生防菌盾壳霉防治油菜菌核病的生态学基础及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生防菌盾壳霉(Coniothyrium minitans)是核盘菌(Sclerotinia sclerotiorum)的一种重寄生真菌,也是一种具有广阔应用前景的生防菌。应用盾壳霉防治油菜菌核病的策略包括花期施用(抑制核盘菌子囊孢子的侵染)和土壤施用(抑制核盘菌的菌核存活,减少初侵染源数量)。为了充分挖掘盾壳霉的防病潜力,本论文研究了盾壳霉在油菜花瓣和土壤中存活及扩散、以及影响盾壳霉存活或发挥活性的生态因子,包括温度、含水量、复合肥和其它重寄生真菌等。研究目的在于:从生态的角度评估利用盾壳霉防治油菜菌核病的潜力,为提高盾壳霉防治油菜菌核病的效果提供思路,为建立轻便化使用盾壳霉防治油菜菌核病技术体系提供理论依据。
     首先,利用盾壳霉突变菌株SV-5-2对杀菌剂农利灵(vinclozolin)、青霉素和链霉素的抗性,建立了利用选择性培养基定量检测盾壳霉的方法。结果表明:在常规马铃薯葡萄糖琼脂培养基(PDA)中同时添加农利灵(vinclozolin,500μg a.i./ml)、青霉素(500μg a.i./ml)和链霉素(500μg a.i./ml)对盾壳霉SV-5-2分生孢子萌发和菌丝生长没有太大影响。基于这一结果,建立了监测盾壳霉存活动态的选择性分离技术。此外,基于PCR技术,还探讨了盾壳霉的分子检测技术。结果获得了特异性检测盾壳霉的两对PCR引物。结果还表明:分子检测技术可用于研究盾壳霉与核盘菌之间的菌丝互作、盾壳霉寄生核盘菌菌核以及盾壳霉在灭菌土的存活。
     研究了在中国华中地区田间条件下,盾壳霉分生孢子在油菜花瓣上的存活动态。2004和2005年的5次田间(A-E)试验结果表明:盾壳霉分生孢子可以在油菜花瓣上存活3~5 d。在5次试验中,盾壳霉分生孢子在油菜花瓣上的存活率分别为17.3%,14.3%,35.0%,62.6%和1.9%。研究结果还表明:盾壳霉分生孢子在油菜花瓣上的存活受天气的影响。在晴天的2次试验(C和D)中,盾壳霉分生孢子在油菜花瓣上的存活率较高。这表明:盾壳霉分生孢子可以忍耐阳光照射3~5 d。另外,在有降雨天气的3次试验(A,B和E)中,盾壳霉分生孢子在油菜花瓣上的存活率较低。盾壳霉数量减少的原因可能是雨水的冲刷作用。两年的花期喷雾试验结果表明:盾壳霉单独使用,以及将盾壳霉与杀菌剂菌核净混用,对油菜菌核病具有显著防效。就单独使用盾壳霉而言,推荐使用浓度为1×10~6个孢子/ml。
     研究了盾壳霉在旱地土壤中的存活动态。试验结果表明:在夏季~秋季~冬季~春季试验中,盾壳霉分生孢子存活10个月以上;在秋季~冬季~春季~夏季试验中,盾壳霉可存活25个月以上。在这两个试验中,盾壳霉数量呈下降趋势。在第一次试验中,盾壳霉数量从5.1×10~5个/g土下降到8.0×10~4个/g土。盾壳霉数量的对数值(Y)与时间(X)之间的关系是:Y=5.6416-0.0095X-0.00003X~2(r=-0.8006,P<0.01);在第二次试验中,盾壳霉数量从7.2×10~5个/g土下降到3.9×10~4个/g土。盾壳霉数量的对数值(Y)与时间(X)之间的关系是:Y=6.3161-0.0023X(r=-0.8379,P<0.01)。在夏季~秋季淹水条件下和冬季~春季的淹水条件下,盾壳霉可存活5个月以上。盾壳霉数量的对数值随时间呈直线下降,特别是在夏季~秋季淹水条件下。此外,还研究了温度和土壤含水量对盾壳霉在土壤中存活的影响。在4℃~28℃下,盾壳霉在3种含水量(6.3%、18.5%和45.4%,w/w)的土壤中可360 d以上。在30℃~40℃下,盾壳霉在土壤中的存活与土壤含水量有关。在低含水量(6.3%)土壤中,在30℃和35℃下,盾壳霉可以存活210 d;在37℃和40℃下,盾壳霉可存活180 d;在中含水量(18.5%)土壤中,在这4个温度下,盾壳霉存活时间分别下降至120 d,21 d,14 d和3 d;在高含水量(45.4%)土壤中,在这4个温度下的盾壳霉存活时间分别下降至120 d,14 d,3 d和3 d。在45℃和50℃下,盾壳霉在3种含水量的土壤中存活均很差,存活时间少于2 d。盆栽试验结果表明:土壤中接种不同剂量的盾壳霉分生孢子对降低核盘菌菌核萌发产生子囊盘有显著(P<0.05)影响。随着盾壳霉接种剂量的增加,核盘菌子囊盘数量呈下降趋势。显著抑制核盘菌菌核萌发产生子囊盘的最低孢子浓度为10~1000个孢子/g土。两季大田试验结果表明:施用浓度1×10~5个/ml到1×10~7个/ml的盾壳霉均能显著抑制核盘菌菌核萌发产生子囊盘,对油菜菌核病亦有防治效果。
     研究了盾壳霉在4种不同土壤(黄棕壤、红壤、潮土、黑土)和砂子中的垂直扩散和水平扩散规律。结果表明:盾壳霉分生孢子可以随水分垂直扩散20 cm深,水平扩散10 cm远。两季盆栽试验结果表明:菌核埋入深度显著影响核盘菌菌核萌发产生的子囊盘数量,菌核埋入土壤深度5 cm以上时,基本不产生子囊盘。盾壳霉对菌核萌发产生子囊盘有显著的抑制作用。
     研究了盾壳霉与复合肥的相容性。结果表明:盾壳霉与复合肥有一定的相容性。一定浓度的复合肥对盾壳霉菌丝生长和分生孢子萌发有抑制作用,抑制强度与复合肥浓度呈正相关。但复合肥对盾壳霉没有致死作用,对其寄生菌核也没有显著影响。三季盆栽试验和两季大田试验结果均表明:盾壳霉与复合肥混用能显著降低核盘菌菌核萌发产生子囊盘,对油菜菌核病亦有防治效果。
     研究了盾壳霉、木霉和黄色蠕形霉单独使用,以及盾壳霉与木霉或黄色蠕形霉混用对核盘菌菌核萌发产生子囊盘的影响。盆栽试验结果表明:盾壳霉、木霉和黄色蠕形霉单独使用,以及盾壳霉与木霉或黄色蠕形霉混合使用,对核盘菌菌核萌发产生子囊盘均具有抑制效果,尤其是盾壳霉与木霉或黄色是蠕形霉混用的抑制效果更佳。结果还表明:秋季(10月份)使用这些生防菌抑制核盘菌子囊盘萌发的抑制效果比夏季(5月份)好。
     基于上述研究结果,建立了应用盾壳霉防治油菜菌核病的轻便化使用技术。这些技术包括:花期喷雾技术、水辅助扩散盾壳霉技术、盾壳霉~复合肥混用技术和盾壳霉与其它重寄生真菌(木霉或黄色蠕形霉)混合使用技术等。
Coniothyrium minitans is a promising biocontrol agent(BCA) of Sclerotinia sclerotiorum,the causal agent of sclerotinia stem rot(SSR) of oilseed rape.C.minitans can be used in two approaches for control SSR of oilseed rape:spray application on floral parts for suppression of infection by ascospores of S.sclerotiorum on flower petals and soil application for destruction of sclerotia of S.sclerotiorum.In order to evaluate the potential of C.minitans as a BCA for SSR of oilseed rape,to improve the efficacy of C. minitans and to establish convenient methods for application of C.minitans,we investigated survival of C.minitans on flower petals of oilseed rape and in natural soil under field condition in central China and factors affecting survival of C.minitans. Meanwhile,water-assisted dissemination of C.minitans conidia in soil was studied.
     On the basis of resistance against the fungicide vinclozolin and to the two bactericides benzylpencillin sodium and streptomycin sulfate,a selective medium containing vinclozolin(500μg a.i./ml),benzylpencillin sodium(500μg a.i./ml) and streptomycin sulfate(500μg a.i./ml) was formulated.C.minitans strain SV-5-2 could conduct normal conidial germination and mycelial growth on this medium.Therefore,the medium could be used for monitoring C.minitans released to environment.Meanwhile,a PCR-based assay was developed to specifically detect C.minitans.This molecular detection assay was successfully used in studying the interaction between C.minitans and S.sclerotiorum,parasitism of sclerotia S.sclerotiorum by C.minitans and in detection of C.minitans in sterile soil.
     Using this medium,survival of C.minitans on flower petals of oilseed rape was tracked.Results of the five field experiments(A-E) conducted in 2004 and 2005 showed that C.minitans strain SV-5-2 applied to flower racemes of oilseed rape could be detected for five days in four experiments and three days in one experiment.The rate of survival of C.minitans decreased with time and at the last sampling date,the survival rate was 17.3%, 14.3%,35.0%,62.6%and 1.9%for experiments A,B,C,D,and E,respectively. Moreover,survival of C.minitans was affected by weather conditions.Relatively,high rates of survival of C.minitans were observed under sunny weather in the experiments C and D,implying that conidia of C.minitans are tolerant to sunlight irradiation for a period of at least 5 days in the experiment C and 3 days in the experiment D.Low survival rates of C.minitans were observed under light rain weather in the experiment A,and heavy rain weather in the experiments B and E.The low recovery rate of C.minitans under rainy conditions suggests a possibility of rain wash of the inoculum of C.minitans applied to the florets of oilseed rape.Field experiments in two seasons were conducted to evaluate the efficacy of applying the mycoparasite C.minitans alone or mixed with the fungicide dimethachlon to the aerial parts of rapeseed plants at the flowering stage to control sclerotinia diseases.Results showed that compared to the control treatment,a significant reduction of SSR by aerial application of C.minitans alone or mixed with dimethachlon was observed.The recommended conidial concentration of C.minitans aerial applied alone at the flowering stage to control sclerotinia diseases was 1×10~6 conidia/ml.
     In order to evaluate the potential of the mycoparasite C.minitans to control S. sclerotiorum in central China,a study was conducted to investigate survival of C. minitans in soil under field conditions in Wuhan,China,using the most probable number technique on potato dextrose agar(PDA).Results showed that in non-irrigated soil,C. minitans strain SV-5-2 survived for 10 and 25 months in the first and the second assay, respectively.The concentration of viable C.minitans had a decreased from 5.1×10~5 to 8.0×10~4 cfu g~(-1) soil in the first assay and from 7.2×10~5 to 3.9×10~4 cfu g~(-1) soil in the second assay.In water-submerged soil,survival of C.minitans lasted for 5 months both in summer-autumn seasons and in winter-spring seasons.The population of C.minitans declined quickly,especially in the summer-autumn seasons.In addition,effects of temperature and soil water content on survival of C.minitans were characterized by incubating C.minitans-incorporated soil of different water treatments at 4,10,20 or 28℃for 30-360 days,at 30 or 35℃for 1-210 days,at 37 or 40℃for 1-180 days,and at 45 or 50℃for 1-7 days,and periodically detecting viable C.minitans on PDA.Results showed that at 4-28℃,C.minitans survived one year in soil containing 6.3%,18.5%or 45.4%of water and no significant difference(P>0.05) in the concentration of viable C.minitans was detected among the three water treatments at each temperature.At 30,35,37 and 40℃,survival of C.minitans depended on soil water content,lasting for 210 days at 30 and 35℃,and for 180 days at 37 and 40℃,in soil containing 6.3%of water,whereas for 120,21,14 and 3 days in soil containing 18.5%of water and for 120,14,3 and 3 days in soil containing 45.4%of water for these temperatures,respectively.At 45 and 50℃,C. minitans survived one day or shorter in soil of the three water treatments.These results suggest that C.minitans can survive for a long time in soil under climatic conditions in central China and can be used as soil treatment for suppression of S.sclerotiorum.Results of potting experiment indicated that the conidial concentration of C.minitans greatly affected the number of apothecia produced by S.sclerotiorum in three consecutive seasons.There was a tendency of decrease in the cumulative number of apothecia with the increase in the concentration of C.minitans conidia from 0(control) to 1×10~7 conidia/g soil.The minimum conidial concentration of C.minitans for significant(P<0.05) suppression of apothecium production by S.sclerotiorum was 10-1000 conidia/g soil.Results of field experiments in two seasons showed that soil treated with C.minitans in the conidial concentration of 1×10~5 to 1×10~7 conidia/ml,greatly suppressed apothecia produced and controlled sclerotinia diseases caused by S.sclerotiorum.
     Water-assisted dispersal of conidia of C.minitans in four soils(yellow-brown soil, red-clay soil,fluvo-aquic soil and black soil) and one sand was studied.Resuks showed that conidia of C.minitans could be disseminated with water and spread in soil or sand for 16-20 cm vertically and for 5-10 cm horizontally.The conidial concentration of C. minitans was logarithmically reduced with the increase in the depth or distance.These results suggest that soil application of C.minitans in plowed fields might be integrated in irrigations.Results of potting experiments in two seasons showed that sclerotial burial depth in soil greatly affected carpogenic germination by sclerotia of S.sclerotiorum in soil treated with C.minitans or water alone(control).In treatments of C.minitans and the control,sclerotia buried in soil at 0-0.5 cm in depth produced much more apothecia than those buried at 5 cm in depth and no apothecia formation was observed for sclerotia buried at 10 cm in depth in the entire season.Suppressive effect of C.minitans on carpogenic germination of S.sclerotiorum was also observed in comparison with the control treatment.
     Effect of a compound fertilizer on mycelial growth,conidial germination of C. minitans and on infection of sclerotia of S.sclerotiorum by this mycoparasite was studied. Results showed that the compound fertilizer could significantly affect the mycelial growth and conidial germination of C.minitans and the degree of inhibition depends on the concentration of the fertilizer,however,without any lethal effect on C.minitans.The compound fertilizer did not affect the infection of sclerotia of S.sclerotiorum by C. minitans.This study suggests that the compound fertilizer was compatible with C. minitans.Results of potting experiment indicated that C.minitans mixed with the compound fertilizer greatly reduced the number of apothecia produced by S.sclerotiorum sclerotia in three consecutive seasons.Results of field experiments in two seasons showed that soil treated with C.minitans mixed with the compound fertilizer greatly suppressed apothecia produced and controlled sclerotinia diseases caused by S.sclerotiorum.
     Three potting experiments were conducted to determine the effects of soil treatment with three mycoparasites on production of apothecia of S.sclerotiorum.All the three species of fungi assessed,C.minitans,Talaromyces flavus and Trichoderma atroviride were the effective agents for reducing carpogenic germination of S.sclerotiorum sclerotia. The efficacy of C.minitans mixed with T.flavus or T.atroviride reduced formation of apothecia of S.sclerotiorum were better than all the three species of fungi treated alone. Effects were greatest when inoculum of the three mycoparasites were applied in October, at the time of sowing,rather than when they were applied in May.
     Based on the results of this study,four convenient techniques for application of C. minitans to SSR of oilseed rape were established,including aerial application of C. minitans alone or mixed with low-dose of the fungicide dimethachlon,water-assisted delivery of C.minitans to soil,integrated use of compound fertilizer and C.minitans and combination of C.minitans with Talaromyces flavus or Trichoderma atroviride.
引文
1.鲍士旦.土壤农化分析(第三版),中国农业出版社,2000,44-49
    2.陈福生,罗信昌,周启.酶联免疫技术检测植物病原真菌.植物检疫,1999.13:33-35
    3.陈利锋,徐敬友.农业植物病理学(南方本).北京:中国农业出版社,2001.211-215
    4.陈欣,李寅,堵国成,陈坚.应用响应面方法优化Coniothyrium minitans固态发酵生产生物农药.工业微生物,2004,34:26-29
    5.董慧.一株拮抗性芽孢杆菌的鉴定及防治莴苣菌核病效果和机制研究.[硕士学位论文].武汉:华中农业大学图书馆,2008
    6.付云龙,唐建祥.油菜终花期摘除3叶防治菌核病效果好.植物保护,1994,22(1):48
    7.高俊明,王双双,刘慧平,韩巨才.菌核重寄生菌盾壳霉生物学特性研究.山西农业大学学报,2002,22:22-25
    8.高同春,王振荣,胡宏云.油菜菌核病病原生物学特性研究.安徽农业科学,1995.23:329-330
    9.胡燕梅,李国庆.盾壳霉产生几丁质酶的条件研究.武汉生物工程学院学报,2006.2:81-84
    10.黄娟,李国庆.两株毒力不同的核盘菌产草酸、果胶酶的比较.氨基酸和生物资源,2008a,30:5-8
    11.黄娟,刘友勋,李国庆.两株致病力不同的核盘菌形态变化研究.2008b,30(1):29-32
    12.姜道宏.核盘菌寄生菌盾壳霉(Coniothyrium minitans)的生物学及其寄生生态学研究.[硕士学位论文].武汉:华中农业大学图书馆,1995
    13.姜道宏,李国庆,易先宏,王道本.菌核寄生菌盾壳霉的研究Ⅱ:不同菌株培养特性及寄生致腐菌核能力的比较.华中农业大学学报,1996,15:229-232
    14.姜道宏,李国庆,易先宏,王道本.影响盾壳霉寄生核盘菌菌核的几个生态因子.植物病理学报,1997,27:47-52
    15.姜道宏,李国庆,易先宏,付艳平,王道本.盾壳霉所产抗细菌物质的特性.植物病理学报,1998,28:29-32
    16.姜道宏,李国庆,易先宏,付艳平,王道本.盾壳霉控制油菜菌核病菌再侵染及其叶面存活动态的研究.植物病理学报,2000,30:60-65
    17.李国庆,王道本,张顺和,但汉鸿.菌核寄生菌盾壳霉的研究Ⅰ:生物学特性及在湖北省的自然分布.华中农业大学学报,1995a,14:125-129
    18.李国庆,胡圣远,王道本.菌核寄生菌Talaromyces flacus的生物学特性及寄生菌核规律初探.微生物学通报,1995b.22:131-135
    19.李国庆,王道本,黄鸿章,周启.来源于佳木斯茄子上的核盘菌菌株多样性的研究.植物病理学报,1996.26:237-242
    20.李国庆,王道本,周启,黄鸿章.核盘菌菌核萌发多样性的研究.植物保护学报,1997,24:59-64
    21.李国庆,姜道宏,王道本,易先宏,朱斌,Rimmer S R.同核盘菌菌株Ep-1PN 弱毒性状相关的RNA及其属性.自然科学进展,1999,9(S1):1245-1249
    22.李建厂,李永红,陈文杰,李殿荣.向日葵核盘菌菌株致病性研究及其温度效应.西北农业学报,2003,12:114-117
    23.李金秀,陈文瑞,秦芸.油菜土壤中与核盘菌菌核存活有关的真菌.四川农业大学学报,1997,15:1-5
    24.李丽丽,黄早花,王圣玉.油菜菌核病病原生态条件研究.中国油料,1986,(1):75-79
    25.李世东,刘杏忠.食菌核葚孢霉-一种有潜力的菌核病生防菌.中国生物防治,2000,16:177-182
    26.刘春艳,王勇,郝永娟,魏军,王万立.保护地蔬菜菌核病的发生及防治.安徽农业科学,2008,36(3):976-990
    27.刘惕若,王守正,李丽丽.油料作物病害及其防治.上海科学技术出版社,1983.109-161
    28.罗宽,周必文.油菜菌核病菌核上寄生真菌的研究.中国油料,1987.3:40-44
    29.缪华军,李国庆.盾壳霉抗杀菌剂vinclozolin的诱变及突变体的生防潜力.中国生物防治,2006.21:73-77
    30.潘以楼,汪智渊,吴汉章.油菜菌核病对多菌灵的抗药性及其稳定性.江苏农业科学,1997,13:32-35
    31.石志琦,周明国,叶钟音,油菜菌核病菌对多菌灵、菌核净抗药性菌株性质研究.中国油料作物学报,2000,22:54-57
    32.王爱琴.以油菜秸秆为主要基质发酵生产盾壳霉分生孢子的工艺改进.[硕士学位论文].武汉:华中农业大学图书馆,2007
    33.王英超.核盘菌重寄生菌盾壳霉的固体发酵及分生孢子菌剂制备的研究.[硕士学位论文].武汉:华中农业大学图书馆,2005
    34.王英超,李国庆,方媛,姜道宏.利用油菜秸秆培养重寄生菌盾壳霉分生孢子.中国生物防治,2006,22:308-312
    35.韦善君.盾壳霉(Coniothyrium minitans)花期防治油菜菌核病潜力及有关机理的研究.[硕士学位论文].武汉:华中农业大学图书馆,2000
    36.韦善君,李国庆,姜道宏,王道本.草酸对重寄生真菌盾壳霉分生孢子萌发和菌丝生长的影响.植物病理学报,2004a,34:199-203
    37.韦善君,李国庆,姜道宏,王道本.核盘菌菌核刺激其重寄生菌盾壳霉分生孢子萌发的研究.武汉大学学报(理学版),2004b,50:139-143
    38.徐金妹,茆实,张国林,陈海新.油菜菌核病发生规律及防治技术研究报告.中国农学通报,2003,19:86-87
    39.杨敬辉,潘以楼,朱桂海,周益军.油菜菌核病菌对多菌灵和乙霉威的抗药性机理.植物保护学报,2004,31:74-78
    40.杨谦,张翼鹏.核盘菌子囊盘形成的影响因子.东北林业大学学报,1995,3:126-130
    41.杨新美.油菜菌核病Sclerotinia sclerotiorum在我国的寄主范围及生态特性的调查研究.植物病理学报,1959,5:111-122
    42.余夕辉,何木兰.田间环境与油菜菌核病发生程度的关系研究.安徽农学通报,2008.14:581-582
    43.翟宗清,岳葆春,孙俊铭,杭德龙,许光文.巢湖市油菜菌核病灾变特点及综合治理标准化技术研究初报.安徽农业科学,2008,36(2):612-613
    44.张丽华,党本元,周奕华,毛勇,张铁汉,曾君祉,王兰岚,陈正华.抗菌核病转基因油菜植株的获得.高技术通讯,1999,9(12):41-46.
    45.赵丽娟,张永杰,刘慧平,韩巨才,高俊明.盾壳霉看菌核净菌株的诱导及其特性初步研究.农药学学报,2005,7:233-236
    46.中国农业科学院油料作物研究所编.油菜菌核病.北京:农业出版社,1978,7
    47.周乐聪,周必文,余琦,刘胜毅,夏汉鑫,陈祖佑.菌核净系列新农药防治油菜菌核病的效果及机理.农药,1994,33:40-42
    48.周乐聪.油菜品种资源对菌核病的抗性鉴定.中国油料(增刊),1994,69-72
    49.周乐聪.植物病原菌核盘菌生防菌的筛选、诱变及分子改造.[博士学位论文].中国农业大学图书馆,2000.
    50.祝明亮.生防真菌分子标记技术研究进展.中国生物防治,2006a,22:157-162
    51.祝明亮.生防真菌基因标记技术研究进展.生物技术通报,2006b,(1):54-57
    52.Abawi G S,Grogan R G.Source of primary inoculum and effects of temperature and moisture on infection of beans by Whetzelinia sclerotiorum.Phytopathology,1975a,65:300-309
    53.Abawi G S,Polach F J,Molin W T.Infection of bean by ascospores of Whetzelinia sclerotiorum.Phytopathology,1975b,65:673-678
    54.Abawi G S,Grogan R G.Epidemiology of diseases caused by Sclerotinia species.Phytopathology,1979,69:899-904
    55.Abbasi P A,Miller S A,Meulia T,Hoitink H A J,Kim J M.Precise detection and tracing of Trichoderma hamatum 382 in compost-amended potting mixes by using molecular markers.Applied and Environmental Microbiology,1999,65:5421-5426
    56.Adams P B.Factors affecting survival of Sclerotinia sclerotiorum in soil.Plant Disease Reporter,1975,59:599-603
    57.Adams P B,Ayers W A.Ecology of Sclerotinia species.Phytopathology,1979,69:896-899
    58.Adams P B.Comparison of antagonists of Sclerotinia species.Phytopathology,1989,79,1345-1347
    59.Adams P B.The potential of mycoparasites for biological control of plant diseases.Annual Review of Phytopathology,1990,28:59-72
    60.Ahmed A H M,Tribe H T.Biological control of white rot of onion(Sclerotium cepivorum) by Coniothyrium minitans.Plant Pathology,1977,26:75-78
    61.Ainsworth G C,Sparrow F K,Sussman A S.The Fungi:An Advanced Treatise.Vol.Ⅳ A.Academic Press,New York,USA,1973
    62. Atkins S D, Clark I M, Sosnowska D, Hirsch P R, Kerry B R. Detection and quantification of Plectosphaerella cucumerina, a potential biological control agent of potato cyst nematodes, by using conventional PCR, Real-Time PCR, selective media, and baiting. Applied and Environmental Microbiology, 2003, 69: 4788-4793
    63. Atkins S D, Clark I M, Pande S, Hirsch P R, Kerry B R. The use of real-time PCR and species-specific primers for the identification and monitoring of Paecilomyces lilacinus. FEMS Microbiology Ecology, 2005, 51: 257-264
    64. Bae Y S, Knudsen G R. Cotransformation of Trichoderma harzianum with glucuronidase and green fluorescent protein genes provides a useful tool for monitoring fungal growth and activity in natural soils. Applied and Environmental Microbiology 2000,66, 810-815
    65. Bailey K L, Johnston A M, Kutcher H R, Gossen B D, Morrall R A A. Managing crop losses from foliar diseases with fungicides, rotation, and tillage in the Saskatchewan Parkland spring sown oilseed rape. Crop Protection, 2000, 17: 405-411
    66. Bardin S D, Huang H C. Research on biology and control of Sclerotinia diseases in Canada. Canadian Journal of Plant Pathology, 2001, 23: 88-98
    67. Bateman D F, Beer S V. Simultaneous production and synergistic action of oxalic acid and polygalacturonase during pathogenesis by Sclerotinia rolfsii. Phytopathology, 1965, 55, 204-211
    68. Bedi K S. Some chemical and biological factors affecting the formation of apothecia of Sclerotinia sclerotiorum (Lib.) de Bary. Journal of the Indian Botanical Society, 1963,42:66-73
    69. Bennett A J, Leifert C, Whipps J M. Survival of the biocontrol agents Coniothyrium minitans and Bacillus subtilis MBI 600 introduced into pasteurized, sterilised and non-sterile soils. Soil Biology and Biochemisty, 2003, 35: 1565-1573
    70. Bennett A J, Leifert C, Whipps J M. Survival of Coniothyrium minitans associated with sclerotia of Sclerotinia sclerotiorum in soils. Soil Biology and Biochemisty, 2006,38: 164-172
    71. Blum L E B, Prada A, Medeiros E A A, Amarante C V T. Temperature, light and culture medium affecting the production of sclerotia of Sclerotium rolfsii and Sclerotinia sderotiorum. Revista de Ciencias Agroveterinarias. 2002, 1: 27-32
    72. Boland G J, Hall R. Evaluating soybean cultivars for resistance to Sderotinia sderotiorum under field conditions. Plant Disease, 1987, 71: 934-936
    73. Boland G J, Hall R. Index of plant hosts of Sderotinia sderotiorum. Canadian Journal of Plant Pathology, 1994,16: 93-108
    74. Boland G J, Hunter J E. Influence of Alternaria alternata and Cladosporium dadosporioides on white mold of bean caused by Sderotinia sderotiorum. Canadian Journal of Plant Pathology, 1988,10, 172-177
    75. Boland G J. Stability analysis for evaluating the influence of environment on chemical and biological control of white mold (Sderotinia sderotiorum) of bean. Biological Control, 1997, 9: 7-14
    76. Bolton M D, Thomma B P H J, Nelson B D. Sderotinia sderotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Molecular Plant Pathology, 2006, 7: 1-16
    77. Bremer E, Huang H C, Selinger L J, Davis J S. Competence of Coniothyrium minitans in preventing infection of bean leaves by Sderotinia sderotiorum. Plant Pathology Bulletin, 2000, 9: 69-74
    78. Budge S P, Whipps J M. Glasshouse trials of Coniothyrium minitans and Trichoderma species for the biological control of Sderotinia sderotiorum in celery and lettuce. Plant Pathology, 1991, 40: 59-66
    79. Budge S P, McQuilken M P, Fenlon J S, Whipps J M. Use of Coniothyrium minitans and Gliodadium virens for biological control of Sderotinia sderotiorum in glasshouse lettuce. Biological Control, 1995, 5: 513-522
    80. Budge S P, Whipps J M. Potential for integrated control of Sderotinia sderotiorum in glasshouse lettuce using Coniothyrium minitans and reduced fungicide application. Phytopathology, 2001, 91:221-227
    81. Bulat S A, Lübeck M, Alekhina I A, Jensen D K, Knudsen I B M, Lübeck P S. Identification of a universally primed-PCR-derived sequence-characterized amplified region marker for an antagonistic strain of Clonostachys rosea and development of a strain-specific PCR detection assay. Applied and Environmental Microbiology, 2000, 66:4758-4763
    82. Caesar A J, Pearson R C. Environmental factors affecting survival of ascospores of Sclerotinia sclerotiorum. Phytopathology, 1983, 73: 1024-1030
    83. Campbell W A. A new species of Coniothyrium parasitic on sclerotia. Mycologia, 1947,39: 190-195
    84. Cassells A C and Walish M. Screening for Sclerotinia Resistance in Helianthus tuberous L.(Jerusalen artichoke) varieties, lines and somaclones, in the field and in vitro. Plant Pathology, 1995, 44: 428-437
    85. Cessna S G, Sears V E, Dickman M B, Low P S. Oxalic Acid, a pathogenicity factor for Sclerotinia sclerotiorum, suppresses the oxidative burst of the host plant. Plant Cell, 2000,12:191-220
    86. Chen C, Harel A, Gorovoits R, Yarden O, Dickman M B. MAPK regulation of sclerotial development in Sclerotinia sclerotiorum is linked with pH and cAMP sensing. Molecular Plant-Microbe Interactions, 2004,17: 404-413
    87. Chen C, Dickman M B. cAMP blocks MAPK activation and sclerotial development via Rap-1 in a PKAindependent manner in Sclerotinia sclerotiorum. Molecular Microbiology, 2005, 55: 299-311.
    88. Chen K Y, Chen ZC. Heat shock proteins of thermophilic and thermotolerant fungi from Taiwan. Botanical Bulletin of Academia Sinica, 2004,45: 247-257
    89. Cheng J S, Jiang D H, Fu Y P, Li G Q, Peng Y L, Ghabrial S A. Molecular characterization of a dsRNA totivirus infecting the sclerotial parasite Coniothyrium minitans. Virus Research, 2003a, 93: 41-50
    90. Cheng J S, Jiang D H, Yi X H, Fu Y P, Li G Q, Whipps J M. Production, survival and efficacy of Coniothyrium minitans conidia produced in shaken liquid culture. FEMS Microbiology Letters, 2003b, 227: 127-131
    91. Chet I, Henis Y. Sclerotial morphogenesis in fungi. Annual Review of Phytopathology, 1975, 13:169-192
    92. Christias C, Lockwood J L. Conversion of mycelial constituent in four sclerotium-forming fungi in nutrient deprived conditions. Phytopathology, 1973, 63: 602-605
    93. Ciancio A, Loffredo A, Paradies F, Turturo C, Sialer M F. Detection of Meloidogyne incognita and Pochonia chlamydosporia by fluorogenic molecular probes. EPPO Bulletin, 2005, 35: 157-164
    94. Clarkson J P, Staveley J, Phelps K, Young C S, Whipps J M. Ascospore release and survival in Sclerotinia sclerotiorum. Mycological Research, 2003,107: 213-222
    95. Cober E R, Rioux S, Rajcan I, Donaldson P A, Simmonds D H. Partial resistance to white mold in a transgenic soybean line. Crop Science, 2003,43: 92-95
    96. Dan H, Ali-Khan S T, Robb J. Use of quantitative PCR diagnostics to identify tolerance and resistance to Verticillium dahliae in potato. Plant Disease, 2001, 85: 700-705
    97. Dauch A L, Watson S H, Jabaji-Hare S H. Detection of the biocontrol agent Colletotrichum coccodes (183088) from the target weed velvetleaf and from soil by strain-specific PCR markers. Journal of Microbiological Methods, 2003, 55: 51-64
    98. de Vrije T, Antoine N, Buitelaar R M, Bruckner S, Dissevelt M, Durand A, Gerlagh M, Jones E E, Lüth P, Oostra J, Ravensberg W J, Renaud R, Rinzema A, Weber F J, Whipps J M. The fungal biocontrol agent Coniothyrium minitans: production by solid-state fermentation, application and marketing. Applied Microbiology and Biotechnology, 2001, 56: 58-68
    99. Destefano R H R, Destefano S A L, Messias C L. Detection of Metarhizium anisopliae var. anisopliae within infected sugarcane borer Diatraea saccharalis (Lepidoptera, Pyralidae) using specific primers. Genetics and Molecular Biology, 2004, 27: 245-252
    100.Diamantopoulou A, Litkei J, Skopa C, Christias C. Effectts of inhibitors of sclerotium formation on the sclerotial mycoparasite Coniothyrium minitans and its host Sclerotinia sclerotiorum. Mycological Research, 2000, 104: 1449-1452
    101.Dickman, M.B., Park, Y.K., Oltersdorf, T., Li, W, Clemente, T. and French, R. Abrogation of disease development in plants expressing animal antiapoptotic genes. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98: 6957-6962, Erratum in: Proceedings of the National Academy of Sciences of the United States of America, 100: 11816
    
    102.Dickson M H, Petzoldt R. Breeding for resistance to Sclerotinia sderotiorum in Brassica oleracea. Acta Horticulturae, 1996,407: 103-108
    103.Dodd S L, Hill R A, Stewart A. Monitoring the survival and spread of the biocontrol fungus Trichoderma atroviride (C65) on kiwifruit using a molecular marker. Australasian Plant Pathology, 2004a, 33: 189-196
    
    104.Dodd S L, Hill R A, Stewart A. A duplex-PCR bioassay to detect a Trichoderma virens biocontrol isolate in non-sterile soil. Soil Biology and Biochemistry, 2004b, 36: 1955-1965
    
    105.Donaldson P A, Anderson T, Lane B G, Davidson A L, Simmonds D H. Soybean plants expressing an active oligomeric oxalate oxidase from the wheat gf-2.8 (germin) gene are resistant to the oxalate-secreting pathogen Sderotinia sderotiorum. Physiological and Molecular Plant Pathology, 2001, 59: 297-307
    106.Doohan F M, Parry D W, Nicholson P. Fusarium ear blight of wheat: the use of quantitative PCR and visual disease assessment in studies of disease control. Plant Pathology, 1999, 48: 209-217
    107.Drahos D J. Field testing of genetically engineered microorganisms. Biotechnology Advances, 1991,9: 157-171
    108.Duncan R W, Fernando WGD, Rashid K Y. Time and burial depth influencing the viability and bacterial colonization of sclerotia of Sderotinia sderotiorum. Soil Biology and Biochemistry, 2006, 38: 275-284
    109.Erental A, Dickman M B, Yarden O. Sclerotial development in Sderotinia sderotiorum: awakening molecular analysis of a "Dormant" structure. Fungal Biology Reviews, 2008, 22: 6-16
    110.Favaron F, Sella L, D'Ovidio R. Relationships among endopolygalacturonase, oxalate, pH, and plant endopolygalacturonase-inhibiting protein (PGIP) in the interation between Sderotinia sderotiorum and soybean. Molecular Plant-Microbe Interactions, 2004, 17: 1402-1409
    111 .Fernando W G D, Nakkeeran S, Zhang Y, Savchuk S. Biological control of Sclerotinia sclerotiorum (Lib.) de Bary by Pseudomonas and Bacillus species on canola petals. Crop Protection, 2007,26:100-107
    
    112.Ferrar P H, Walker J R L. O-Dipenol oxidasse inhibition: an additional role of oxalic acid in the phytopathogenic arsenal of Sclerotium rolfsii. Physiological and Molecular Plant Pathology, 1993,43: 415-442
    
    113.Ferraz L C L, Cafe Filho A C, Nasser L C B, Azevedo J. Effects of soil moisture, organic matter and grass mulching on the carpogenic germination of sclerotia and infection of bean by Sclerotinia sclerotiorum. Plant Pathology, 1999, 48: 77-82
    
    114.Filion M, St-Arnaud M, Jabaji-Hare S H. Quantification of Fusarium solani f. sp. Phaseoli in mycorrhizal bean plants and surrounding mycorrhizosphere soil using real-time polymerase chain reaction and direct isolations on selective media. Phytopathology, 2003, 93: 229-235
    115.Freeman J, Ward E, Calderon C, McCartney A. A polymerase chain reaction (PCR) assay for the detection of inoculum of Sclerotinia sclerotiorum. European Journal of Plant pathology, 2002,108: 877-886
    
    116.Gerlagh M H, Kruse M, Goossen-van de Geijn H M, Whipps J M. Growth and survival of the mycoparasite Coniothyrium minitans on lettuce leaves in contact with soil in the presence or absence of Sclerotinia sclerotiorum. European Journal of Plant pathology, 1994,100:55-59
    117.Gerlagh M H, Whipps J M, Budge S P, Goosen-van de Geijn H M. Efficiency of isolates of Coniothyrium minitans as mycoparasites of Sclerotinia sclerotiorum, Sclerotium cepivorum and Botrytis cinerea on tamato stem pieces. European Journal of Plant pathology, 1996,102: 787-793
    118.Gerlagh M, Goossen-van de Gejin H M, Fokkema N J, Verreijken P F G. Long-term biosanitation by application of Coniothyrium minitans on Sclerotinia sclerotiorum-infected crops. Phytopathology, 1999, 89: 141-147
    119.Gerlagh M, Goossen-van de Gejin HM, Hoogland A E, Vereijken P F G. Quantitative aspects of infection of Sclerotinia sclerotiorum sclerotia by Coniothyrium minitans-timing of application, concentration and quantity of conidial suspension of the mycoparasite. European Journal of Plant Pathology, 2003,109: 489-502.
    120.Giczey G, Kerenyi Z, Fiilop L, Hornok L. Expression of cmgl, an exo-β-1, 3-glucanase gene from Coniothyrium minitans, increases during sclerotial parasitism. Applied and Environmental Microbiology, 2001, 67: 865-871
    121.Girard V, Fevre M, Bruel C. Involvement of cyclic AMP in the production of the acid protease Acpl by Sclerotinia sclerotiorum. FEMS Microbiology Letters, 2004, 237, 227-233
    122.Godoy G, Steadman J R, Yuen G. Bean blossom bacteria have potential for biological control of white mold disease caused by Sclerotinia sclerotiorum. Annu. Rep. Bean. Improv. Coop. 1990a, 33:45-46
    123.Godoy G, Steadman J R, Dickman M B, Dam R. Use of mutants to demonstrate the role of oxalic acid in pathogenicity of Sclerotinia sclerotiorum on Phaseolus vulgaris. Physiological and Molecular Plant Pathology, 1990b, 37: 179-191
    124.Gong X Y, Fu Y P, Jiang D H, Li G Q, Yi X H, Peng Y L. L-Arginine is essential for conidiation in the filamentous fungus Coniothyrium minitans. Fungal Genetics and Biology, 2007,44: 1368-1379
    125.Gossen B D, Rimmer S R, Holley J D. First report of resistance to benomyl fungicide in Sclerotinia sclerotiorum. Plant Disease, 2001, 85: 1206-1209
    126.Govrin E M, Levine A. The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Current Biology, 2000, 10: 751-757
    127.Green H, Jensen D F. A tool for monitoring Trichoderma harzianum: II. The use of a GUS transformant for ecological studies in the rhizosphere. Phytopathology, 1995, 85: 1436-1440
    128.Gracia-Garza J A, Reeleder R D, Paulitz T C. Degradation of sclerotia of Sclerotinia sclerotiorum by fungus gnats (Bradysia coprophila) and the biocontrol fungus Trichoderma spp. Soil Biology and Biochemistry, 1997, 29: 123-129
    129.Grogan R G, Abawi G S. The influence of water potential on the biology of Whetzelinia sclerotiorum. Phytopathology, 1974, 64: 122-128
    130.Guimaraes R L, Stotz H U. Oxalate production by Sclerotinia sclerotiorum deregulates guard cells during infection. Plant Physiology, 2004, 136: 3703-3711.
    131 .Hao J J, Subbarao K V, Duniway J M. Germination of Scleronia minor and S. Sclerotiorum sclerotia under various soil moisture and temperature combinations. Phytopathology, 2003, 93: 443-450
    132.Hegedus D D, Rimmer S R. Sclerotinia sclerotiorum: When "to be or not to be" a pathogen? FEMS Microbiology Letters, 2005,251: 177-184
    133.Hirsch P R, Mauchline T H, Mendum T A, Kerry B R. Detection of the nematophagous fungus Verticillium chlamydosporium in nematode-infested plant roots using PCR. Mycological Research, 2000, 104: 435-439
    134.Hirsch P R, Atkins S D, Mauchline T H, Morton C O, Davies K G, Kerry B R. Methods for studying the nematophagous fungus Verticillium chlamydosporium in the root environment. Plant and Soil, 2001, 232: 21-30
    135.Hoes J A, Huang H C. Sclerotinia sclerotiorum: viability and separation of sclerotia from soil. Phytopathology, 1975, 65: 1431-1432
    136.Hu X, Bidney D L, Yalpani N, Duvick J P, Crasta O, Folkerts O, Lu G H. Overexpression of a gene encoding hydrogen peroxide-generating oxalate oxidase evokes defense responses in sunflower. Plant Physiology, 2003,133: 170-181
    137.Huang H C. Importance of Coniothyrium minitans in survival of sclerotia of Sclerotinia sclerotiorum. Canadian Journal of Botany, 1977, 55: 289-295
    138.Huang H C. Control of sclerotinia wilt of sunflower by hyperparasites. Canadian Journal of Plant Pathology, 1980,2: 26-32
    139.Huang H C. Distribution of Coniothyrium minitans in Manitoba sunflower fields. Canadian Journal of Plant Pathology, 1981, 3: 219-222
    140.Huang H C, Kokko E G. Ultrastructure of hyperparasitism of Coniothyrium minitans on sclerotia of Sclerotinia sclerotiorum. Canadian Journal of Botany, 1987, 65: 2483-2489
    141.Huang H C, Kokko E G.Penetration of hyphae of Sclerotinia sclerotiorum by Coniothyrium minitans without the formation of appressoria. Journal of Phytopathology, 1988, 123: 133-136
    
    142.Huang H C, Kokko E G, Yanke I J, Phillippe R C. Bacterial suppression of basal pod rot and end rot of dry peas caused by Sclerotinia sclerotiorum. Canadian Journal of Microbiology, 1993, 39: 227-233
    143 .Huang H C, Kozub G C. A simple method for production of apothecia from sclerotia of Sclerotinia sclerotiorum. Plant Protection Bulletin, 1989, 31: 333-345
    144.Huang H C, Kozub G C. Monocropping to sunflower and decline of sclerotinia wit. Botanical Bulletin of Academia Sinica, 1991a, 32: 163-170
    145.Huang H C, Kozub G C. Temperature requirements for carpogenic germination of sclerotia of Sclerotinia sclerotiorum isolates of different geographic origin. Botanical Bulletin of Academia Sinica, 1991b, 32: 279-286
    146.Huang H C, Kozub G C. Longevity of normal and abnormal sclerotia of Sclerotinia sclerotiorum. Plant Disease, 1994, 78:1164-1166
    147.Huang H C, Bremer E, Hynes R K, Erickson R S. Foliar application of fungal biocontrol agents for the control of white mold of dry bean caused by Sclerotinia sclerotiorum. Biological Control, 2000a, 18: 270-276
    148.Huang H C, Erickson R S. Soil treatment with fungal agents for control of apothecia of Sclerotinia sclerotiorum in bean and pea crops. Plant Pathology Bulletin, 2000b, 9: 53-58
    149.Huang H C, Erickson R S. Overwintering of Coniothyrium minitans, a mycoparasite of Sclerotinia sclerotiorum, on the Canadian prairies. Australasian Plant Pathology, 2002,31:291-293
    
    150.Huang H C, Erickson R S. Effect of soil treatment of fungal agents on control of apothecia of sclerotinia sclerotiorum in canola and safflower fields. Plant Pathology Bulletin, 2004,13:1-6
    151.Huang H C, Erickson R S. Factors affecting biological control of Sclerotinia sclerotiorum by fungal antagonists. Journal of Phytopathology 2008,156: 628-634
    
    152.Hunter J E, Abawi G S, Crosier D C. Effects of timing, coverage, and spray oil on control of white mold of snap bean with benomyl. Plant Disease Reporter, 1978, 62: 633-637
    153.Jamaux J, Gelie B, Lamarque C. Early stage of infection of rapeseed petals and leaves by Sclerotinia sclerotiorum revealed by scanning electron microscopy. Plant Pathology, 1995, 44, 22-30
    154.Jayachandran M, Willetts H J, Bullock S. Light and scanning electron-microscope observation on apothecial development of Sclerotina sclerotiorum, Sclerotinia trifoliorum and Sclerotinia minor. Transactions of the British Mycological Society, 1987, 89: 167-178
    155.Jones D, Watson D. Parasitism and lysis by soil fungi of Sclerotinia sclerotiorum (Lib) de Bary, a phytopathogenic fungus. Nature, 1969,22: 287-288
    156.Jones E E, Carpenter M, Fong D, Goldstein A, Thrush A, Crowhurst R, Stewart A. Co-transformation of the sclerotial mycoparasite Coniothyrium minitans with hygromycin B resistance and β-glucuronidase markers. Mycological Research, 1999, 103: 929-937
    157. Jones E E, Whipps J M. Effect of inoculum rates and sources of Coniothyrium minitans on control of Sclerotinia sclerotiorum disease in glasshouse lettuce. European Journal of Plant Pathology, 2002,108: 527-538
    158. Jones E E, Mead A, Whipps J M. Evaluation of different Coniothyrium minitans inoculum sources and application rates on apothecial production and infection of Sclerotinia sclerotiorum sclerotia. Soil Biology and Biochemistry, 2003a, 35: 409-419
    159.Jones E E, Stewart A, Whipps J M. Use of Coniothyrium minitans transformed with the hygromycin B resistance gene to study survival and infection of Sclerotinia sclerotiorum sclerotia in soil. Mycological Research, 2003b, 107: 267-276
    160.Jones D, Gordon A H, Bacon J S D. Cooperative action by endo- and exo-β-1, 3-glucanases from parasitic fungi in the degradation of cell-wall glucans of Sclerotinia sclerotiorum (Lib.) deBary. Biochemical Journal, 1974,140: 47-55
    161.Jurick II W M, Dickman M B, Rollins J A. Characterization and functional analysis of a cAMP-dependent protein kinase A catalytic subunit gene (pkal) in Sclerotinia sclerotiorum. Physiological and Molecular Plant Pathology, 2004, 64, 155-163
    162.Kars I, Krooshof G, Wagemakers L, Joosten R, Benen J, van Kan J A. Necrotizing activity of five Botrytis cinerea endopolygalacturonases produced in Pichia pastoris. Plant Journal, 2005,43: 213-225
    163.Keay MA. Astudy of certain species of the genus Sclerotinia. Annals of Applied Biology, 1939, 26: 227-246
    164.Kesarwani M, Azam M, Natarajan K, Mehta A and Datta A. Oxalate decarboxylase from Collybia velutipes: Molecular cloning and its over-expression to confer resistance to fungal infection in transgenic tobacco and tomato. Journal of Biological Chemistry, 2000, 275: 7230-7238
    165.Kim H S, Diers B W. Inheritance of partial resistance to sclerotinia stem rot in soybean. Crop Science, 2000,40: 55-61
    166.Knudsen G R, Eschen D J, Dandurand L M and Bin L. Potential for biocontrol of Sclerotinia sclerotiorum through colonization of sclerotia by Trichoderma harazianum. Plant Disease, 1991, 75: 466-470
    167.Kosasih B D, Willetts H J. Ontogenetic and histochemical studies of the apothecium of Sclerotinia sclerotiorum. Annals of botany, 1975,39: 185-191
    168.Kurian P, Stelzig D A. The synergistic role of oxalic acid and endopolygalacturonase in bean leaves infected by Cristulariella pyramidalis. Phytopathology, 1979, 69: 1301-1304
    169.Le Tourneau D. Morphology, cytology, and physiology of Sclerotinia species in culture. Phytopathology, 1979, 69: 887-890
    170.Lefol C, Seguin-Swartz G, Morrall R A A. Resistance to Sclerotinia sclerotiorum in a weed related to canola. Canadian Journal of Plant Pathology, 1997, 19: 113
    171.Li G Q, Huang H C, Acharya S N. Sensitivity of Ulocladium atrum, Coniothyrium minitans and Sclerotinia sclerotiorum to benomyl and vinclozolin. Canadian Journal of Botaany 2002, 80: 892-898.
    172.Li G Q, Huang H C, Acharya S N. Antagonism and biocontrol potential of Ulocladium atrum on Sclerotinia sclerotiorum. Biological Control, 2003a, 28, 11-18
    173.Li G Q, Huang H C, Acharya S N. Importance of pollen and senescent petals in the suppression of Sclerotinia sclerotiorum. Biocontrol Science and Technology, 2003b 13,495-505
    174.Li G Q, Huang H C, Acharya S N, Erickson R S. Effectiveness of Coniothyrium minitans and Trichoderma atroviride in suppression of sclerotinia blossom blight of alfalfa. Plant Pathology, 2005, 54: 204-211
    175.Li G Q, Huang H C, Miao H J, Erickson R S, Jiang D H, Xiao Y N. Biological control of sclerotinia diseases of rapeseed by aerial applications of the mycoparasite Coniothyrium minitans. European Journal of Plant Pathology, 2006, 114: 345-355
    176.Li M X, Gong X Y, Zheng J, Jiang D H, Fu Y P, Hou M S. Transformation of Coniothyrium minitans, a parasite of Sclerotinia sclerotiorum, with Agrobacterium tumefaciens. FEMS Microbiology Letters, 2005, 243: 323-329
    177.Liu H Q, Fu Y P, Jiang D H, Li G Q, Xie J, Peng Y L, Yi X H, Ghabrial S A. A novel mycovirus that is related to the human pathologen Hepatitis E virus and Rubi-like viruses. Journal of Virology, 2009, 83: 1981-1991
    178.Lo C T, Nelson E B, Hayes C K, Harman G E. Ecological studies of transformed Trichoderma harzianum strain 1295-22 in the rhizosphere and on the phylloplane of creeping bentgrass. Phytopathology, 1998, 88,129-136.
    179.Lumsden R D. Sclerotinia sclerotiorum infection of bean and the production of cellulase. Phytopathology. 1968, 59: 653-657
    180.Lumsden R D. Pectolytic enzymes of Sclerotinia sclerotiorum and their localization of infected bean. Canadian Journal of Botany, 1976, 54: 2630-2641
    181.Lynch J M, Ebben M H. The use of micro-organisms to control plant disease. Society for Applied Bacteriology symposium series, 1986, [suppl]: 115s-126s
    182.Magro P, Marciano P, di Lenna P. Oxalic acid production and its role in pathogenesis of Sclerotinia sclerotiorum. FEMS Microbiology Letters, 1984, 24: 9-12
    183.Mahuku G S, Goodwin P H, Hall R. A competitive polymerase chain reaction to quantify DNA of Leptospaheria maculans during blackleg development in oilseed rape. Molecular Plant-Microbe Interactions, 1995, 8: 761-767
    184.Marciano P, di Lenna P, Margo P. Oxalic acid, cell-wall degrading enzymes and pH in pathogenesis and their significance in the virulence of two Sclerotinia sclerotiorum isolates on sunflower. Physiological and Molecular Plant Pathology, 1983,22:339-345
    185.Marukawa S, Funakawa S, Satomura Y. Some physical and chemicial factors on formation of sclerotia in Sclerotinia libertiana Fuckel. Agricultural Biology and Chemistry, 1975, 39: 463-468
    186.Massart S, De Clercq D, Salmon M, Dickburt C, Jijaki M H. Development of real-time PCR using Minor Groove Binding probe to monitor the biological control agent Candida oleophila (strain O). Journal of Microbiological Methods, 2005, 60: 73-82
    187.Mauchline T H, Kerry B R, Hirsch P R. Quantification in soil and the rhizosphere of the nematophagous fungus Verticillium chlamydosporium by competitive PCR and comparison with selective plating. Applied and Environmental Microbiology, 2002, 68: 1846-1853
    188.Maxwell D P, Lumsden R D. Oxalic acid production by Sclerotinia sclerotiorum in infected bean and in culture. Phytopathology, 1970, 60: 1395-1398
    
    189.McLaren D L, Huang H C, Kozub G C, Rimmer S R. Biological control of sclerotinia wilt of sunflower with Talaromyces flavus and Coniothyrium minitans. Plant Disease, 1994,78:231-235
    190.McLaren D L, Huang H C, Rimmer S R. Control of apothecial production of Sclerotinia sclerotiorum by Coniothyrium minitans and Talaromyces flavus. Plant Disease, 1996, 80: 1373-1378
    191 .McQuilken M P, Mitchell S J, Budge S P, Whipps J M, Fenlon J S, Archer S A. Effect of Coniothyrium minitans on sclerotial survival and apothecial production of Sclerotinia sclerotiorum in field-grown oilseed rape. Plant Pathology, 1995a, 44: 883-896
    
    192.McQuilken M P, Whipps J M. Production, survival and evaluation of solid-substrate inocula of Coniothyrium minitans against Sclerotinia sclerotiorum. European Journal of Plant Pathology, 1995b, 101: 101-110
    193 .McQuilken M P, Budge S P, Whipps J M. Production, survival and evaluation of liquid culture-produced inocula of Coniothyrium minitans against Sclerotinia sclerotiorum. Biocontrol Science and Technology, 1997, 7: 23-36
    194.McQuilken M P, Gemmell J, Whipps J M. Some nutritional factors affecting production of biomass and antifungal metabolites of Coniothyrium minitans. Biocontrol Science and Technology, 2002, 12: 443-454
    195.McQuilken M P, Gemmell J, Hill R A, Whipps J M. Production of macrosphelide A by the mycoparasite Coniothyrium minitans. FEMS Microbiology Letter, 2003, 219: 27-31
    196.Merriman P R. Survival of sclerotia of Sclerotinia sclerotiorum in soil. Soil Biology and Biochemistry, 1976, 8: 385-389
    197.Mila A L, Yang X B. Effects of fluctuating soil temperature and water potential on sclerotia germination and apothecial production of Sclerotinia sclerotiorum. Plant Disease, 2008, 92: 78-82
    198.Montero-Barrientos M, Cardoza R E, Gutierrez S, Monte E, Hermosa R. The heterologous overexpression of hsp23, a small heat-shock protein gene from Trichoderma virens, confers thermo-tolerance to T. harzianum. Current Genetics, 2007, 52: 45-53
    199.Montero-Barrientos M, Hermosa R, Nicolas C, Cardoza R E, Gutierrez S, Monte E. Overexpression of a Trichoderma HSP70 gene increases fungal resistance to heat and other abiotic stresses. Fungal Genetics and Biology, 2008,45: 1506-1513
    
    200.Moore W D. Flooding as a means of destroying the sclerotia of Sclerotinia sclerotiorum. Phytopathology, 1949, 39: 920-927
    201.Morrall R A A. A preliminary study of the influence of water potential on sclerotium germination in Sclerotinia sclerotiorum. Canadian Journal of Botany, 1977, 55: 8-11
    202.Morrall R A A, Dueck J. Epidemiology of sclerotinia stem rot of rapeseed in Saskatchewan. Canadian Journal of Plant Pathology, 1982,4: 161-168
    203.Muthumeenakshi S, Goldstein A L, Stewart A. Molecular studies on intraspecific diversity and phylogenetie position of Coniothyrium minitans. Mycological Research, 2001, 105: 1065-1074
    204.Muthumeenakshi S, Sreenivasaprasad S, Rogers C W, Challen M P, Whipps J M. Analysis of cDNA transcripts from Coniothyrium minitans reveals a diverse array of genes involved in key processes during sclerotial mycoparasitism. Fungal Genetics and Biology, 2007, 44: 1262-1284
    205.Nathalie P, Sandrine C, Genevieve B G, Chistine R and Michel F, Regulation of acpl, encoding a non-aspartyl acid protease expressed during pathogenesis of Sclerotinia sclerotiorum. Microbiology, 2001, 147: 717-726
    206.Nicholson P, Parry D W. Development and use of a PCR assay to detect Rhizoctonia ceralis, the cause of sharp eyespot in wheat. Plant Pathology, 1996, 69: 872-883
    207.Noyes R D, Hancock J G. Role of oxalic acid in the sclerotinia wilt of sunflower. Physiological and Molecular Plant Pathology, 1981,18: 123-132.
    208.Ooijkaas L P, Ifoeng C J, Tramper J, Buitelaar R M. Spore production production of Coniothyrium minitans during solid-state fermentation on different nitrogen sources with glucose of starch as carbon source. Biotechnology Letter 1998a, 20: 785-788
    209.Ooijkaas L P, Tramper J, Buitelaar R M. Biomass estimation of Coniothyrium minitans in solid-state fermentation. Enzyme Microbiology Technology, 1998b, 22: 480-486
    210.Ooijkaas L P, Wilkinson E C, Tramper J, Buitelaar R M. Medium optimization for spore production of Coniothyrium minitans using statistically based experimental designs. Biotechnology and Bioengineering, 1999, 64: 92-100
    211.Ooijkaas L P, Buitelaar R M, Tramper J, Rinzema A. Growth and sporulation stoichiometry and kinetics of Coniothyrium minitans on agar media. Biotechnology and Bioengineering, 2000, 69: 292-300
    212.Oostra J, Tramper J, Rinzema A. Model-based bioreactor selection for large-scale solid -state cultivation of Coniothyrium minitans spores on oats. Enzyme Microbiology Technology, 2000, 27: 652-663
    213.Partridge D E, Sutton T B, Jordan D L, Curtis V L, Bailey J E. Management of sclerotinia blight of peanut with the biological control agent Coniothyrium minitans. Plant Disease, 2006, 90: 957-963
    214.Phillips A J L. Influence of fluctuating temperatures and interrupted periods of plant-surface wetness on infection of bean leaves by ascospores of Sclerotinia sclerotiorum. Annals of Applied Biology, 1994, 124: 413-427
    215.Pousserau N, Creton S, Billon-Grand G, Rascle C and Fevre M. Regulation of acpl, encoding a non-aspartyl acid protease expressed during pathogenesis of Sclerotinia sclerotiorum. Microbiology, 2001a, 147: 717-726
    216.Pousserau N, Gente S Rascle C, Billon-Grand G. and Fevre M. aspS encoding an unusual aspartyl protease from Sclerotinia sclerotiorum is expressed during phytopathogenesis. FEMS Microbiology Letters, 2001b, 194: 27-32
    217.Purdy L H. Factors affecting apothecial production by Sclerotinia sclerotiorum. Phytopathology, 1956,46: 409-410
    218.Purdy L H. Sclerotinia sclerotiorum: history, diseases and symptomatology, host range, geographic distribution, and impact. Phytopathology, 1979,69: 875-880
    
    219.Queiroz P R, Valadares-Inglis M C, Inglis P W. Survival in soil and detection of co-transformed Trichoderma harzaianum by nested PCR. Pesquisa Agropecuaria Brasileira, 2004, 39: 403-406
    220.Rabeendran N, Jones E E, Moot D J, Stewart A. Biocontrol of Sclerotinia lettuce drop by Coniothyrium minitans and Trichoderma hamatum. Biological Control, 2006, 39: 352-362
    221.Rauscher M, Mendgen K, Deising H. Extracellular proteases of the rust fungus Uromyces viciae-fabae. Experimental Mycology, 1995,19: 26-34
    222.Ren L, Li G Q, Han Y C, Jiang D H, Huang H C. Degradation of oxalic acid by Coniothyrium minitans and its effects on production and activity of β-1, 3-glucanase of this mycoparasite. Biological Control, 2007,43: 1-11
    223.Ridgway H J, Stewart A. Molecular marker assisted detection of the mycoparasite Coniothyrium minitans A69 in soil. New Zealand Plant Protection, 2000, 53, 114-117
    224.Riou C, Freyssinet G and Feure M. Production of cell wall degrading enzymes by the phytopathogenic fungus Sclerotinia sclerotiorum. Applied and Environmental Microbiology, 1991, 57: 1478-1484
    225.Rogers C W, Challen M P, Green J R, Whipps J M. Use of REMI and Agrobacterium-mediated transformation to identify pathogenicity mutants of the biocontrol fungus, Coniothyrium minitans. FEMS Microbiology Letters, 2004, 241: 207-214
    226.Rollins J A, Dickman M B. Increase in endogenous and exogenous cyclic AMP levels inhibits sclerotial development in Sclerotinia sclerotiorum. Applied and Environmental Microbiology, 1998, 64: 2539-2544
    227.Rollins J A, Dickman M B. pH signaling in Sclerotinia sclerotiorum: identification of a pacC/RIM1 homolog. Applied and Environmental Microbiology, 2001, 67: 75-81
    
    228.Rollins J A. The Sclerotinia sclerotiorum pacl gene is required for sclerotial development and virulence. Molecular Plant-Microbe Interactions, 2003, 16: 785-795
    229.Saito I. Initation and development of apothecial stipe primordial in sclerotia of Sclerotinia sclerotiorum. Transactions of the Mycological Society of Japan, 1973, 14: 343-351
    
    230.Sanchez Y, Lindquist S. Hsp104 is required for induced thermo-tolerance. Science, 1990,248: 1112-1115
    
    231.Sandys-Winsch C, Whipps J M, Gerlagh M, Kruse M. World distribution of the sclerotial mycoparasite Coniothyrium minitans. Mycological Research, 1993, 97: 1175-1178
    232.Sansford C E, Coley-Smith J R, Parfitt D. Sporidesmium sclerotivorum on sclerotia of Sclerotinia. Plant Pathology, 1987, 36: 411-412
    233.Savchuck S, Fernando W G D. Effect timing of application and population dynamics on the degree of biological control of Sclerotinia sclerotiorum by bacterial antagonists. FEMS Microbiology Ecology, 2004, 49: 376-388
    
    234.Schena L, Finetti Sialer, M, Gallitelli, D. Molecular detection of strain L47 of Aureobasidium pullulans, a biocontrol agent of postharvest diseases. Pland Disease, 2002, 86:54-60
    235.Schwartz H F, Steadman J R. Factors affecting sclerotium populations of, and apothecium production by, Sclerotinia sclerotiorum. Phytopathology, 1978, 68: 383-388
    236. Smith E A, Boland G J. A reliable method for production of apothecia of Sclerotinia sclerotiorum. Canadian Journal of Plant Pathology, 1989, 11: 45-48
    237.Smith V L, Punja Z K, Jenkins S F. A histological study of infection of host tissue by Sclerotium rolfsii. Phytopathology, 1986, 76: 755-759
    238.Smith S N, Chohan R, Armstrong R A, Whipps J M. Hydrophobicity and surface electrostatic charge of conidia of the mycoparasite Coniothyrium minitans. Mycological Research, 1998,102: 243-249
    239. Smith S N, Armstrong R A, Barker M, Bird R A, Chohan R, Hartell N A, Whipps J M. Determination of Coniothyrium minitans conidial and germling lectin avidity by flow cytometry and digital microscopy. Mycological Research, 1999, 103: 1533-1539
    240. Steadman J R. Control of plant disease caused by Sclerotinia species. Phytopathology, 1979, 69: 904-907
    241.Stephanou G, Demopoulos N A. Heat shock phenomena in Aspergillus nidulans: the effect of heat on mycelial protein synthesis. Current Genetics, 1986,10: 791-796
    
    242.Sun P, Yang X B. Light, temperature, and moisture effects on apothecium production of Sclerotinia sclerotiorum. Plant Disease, 2000, 84: 1287-1293
    243.Tariq V N, Jeffries P. Appressorium formation by Sclerotinia sclerotiorum: scanning electron microscopy. Transactions of the British Mycological Society, 1984, 82: 645-651
    244.Tariq V N, Jeffries P. Ultrastructure of penetration of Phaseolus spp. by Sclerotinia sclerotiorum. Canadian Journal of Botany, 1986, 64: 2909-2915
    
    245.Taylor E J A, Stevens E A, Bates J A, Morreale G, Lee D, Kenyon D M, Thomas J E. Rapid-cycle PCR detection of Pyrenophora graminea from barley seed. Plant Pathology, 2001, 50: 347-355
    246.Teo B K, Morrall R AA. Influence of matric potentials on carpogenic germination of sclerotia of Sclerotinia sclerotiorum. I. Development of an inclined box technique to observe apothecium production. Canadian Journal of Plant Pathology, 1985a, 7: 359-364
    
    247.Teo B K, Morrall R A A. Influence of matric potentials on carpogenic germination of sclerotia of Sclerotinia sclerotiorum. II. A comparison of results obtained with different techniques. Canadian Journal of Plant Pathology, 1985b, 7: 365-369
    
    248.Thrane C, Lübeck M, Green H, Degefu Y, Allerup S, Thrane U, Jensen D F. A tool for monitoring Trichoderma harzianum: I. Transformation with the GUS gene by protoplast technology. Phytopathology, 1995, 85,1428-1435
    
    249.Townsend B B, Willetts H J. The development of sclerotia in certain fungi. Transactions of the British Mycological Society, 1954, 37: 213-221
    
    250.Tribe H T. On the parasitism of Sclerotinia trifoliorum by Coniothyrium minitans. Transactions of the British Mycological Society, 1957,40: 489-499
    
    251 .Trutmann P, Keane P J, Merriman P R. Reduction of sclerotial inoculum of Sclerotinia sclerotiorum with Coniothyrium minitans. Soil Biology and Biochemistry, 1980,12:461-465
    
    252.Trutmann P, Keane P J, Merriman P R. Biological control of Sclerotinia sclerotiorum on aerial parts of plants by the hyperparasite Coniothyrium minitans. Transactions of the British Mycological Society, 1982, 78: 521-529
    253.Tu J C. Mycoparasitism by Coniothyrium minitans on Sclerotinia sclerotiorum and its effect on sclerotial germination. Phytopathology, 1984, 109: 261-268
    254.Turner G J, Tribe H T. Preliminary field plot trails on biological control of Sclerotinia trifoliorum by Coniothyrium minitans. Plant Pathology, 1975, 24: 109-113
    255.Turner G J, Tribe H T. On Coniothyrium minitans and its parasitism of Sclerotinia species. Transactions of British Mycological Society, 1976, 66: 97-105
    256.van de Koppel M M, Schots A. Monoclonal antibody-based double-antibody sandwich-ELISA for detection of Verticillium spp. in Ornamentals. Phytopathology, 1995,85:608-612
    257.Vautard-Mey G, Cotton P, Fevre M. Expression and compartmentation of the glucose repressor CRE1 from the phytopathogenic fungus Sclerotinia sclerotiorum. European Journal Biochemistry, 1999a, 266, 252-259
    258.Vautard-Mey G, Cotton P, Fevre M. The glucose repressor CRE1 from Sclerotinia sclerotiorum is functionally related to CREA from Aspergillus nidulans but not to the Mig proteins from Saccharomyces cerevisiae. FEBS Letters, 1999b, 453, 54-58
    259.Vautard-Mey G, Fevre M. Mutation of a putative AMPK phosphorylation site abolishes the repressor activity but not the nuclear targeting of the fungal glucose regulator CRE1. Current Genetics, 2000, 37, 328-332
    260.Volossiouk T, Robb E J, Nazar R N. Direct DNA extraction for PCR-mediated assays of soil organisms. Applied and Environmental Microbiology, 1995, 61: 3972-3976
    
    261. Weber F J, Tramper J, Rinzema A. A simplified material and energy balance approach for process development and scale-up of Coniothyrium minitans conidia production by solid-state cultivation in a packed-bed reactor. Biotechnology and Bioengineering, 1999, 65: 47-58
    262. Weber F J, Oostra J, Tramper J, Rinzema A. Validation of a model for process development and scale-up of packed-bed solid-state bioreactors. Biotechnology and Bioengineering, 2002, 77, 381-393
    263.Whipps J M, Grewal S K, Goes P. Interactions between Coniothyrium minitans and sclerotia. Mycological Research, 1991, 95: 195-299
    264. Whipps J M, Gerlagh M. Biology of Coniothyrium minitans and its potential for use in disease biocontrol. Mycological Research, 1992, 96: 897-907
    265.Whipps J M, Budge S P, Mitchell S J. Observations on sclerotial mycoparasites of Sclerotinia sclerotiorum. Mycological Research, 1993a, 97: 697-700
    266.Whipps J M, Budge S P. Transmission of the mycoparasite Coniothyrium minitans by collembolan Folsomia Candida (Collembola: Entomobryidae) and glasshouse sciarid Bradysia sp. (Diptera: Sciaridae). Annals of Applied Biology, 1993b, 123: 165-171
    267.Whipps J M, Budge S P, McClement S and Pink D A C. A glasshouse cropping method for screening lettuce lines for resistance to Sclerotinia sclerotiorum. European Journal of Plant Pathology, 2002,108: 373-378
    268.Whipps J M, Sreenivasaprasad S, Muthumeenakshi S, Rogers C W, Challen M P. Use of Coniothyrium minitans as a biocontrol agent and some molecular aspects of sclerotial mycoparasitism. European Journal of Plant Pathology, 2008, 121: 323-330
    269.Willetts H J, Bullock S. Developmental biology of sclerotia. Mycological Research, 1992,96:801-816
    270.Willetts H J. Morphology, development and evolution of stromata/sclerotia and macroconidia of the Sclerotiniaceae. Mycological Research, 1997,101: 939-952
    271.Williams R H, Whipps J M. Cooke R C. Water splash dispersal of Coniothyrium minitans in the glasshouse. Annual Applied Biology, 1998a, 132: 77-90
    272.Williams R H, Whipps J M, Cooke R C. The role of soil mesofauna in dispersal of Coniothyrium minitans: transmission to sclerotia of Sclerotinia sclerotiorum. Soil Biology and Biochemistry, 1998b, 30: 1929-1935
    
    273.Williams R H, Whipps J M, Cooke R C. The role of soil mesofauna in dispersal of Coniothyrium minitans: mechanism of transmission. Soil Biology and Biochemistry, 1998c, 30: 1937-1940
    274.Xie J, Wei D M, Jiang D H, Fu Y P, Li G Q, Ghabrial S, Peng Y L. Characterization of debilitation-associated mycovirus infecting the plant-pathogenic fungus Sclerotinia sclerotiorum. Journal of General Virology, 2006, 87: 241-249
    275.Yang R, Han Y C, Li G Q, Jiang D H, Huang H C. Suppression of Sclerotinia sclerotinrum by antifungal substances produced by the mycoparasite Coniothyrium minitans. European Journal of Plant Pathology, 2007a, 119: 411-420
    276.Yang R, Han Y C, Li G Q, Jiang D H, Huang H C. Effects of ambient pH and nutritional factors on antifungal activity of the mycoparasite Coniothyrium minitans. Biological Control, 2007b, 40: 179-186
    277. Yuen G Y, Kerr E D, Steadman J R, Craig M L. Bacterial biocontrol of white mold disease (Sclerotinia sclerotiorum). Annu. Rep. Bean. Improv. Coop. 1992, 35: 54-55
    278. Yuen G Y, Craig M L, Kerr E D, Steadman J R. Influences of antagonist population levels, blossom development stage, and canopy temperature on the inhibition of Sclerotinia sclerotiorum on dry edible bean by Erwinia herbicola. Phytopathology, 1994,84:495-501
    279.Zantinge J L, Huang H C, Cheng K J. Induction, screening and identification of Coniothyrium minitans mutants with enhanced β-glucanase activity. Enzyme and Microbial Technology, 2003, 32: 224-230
    280.Zhang L M, Liu X Z, Zhu S F, Chen S Y. Detection of the nematophagous fungus Hirsutella rhossiliensis in soil by real-time PCR and parasitism bioassay. Biological Control, 2006, 36: 316-323
    281.Zhang L M, Yang E, Xiang M C, Liu X Z, Chen S Y. Population dynamics and biocontrol efficacy of the nematophagous fungus Hirsutella rhossiliensis as affected by stage of the soybean cyst nematode. Biological Control, 2008,47: 244-249
    282.Zhao J, Peltier A J, Meng J, Osborn T C, Grau C R. Evaluation of sclerotinia stem rot resistance in oilseed Brassica napus using a petiole inoculation technique under greenhouse conditions. Plant Disease, 2004, 88: 1033-1039
    283.Zhou T, Releeder R D. Application of Epicoccum purpurascens spores to control white mould of snap bean. Plant Disease, 1989,73: 639-642
    284.Zhou E X, Wang K R., Liu F Q, Lu J Y, Milgrong M G.Detection of double-stranded RNA in Cryphonectria parasitica (Murr.) Barr with monoclonal antibodies. Acta phytopathologica sinica, 1995, 25: 91-92
    285.Zhu M L, Mo M H, Xia Z Y, Li YH, Yang SJ, Li T F, Zhang K Q. Detection of two fungal biocontrol agents against root-knot nematodes by RAPD markers. Mycopathologia, 2006,161: 307-316
    286.Zuppini A, Navazio L, Sella L, Castiglioni C, Favaron F, Mariani P. An endopolygalacturonase from Sclerotinia sclerotiorum induces calcium-mediated signalling and programmed cell death in soybean cells. Molecular Plant-Microbe Interactions, 2005, 18: 849-855

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700