A, Legradi G, Onda H, Coy DH, Nakajo S, Arimura A, Wei Y, Mojsov S. Localization and gene expression of the receptor for pituitary adenylate cyclase-activating polypeptide in the rat brain[J]. Neurosci Res,1997,28(4):345-354.
    [66]Wei Y, Mojsov S. Tissue specific expression of different human receptor types for pituitary adenylate cyclase activating polypeptide and vasoactiveintestinal polypeptide:implications for their role in human physiology[J]. J Neuroendocrinol,1996,8(11):811-817.
    [67]Wei Y, Mojsov S. Tissue specific expression of different human receptor types for pituitary adenylate cyclase activating polypeptide and vasoactive intestinal polypeptide:implications for their role in human physiology[J]. J Neuroendocrinol, 1996,8(11):811-817.
    [68]David Vaudry, Bruno J. Gonzalez, Magali B, Laurent Y, Alain F, Hubert V. Pituitary Adenylate Cyclase-Activating Polypeptide and Its Receptors:From Structure to Function[J]. Pharmacological Reviews,2000,52(2):269-324.
    [69]Shioda S, Shuto Y, Somogyvari-Vigh A, Legradi G, Onda H, Coy DH, Nakajo S, Arimura A. Localization and gene expression of the receptor for pituitary adenylate cyclase-activating polypeptide in the rat brain[J]. Neurosci Res,1997, 28(4):345-354.
    [70]Qiao LP, Li XL. Resent development of research on pituitary adenylate cyclase activating polypeptide and its receptors[J]. Modern Clinical Medical Bioengineering,2003,9(1):61-63.
    [71]Wakade AR, Guo X, Strong R, et al. Pituitary adenylate cyclase activating polypeptide (PACAP) as a neurotransmitter in rat adrenal medulla[J]. Regul Pept, 1992,37(3):331.
    [72]Arimura A, Shioda S. Pituitary adenylate cyclase activating polypeptide (PACAP) and its receptors:neuroendocrine and endocrine interaction[J]. Front Neuroendocrinol,1995,16(1):53-88.
    [73]Braas KM, May V. Pituitary adenylate cyclase activating polypeptide directly stimulate sympathetic neuron neuropeptide Y release through PAC1 receptor isoform activation of specific intracellular signaling pathway[J]. Biol Chem,1999, 274(39):27702-27710.
    [74]Dickinson T, Mitchell R, Robberecht P, Fleetwood-Walker SM. The role of VIP/PACAP receptor subtypes in spinal somatosensory processing in rats with an experimental peripheral mononeuropathy[J]. Neuropharmacol,1999,38(1) 167-180.
    [75]Racz B, Gasz B, Borsiczky B, Gallyas F Jr, Tamas A, Jozsa R, Lubics A, Kiss P, Roth E, Ferencz A, Toth G, Hegyi O, Wittmann I, Lengvari I, Somogyvari-Vigh A, Reglodi D. Protective effects of pituitary adenylate cyclase activating polypeptide in endothelial cells against oxidative stress-induced apoptosis[J]. Gen Comp Endocrinol,2007,153(1-3):115-123.
    [76]Pantaloni C, Brabet P, Bilanges B, Dumuis A, Houssami S, Spengler D, Bockaert J, Journot L. Alternative splicing in the N-terminal extracellular domain of the pituitary adenylate cyclase-activating polypeptide (PACAP) receptor modulates receptor selectivity and relative potencies of PACAP-27 and PACAP-38 in phospholipase Cactivation[J]. Biol Chem,1996,271(36):22146-22151.
    [77]Moro O, Lerner EA. Maxadilan, the vasodilator from sand flies, is a specific pituitary adenylate cyclase activating peptide type I receptor agonist[J]. J Biol Chem,1997,272(2):966-970.
    [78]Pereira P, Reddy VB, Kounga K, Bello Y, Lerner E. Maxadilan activates PAC1 receptors expressed in Xenopus laevis melanophores[J]. Pigment Cell Res,2002, 15(6):461-466.
    [79]Lerner EA, Iuga AO, Reddy VB. Maxadilan, a PAC1 receptor agonist from sand flies[J]. Peptides,2007,28(9):1651-1654.
    [80]Lerner EA, Ribeiro JM, Nelson RJ, Lerner MR Isolation of Maxadilan, a potent vasodilatory peptide from the Salivary Glands of the sand fly lutzomyia longipalpis[J]. Biol Chem,1991,266(17):11234-11236.
    [81]Mercer A, Ronnholm H, Holmberg J, Lundh H, Heidrich J, Zachrisson O, Ossoinak A, Frisen J, Patrone C. PACAP promotes neural stem cell proliferation in adult mouse brain [J]. J Neurosci Res,2004,76 (2):205-215.
    [82]Nishimoto M, Furuta A, Aoki S, Kudo Y, Miyakawa H, Wada K. PACAP/PAC1 autocrine system promotes proliferation and astrogenesis in neural progenitor cells[J]. Gila,2007,55(3):317-327.
    [83]Morelli MB, Barberi M, Gambardella A, Borini A, Cecconi S, Coticchio G, Canipari R. Characterization, expression, and functional activity of pituitary adenylate cyclase-activating polypeptide and its receptors in human granulosa-luteal cells[J]. J Clin Endocrinol Metab.2008,93(12):4924-32.
    [84]Vaudry D, Rousselle C, Basille M, Falluel-Morel A, Pamantung TF, Fontaine M, Fournier A, Vaudry H, Gonzalez BJ. Pituitary adenylate cyclase-activating polypeptide protects rat cerebellar granule neurons against ethanol-induced apoptotic cell death[J]. Proc Natl Acad Sci USA,2002,99(9):6398-6403.
    [85]Kanekar S, Gandham M, Lucero MT. PACAP protects against TNFa-induced cell death in olfactory epithelium and olfactory placodal cell lines[J]. Mol Cell Neurosci,2010,45(4):345-54.
    [86]Drescher MJ, Drescher DG, Khan KM, Hatfield JS, Ramakrishnan NA, Abu-HamdanMD, Lemonnier LA. Pituitary adenylyl cyclase activating polypeptide (PACAP) and its receptor (PAC1-R) are positioned to modulate afferent signaling in the cochlea[J]. Neuroscience,2006,142(1):139-164.
    [87]Racz B, Horvath G, Reglodi D, Gasz B, Kiss P, Gallyas F Jr, Sumegi B, Toth G, Nemeth A, Lubics A, Tamas A. PACAP ameliorates oxidative stress in the chicken inner ear:an in vitro study[J]. Regul Pept,2010,160(1-3):91-98.
    [88]Vaudry D, Pamantung TF, Basille M, Rousselle C, Fournier A, Vaudry H, Beauvillain JC, Gonzalez BJ. PACAP protects cerebellar granule neurons against oxidative stress-induced apoptosis[J]. Eur J Neurosci,2002,15:1451-1460.
    [89]Przywara DA, Kulkarni JS, Wakade TD, Leontiev DV, Wakade AR. Pituitary adenylate cyclase activating polypeptide and nerve growth factor use theproteosome to rescue nerve growth factor-deprived sympathetic neurons cultured from chick embryos[J]. J Neurochem,1998,71(5):1889-1897.
    [90]Vaudry D, Gonzalez BJ, Basille M, Pamantung TF, Fontaine M, Fournier A, Vaudry H. The neuroprotective effect of pituitary adenylate cyclase activating polypeptide on cerebellar granule cells is mediated through inhibition of the CED3-related cystein protease caspase-3/CPP32[J]. Proc Natl Acad Sci USA, 2000,97(24):13390-13395.
    [91]宋庆高,石冰.组织工程化口腔粘膜的构建技术初步研究[J].四川大学学报,2003,34(4):733-735.
    [92]Ruberti JW, Zieske JD. Prelude to corneal tissue engineering-gaining control of collagen organization[J]. Prog Retin Eye Res,2008,27(5):549-577.
    [93]周峰,袁琳,黄鹤,陈红.纳微米沟槽型图案化表面“接触引导”现象及其细胞生理效应[J].科学通报,2009,16:2265-2270.
    [94]Tocce EJ, Smirnov VK, Kibalov DS, Liliensiek SJ, Murphy CJ, Nealey PF. The ability of corneal epithelial cells to recognize high aspect ratio nanostructures[J]. Biomaterials,2010,31(14):4064-4072.
    [95]Jiang F, Horber H, Howard J, Miiller DJ. Assembly of collagen into microribbons:effects of pH and electrolytes[J]. J Struct Biol,2004,148:268-278.
    [96]Nishida K,Yamato M, Hayashida Y, Watanabe K, Yamamoto K, Adachi E, Nagai S, Kikuchi A, Maeda N, Watanabe H, Okano T, Tano Y. Corneal Reconstruction with Tissue-Engineered Cell Sheets Composed of Autologous Oral Mucosal Epithelium[J]. N Engl J Med,2004,351(12):1187-1196.
    [97]Fujita S, Ohshima M, Iwata H. Patterns time-lapse observation of cell alignment on nanogrooved[J]. J R Soc Interfece,2009,6 (3):S269-277.
    [98]Tsai WB, Lin JH. Modulation of morphology and functions of human hepatoblas- toma cells by nano-grooved substrata[J]. Acta Biomater,2009, 5(5):1442-1454.
    [99]Dalby MJ, Hart A, Yarwood SJ. The effect of the RACK1 signalling protein on the regulation of cell adhesion and cell contact guidance on nanometric grooves[J]. Biomaterials,2008,29(3):282-289.
    [100]Nagira T, Matthew SB, Yamakoshi Y, Tsuchiya T. Enhancement of gap junctional intercellular communication of normal human dermal fibroblasts cultured on polystyrene dishes grafted with poly-N-isopropylacrylamide[J]. Tissue Eng,2005,11(9-10):1392-1397.
    [101]Nishida K, Yamato M, Hayashida Y, Watanabe K, Yamamoto K, Adachi E, Nagai S, Kikuchi A, Maeda N, Watanabe H, Okano T, Tano Y. Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium[J]. N Engl J Med,2004,351(12):1187-1196.
    [102]Kinoshita S, Koizumi N, Nakamura T. Transplantable cultivated mucosal epithelial sheet for ocular surface reconstruction[J]. Exp Eye Res,2004, 78(3):483-491.
    [103]Inatomi T, Nakamura T, Koizumi N, Sotozono C, Kinoshita S. Current concepts and challenges in ocular surface reconstruction using cultivated mucosa epithelial transplantation[J]. Cornea,2005,24(8 suppl):S32-S38.
    [104]Falluel-Morel A, Chafai M, Vaudry D, Basille M, Cazillis M, Aubert N, Louiset E, de Jouffrey S, Le Bigot JF, Fournier A, Gressens P, Rostene W, Vaudry H, Gonzalez BJ. The neuropeptide pituitary adenylate cyclase-activating polypeptide exerts anti-apoptotic and differenting effects during neuronse and embryonic stem cells[J]. J Neuroendocrinol,2007,19(5):321-327.
    [105]Leceta J, Gomariz RP, Martinez C. Receptor and transcriptional factors involved in the anti-inflammatory activity of VIP and PACAP[J]. Ann NY Acad Sci,2009,9(21):92.
    [106]Buscail L, Gourlet P, Cauvin A, De Neef P, Gossen D, Arimura A, Miyata A, Coy DH, Robberecht P, Christophe J. Presence of highly selective receptors for PACAP (pituitary adenylate cyclase activating peptide) in membranes from the rat pancreatic acinar cell line AR 4-2J[J]. FEBS Lett,1990,262:77-81.
    [107]Aino H, Hashimoto H, Ogawa N, Nishino A, Yamamoto K, Nogi H, Nagata S, Baba A. Structure of the gene encoding the mouse pituitary adenylate cyclase-activating polypeptide receptor[J]. Gene,1995,164:301-304.
    [108]Fukiage C, Nakajima T, Takayama Y, Minagawa Y, Shearer TR, Azuma M. PACAP induces neurite outgrowth in cultured trigeminal ganglion cells and recovery of corneal sensitivity after flap surgery in rabbits[J]. Am J Ophthalmol, 2007,143(2):255-262.
    [109]Scharf E, May V, Braas KM, Shutz KC, Mao-Draayer Y. Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) regulate murine neural progenitor cell survival, proliferation, and differentiation[J].J Mol Neurosci,2008,36(1-3):79-88.
    [110]Mercer A, Ronnholm H, Holmberg J, Lundh H, Heidrich J, Zachrisson O, Ossoinak A, Frisen J, Patrone C. PACAP promotes neural stem cell proliferation in adult mouse brain[J]. J Neurosci Res,2004,76(2):205-215.
    [111]Kinoshita S, Nakamura T. Corneal cells for regeneration[J]. Ernst Schering Res Found Workshop,2005, (54):63-83.
    [112]Kinoshita S, Koizumi N, Nakamura T. Transplantable cultivated mucosal epithelial sheet for ocular surface reconstruction[J]. Exp Eye Res,2004,78(3): 483-491.
    [113]Troger J, Kieselbach G, Teuchner B, Kralinger M, Nguyen QA, Haas G, Yayan J, Gottinger W, Schmid E. Peptidergic nerves in the eyes, their source and potential pathophysioligical relevance[J]. Brain Res rev,2007,53(1):39-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700