纳滤膜软化海水配制聚合物驱油溶液的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海上油田聚合物驱油最方便的用水来源应是海水;但直接采用海水配制聚合物溶液,由于海水矿化度很高,导致溶液粘度很低,不能满足聚驱要求。纳滤(NF)膜能够脱除水中的中、低分子量有机物及盐分,并且具有选择性分离二价及高价离子的特性,非常适于去除水中的钙、镁、硫酸根等离子,较石灰软化法、离子交换法等其他软化水工艺具有设备占地省、出水水质稳定等优点。在海上平台有限的空间内,采用纳滤软化海水进行注水配聚具有显著的实用价值。
     本文基于某海上油田聚合物驱油的粘度要求,对几种纳滤软化海水及驱油聚合物进行了筛选,并在此基础上开展了聚合物与软化海水配伍性、增粘性的研究,为实际软化海水用于聚驱采油的工程应用提供了一定的参考。
     针对两种编号为PAM-D和PAM-S油田聚驱用聚丙烯酰胺,本文研究了其溶液体系的粘度特性,探讨了聚合物溶液粘度的影响因素,其中包括溶解和使用温度、搅拌和剪切速率、溶液的pH值及矿化度等。结果表明聚丙烯酰胺溶液随着温度升高和剪切速率增大,粘度呈下降趋势。在强酸或强碱环境下,聚丙烯酰胺溶液的粘度衰减剧烈,甚至形成聚合物的橡胶状沉淀,适宜使用的pH范围为4-10。矿化度严重影响聚丙烯酰胺的粘度,矿化度每升高1000mg/L,粘度平均下降幅度达到16.9%;其中又以高价阳离子最为显著,如Al3+和Fe3+在很低浓度下(浓度50mg/L)就会明显地引起聚合物溶液的沉淀。同样,天然海水中浓度较高的Ca2+和Mg2+也会导致聚合物溶液粘度的显著下降,因此用于配聚的海水应予以软化处理,使两种离子的总含量控制在200mg/L以下。
     在掌握了聚丙烯酰胺粘度的影响因素后,本文开展了软化海水配制聚驱溶液的研究,包括聚合物在软化海水中的溶解实验、粘度实验以及驱替实验,筛选出了适于聚驱的编号为NFI的软化海水及编号为PAM-D的聚丙烯酰胺。实验结果表明经过纳滤处理后的NFI软化海水,钙镁离子显著降低,在油藏高温环境下增粘效果显著,90天内粘度保留率在70%以上。NFI软化海水和PAM-D聚丙烯酰胺进行配聚时,显示出了良好的水溶性和增粘性,岩心驱替实验也验证了该聚合物溶液与岩心的良好配伍性。
The most convenient source of water for polymer flooding on offshore oil field is seawater, but it can’t be used directly because the high salinity can make the viscosity of polymer solution lower. Nanofiltration (NF) membrane has distinct advantages in removing divalent ions and multivalent ions such as Ca2+, Mg2+ and SO42-. Comparing with other softening processes, for example lime softening and ion exchange, NF has a bright future in application on the space-limited platform with the advantage of smaller land occupation and stable water quality.
     Based on the viscosity requirement of polymer solution for the offshore oil field, several kinds of water softened by NF membrane and polymers were studied and compatibility between polymer and softened seawater, viscosity property were studied. This work will provide experimental references for design of polymer flooding engineering on offshore platform using softened water.
     In this thesis, two types of polymer solutions prepared by polyacrylamide (PAM) numbered as PAM-D and PAM-S were studied. Influencing factors on the apparent viscosity of the PAM solution, including the dissolved and use temperature, stirring rate, shear rate, solution pH and salinity, were discussed. The results showed that the viscosity of PAM solution declined with the increasing temperature and stirring shear; and declined sharply in strong acid or alkali environment, which is suitable for use at the pH range of 4-10. The viscosity was seriously affected by salinity, especially by multivalent cation. For example, low concentration of Al3 + and Fe3 + (at 50mg/L) caused the precipitation of polymer from solution; Ca2 + and Mg2 + which are of high concentrations in seawater also caused the viscosity of polymer solution decreasing significantly, so these two ions in softened seawater for polymer flooding should be controlled below 200mg/L.
     After mastering the impact factors of polyacrylamide viscosity, the preparation of polymer solution using softened seawater, including dissolution experiments at different softened seawater, viscosity experiments and displacement experiments, were studied, then NFI membrane and PAM-D were chosen. The results showed that there was a significant reduction in Ca2+, Mg2+ and salinity of seawater after nanofiltration softening. The NFI softened water had an obvious viscosity enhancement at the reservoir environment, viscosity retention rate still maintained at 70% after 90 days. The core displacement experiments also showed that the solution of NFI softened water and PAM-D had good compatibility with the core.
引文
[1]金秋,张国忠.世界海洋油气开发现状及前景展望.国际石油经济, 2005, 13(3): 43~45
    [2]陈铁龙.三次采油概论.北京:石油工业出版社, 2000: 1~235
    [3] Tayfun Babadagli. Development of mature oil fields—a review. Journal of Petroleum Science and Engineering, 2007, 57(3-4): 221~246
    [4] G. Moritis. New technology, improved economics boost EOR hopes. Oil Gas Journal, 1996, 15(16): 39~61
    [5]汪孟祥.提高原油采收率技术发展现状.国外油田工程, 2005, 21(8): 1~3
    [6] Tayfun Babadagli. Evaluation of EOR methods for heavy-oil recovery in naturally fractured reservoirs. Journal of Petroleum Science and Engineering, 2003, 37(1-2): 25~37
    [7] Dakuang Han, Chengzhi Yang, Zhengqing Zhang, et al. Recent development of enhanced oil recovery in China. Journal of Petroleum Science and Engineering. 1999, 22(1-3): 181~188
    [8] Kevin C. Taylor, Hisham A. Nasr-El-Din. Water-soluble hydrophobically associating polymers for improved oil recovery: A literature review. Journal of Petroleum Science and Engineering, 1998, 19(3-4): 265~280
    [9] C. A. Grattonia, P.F. Luckhamb, X. D. Jinga, et al. Polymers as relative permeability modifiers: adsorption and the dynamic formation of thick polyacrylamide layers. Journal of Petroleum Science and Engineering, 2004, 45(3-4): 233~245
    [10]李建荣,李元萍.全世界提高采收率的采油现状.国外油田工程, 2000, 6(6): 6-9
    [11]靳金荣,赵东云,赵成义.聚合物驱油技术在大港油田的应用,石油钻探技术2002, 30(5): 62~63
    [12]王德民,程杰成.聚合物驱油技术在大庆油田的应用.石油学报, 2005. 26(1): 74~78
    [13]张岩,隋伟娜,刘国春.聚合物驱解堵增注技术在孤岛油田的应用.钻采工艺, 2006, 29(1): 87~90
    [14]周守为,韩明,向问陶.渤海油田聚合物驱提高采收率技术研究及应用.中国海上油气, 2006, 18(6): 386~389
    [15]王宏申,石勇,周亚利.旅大10-1油田早期注聚可行性研究.海洋石油, 2006, 26(3): 40~ 45
    [16] Robert J. Petersen. Composite reverse osmosis and nanofiltration membranes. Journal of Membrane Science, 1993, 83(1): 81~150
    [17]高从堦,陈国华.海水淡化技术与工程手册.北京:化学工业出版社, 2004: 135~138
    [18] S. Bertrand, I. LemaRre, E. Wittmann. Performance of a nanofiltration plant on hard and highly sulphated water during two years of operation. Desalination, 1997, 113(2-3): 277~281
    [19]俞三传,金可勇,高从堦.膜软化及其应用.工业水处理, 2000, 20(11): 10~13
    [20]张显球,侯小刚,张林生,等.面向软化水处理的纳滤膜分离技术.膜科学与技术, 2006, 26(2): 64~67
    [21] Claire Ventresque, Guy Bablon. The integrated nanofiltration system of the Mery-sur-Oise surface water treatment plant. Desalination, 1997, 113(2-3): 263~266
    [22] Robert A. Bergman. Membrane softening versus lime softening in Florida: A cost comparison update. Desalination, 1995, 102(1-3): 11~24
    [23] Vander Bruggen B, Vandecasteele C. Removal of pollutants from surface water and ground water by nanofiltration: overview of possible application in the drinking water industry. Environmental Pollution, 2003, 122(3): 435~445
    [24] Pei Xu, Jorg E. Drewes, Dean Heil. Beneficial use of co-produced water through membrane treatment: technical-economic assessment. Desalination, 2008, 225(1-3): 139~155
    [25] Mohammad A. K. AI-Sofi, Ata M. Hassan, et al. Nanofiltration as a means of achieving higher TBT of≥120℃in MSF, Desalination, 1998, 118(1-3): 123~129
    [26] A. M. Hassan, A. M Farooque, A.T.M Jamaluddin, et al. A demonstration plant based on the new NF-SWRO process. Desalination, 2000, 131(1-3): 157~171
    [27] Eriksson Peter, Kyburz Markus, Pergande Wil. NF membrane characteristics and evaluation for sea water processing applications. Desalination, 2005, 184(1-3): 281~294
    [28] A. K. Mohammad A1-Sofi. Seawater desalination-SWCC experience and vision. Desalination, 2001, 135(1-3): 121~139
    [29] N. Hilala, H. Al-Zoubia, A. W. Mohammad. Nanofiltration of highly concentrated salt solutions up to seawater salinity. Desalination, 2005, 184(1-3): 315~326
    [30] M. Mohesn, J. Jaber, M. Afonso. Desalination of brackish water by nanofiltration and reverse osmosis, Desalination, 2003, 181(1-3): 157~167
    [31]孙焕泉,张以根,曹绪龙.聚合物驱油技术.东营:石油大学出版社, 2002: 71~76
    [32] A. Shedid. Influences of fracture orientation on oil recovery by water and polymer flooding processes: An experimental approach. Journal of Petroleum Science and Engineering, 2006, 50(3-4): 285~292
    [33]陈铁龙.三次采油概论.北京:石油工业出版社, 2000: 242~248
    [34]于得水.聚丙烯酰胺驱油机理.油气地面工程, 2003, 20(8): 27
    [35] Prabir Daripa, G. Pasa. An optimal viscosity profile in enhanced oil recovery by polymer flooding. International Journal of Engineering Science, 2004, 42(19-20): 2029~2039
    [36] Carlos A. Grattoni, Hamed H. Al-Sharji, Canghu Yang, et al. Rheology and Permeability of cross linked Polyacrylamide. Journal of Colloid and Interface Science, 2001, 240(2): 601~607
    [37]于涛,丁伟,罗洪军.油田化学剂.北京:石油工业出版社, 2002: 60~62
    [38] C.A. Grattonia, P.F. Luckhamb, X.D. Jinga, et al. Polymers as relative permeability modifiers: adsorption and the dynamic formation of thick polyacrylamide layers. Journal of Petroleum Science and Engineering, 2004, 45(3-4): 233~245
    [39]熊启勇,陈国锦,韩晓强.部分水解聚丙烯酰胺在地层多孔介质吸附特性研究.新疆石油科技, 2005, 15(1): 37~40
    [40]孙卫,杨生柱.聚丙烯酰胺类堵剂的堵水机理实验.石油与天然气地质, 2002, 23(4): 332~336
    [41]冯玉军.疏水缔合水溶性聚合物溶液结构及其对溶液流变性影响的研究.博士学位论文.四川:西南石油大学, 1999
    [42]孙焕泉,张以根,曹绪龙.聚合物驱油技术.东营:石油大学出版社, 2002: 10~15
    [43]唐康泰,潘松汉.聚丙烯酰胺结构和溶解性能.广州化工, 1996, 24(3): 55~60
    [44]韩明,向问陶,张健,等.疏水缔合聚合物在盐水中的溶解性研究.中国海上油气, 2006, 18(1): 28~30
    [45] M. R. Chambers, D. B. Hebert, C. E. Shuchart. Successful application of oil-based drilling fluids in subsea horizontal, gravel-packed wells in West Africa. SPE international symposium on formation damage control. Richardson TX: ETATS-UNIS. 2000: 319~325
    [46] C. Graillat, C. Pichot, A. Guyot, et al. Inverse emulsion polymerization of acrylamide. I. Contribution to the study of some mechanistic aspects. Journal of Polymer Science, 1986, 24(33): 427~449
    [47] J. Barton. Reactant partitioning in free-radical heterophase polymerization: the case of inverse microemulsion polymerization of acrylamide. Polymer International, 1993, 30(22): 151~156
    [48] M. V. Dimonie, C. M. Boghina, N.N.Marinescu, et al. Inverse suspension polymerization of acrylamide. Polymer science, 1991, 33(7): 1388~1394
    [49] D. Hunkeler, A. E. Hamielec. Mechanism, kinetics and modeling of inverse - micro suspension polymerization. II, Copolymerization of acrylamide with quaternary ammonium cationic monomers. Polymer, 1991, 32(14): 2626~2640
    [50] G. Chauveteau, R.Tabary, N. Kohler. Rheology of polyacrylamide-based systems under near-well bore conditions. SPE international symposium on oilfield chemistry. Houston TX, ETATS-UNIS. 1997: 749~752
    [51] Marcus J. Caulfield, Xiaojuan Hao, Greg G. Qiao, et al. Degradation on polyacrylamides. Part I. Linear polyacrylamide. Polymer, 2003, 44(5): 1331~1337
    [52] Marcus J. Caulfield, Xiaojuan Hao, Greg G. Qiao, et al. Degradation on polyacrylamides. Part II. Polyacrylamide gels. Polymer, 2003, 44(14): 3817~3826
    [53] E. A. Smith, S. L. Prues, F. W. Oehme. Environmental degradation of polyacrylamides.1. Effects of artificial environmental conditions: Temperature, light, and pH. Ecotoxicology and environmental safety, 1996, 35(2): 121~135
    [54] Kevin C. Taylor, Hisham A. Nasr-El-Din. Water-soluble hydrophobically associating polymers for improved oil recovery. Journal of Petroleum Science and Engineering, 1998, 19(3-4): 265~280
    [55]葛广章,王勇进,王彦玲,等.聚合物驱及相关化学驱进展.油田化学, 2001, 18(3): 282~284
    [56] Tayfun Babadagli. Selection of proper enhanced oil recovery fluid for efficient matrix recovery in fractured oil reservoirs. Colloids and Surfaces, 2003, 223(1-3): 157~175
    [57]黄宁,苏雪霞,史康玲.水溶性聚合物驱油剂国内研究近况.精细石油化工, 2001, 9(5): 53~56
    [58]方道斌,郭睿威,哈润华,等.丙烯酰胺聚合物.北京:化学工业出版社, 2006: 1~3
    [59]严瑞瑄.水溶性聚合物.北京:化学工业出版社, 1988: 1~5
    [60]杨小华.丙烯酰胺类聚合物的研究与应用.精细石油化工, 2000, 7(4): 48~51
    [61] E. Rotureau, E. Dellacherie, A. Durand. Viscosity of aqueous solutions of polysaccharides and hydrophobically modified polysaccharides. European Polymer Journal, 2006, 42 (5): 1086~1092
    [62]郭玲,金志浩.改性淀粉絮凝剂的研制及在污水处理中的应用.环境科学与技术, 2004, 27(5): 73~76
    [63]李亨枝,叶润来,林伟镜,等.聚丙烯酰胺在净水生产中的应用.中国给水排水, 1999, 15(4): 52~54
    [64]王松云.聚电解质在废物处理中的应用及其合成.北京:科学出版社, 1983: 1~20
    [65]刘海滨.聚丙烯酰胺的性质及应用.国外油田工程, 2001, 17(9): 53~54
    [66]张春芳,沈一丁.阳离子型聚丙烯酰胺在造纸工业中的应用.西北轻工业学院学报, 2001, 19(4): 75~77
    [67]洪耀.水溶性高分子纺织浆料的生物降解功能.纺织学报, 2006, 27(6): 104~107
    [68]沈奇英,邱利焱,金一,等. pH敏感性聚丙烯酰氧肟酸酯的合成及对体外释药的影响.中国药学杂志, 2006, 41(15): 1158~1162
    [69]杨永辉,武继承,赵世伟,等. PAM的土壤保水性能研究.西北农林科技大学学报, 2007, 35(12): 120~124
    [70]孙守慧,韦秀春.阳离子型聚丙烯酰胺的混凝、助凝及助滤作用.吉林建筑工程学院学报, 1999, 9(3): 37~40
    [71]周彦豪.聚合物加工流变学基础.西安:西安交通大学出版社, 1988: 25~26
    [72]马德柱,何平笙,徐种德.高聚物的结构与性能.北京:科学出版社, 2000: 551~664
    [73]彭昌盛,谷庆宝,宋少先.液化膜对胶体悬浮液粘度的影响.中国化学, 2005, 23(5): 603~607
    [74]方道斌,郭睿威,哈润华,等.丙烯酰胺聚合物.北京:化学工业出版社, 2006: 112~115
    [75] M. T. Ghannam, M. Nabil Esmail. Rheological properties of aqueous polyacrylamide solutions. Journal of applied polymer science, 1998, 69(8): 1587~1597
    [76]岳湘安.非牛顿流体力学原理及应用.北京:石油工业出版社, 1996: 230~235
    [77]谢刚,黎勇,陈九顺.聚丙烯酰胺水溶液的流变性质.应用化学, 2002, 17(1): 72~74
    [78]陈志平,章序文,林兴华,等.搅拌与混合设备设计选用手册.北京:化学工业出版社, 2004: 37~39
    [79]郑洪印,张培茂,冯国智.中国近海油田提高原油采收率方法.中国海上油气, 1999, 13(4): 286~291
    [80] M.S.H. Bader. Seawater versus produced water in oil-fields water injection operations. Desalination, 2007, 208(1-3): 159~168
    [81]姚绍卫.旋转粘度计使用中必须注意的几个问题.上海计量测试, 2003, 30(4): 25~26
    [82]夏惠芬,王德民,侯吉瑞,等.聚合物溶液的粘弹性对驱油效率的影响.大庆石油学院学报, 2002, 26(2): 109~111
    [83] G.X. Lu, W.H. Yan, K.L. Wang, et al. Viscosity loss of polymer solution prepared with produced water from polymer injection and its influencing factors . Oil and Gas Recovery Technology, 1997, 4(1): 28~31
    [84]季梅芳,王建全,耿同谋,等.疏水缔合水溶性聚合物AO的溶液粘度行为研究.功能高分子学报, 2003, 16(3): 387~391
    [85]崔平,马俊涛,黄荣华.疏水缔合水溶性共聚物P(AM/BBAM)溶液性质研究.油田化学, 2001, 18(2): 162~164
    [86]叶林,黄荣华. AM-AMPS-DMDA水溶性疏水两性共聚物溶液性能的研究.高分子材料科学与工程, 1998, 14(3): 68~75
    [87] H. M. Kopperud, F. K. Hansen, B. Nystrom. Effect of surfactant and temperature on the rheological properties of aqueous solutions of unmodified and hydrophobically modified polyacrylamide. Macromolecular chemistry and physics, 1998, 199(11): 2385~2394
    [88] M. H. Yang. The rheological behavior of polyacrylamide solution, Journal of polymer engineering, 1999, 19(5): 371~381
    [89] J.T. Ma, P. Cui, L. Zhao, et al. Synthesis and solution behavior of hydrophobic association water-soluble polymers containing arylalkyl group. European Polymer Journal, 2002, 38(8): 1627~1633
    [90]陈铁龙,蒲万芬.聚合物应用评价方法.北京:石油工业出版社, 1996: 12~13
    [91] H.Y. Sun, H.X. Chen, J.B. Li, et al. The Factors Influencing the Viscosity of Polyacrylamide Solution. Advances in Fine Petrochemicals, 2005, 6(9): 1~3
    [92]雷巧会,田根林,郑德温,等.聚合物粘度剪切损失与恢复的研究.西安石油学院学报, 1997, 12(6): 36~38
    [93]朱平平,杨海洋,何平笙.高分子间相互作用的特点及意义.高分子通报, 2002, 10(5): 73~78
    [94] D. L. Bjorneberg. Temperature, concentration, and pumping effects on PAM viscosity. Transactions of the ASAE, 1998, 41(6): 1651~1655
    [95] J.R. Hou, Z.C. Liu. The role of viscoelasticity of alkali /surfactant /polymer solutions in enhanced oil recovery. Journal of Petroleum Science and Engineering, 2005, 47(3-4): 219~ 235
    [96]侯吉瑞,刘中春,张淑芬,等.碱对聚丙烯酰胺的分子形态及其流变性的影响.物理化学学报, 2003, 19(13): 256~259
    [97]刘雨文.矿化度对疏水缔合聚合物溶液粘度的影响.油气地质与采收率, 2003, 10(3): 62~63
    [98]王克亮.改善聚合物驱油技术研究.北京:石油工业出版社, 1997: 10~67
    [99] Xin Xia, Xu Guiying, Wu Dan, et al. The effect of CaCl2 on the interaction between hydrolyzed polyacrylamide and sodium stearate: Rheological property study. Colloids and Surfaces, 2007, 305(1-3): 138~144
    [100]王克亮,廖广志,杨振宇,等.三元复合和聚合物驱油液粘度对驱油效果影响实验研究.油田化学, 2001, 18(4): 354~357
    [101]廖广志,王克亮,闫文华.流度比对化学驱驱油效果影响实验研究.大庆石油地质与开发, 2001, 21(2): 14~16
    [102]高有瑞,彭鹏商,张清正.聚合物驱油合理溶液粘度预测.重庆大学学报, 2000, 23(10): 71~73
    [103] S.H. Wu, R. A. Shanks. Solubility study of polyacrylamide in polar solvents. Journal of applied polymer science, 2004, 93(3): 1493~1499
    [104]刘洪兵,周正祥,廖广志.高相对分子量聚合物驱油效果影响因素分析.大庆石油地质与开发, 2002, 21(6): 48~50
    [105] L. I. Tolstikh, N. I. Akimov, I. A. Golubeva, et al. Degradation and stabilization of polyacrylamide in polymer flooding conditions. International journal of polymeric materials, 1992, 17(3-4): 177~193
    [106]孔柏岭.长期高温老化对聚丙烯酰胺溶液性能影响的研究.油气采收率技术, 1996, 3(4): 7~11
    [107]杨默函,张祖波.储层条件下砂岩岩心驱替实验方法研究.北京大学学报(自然科学版), 2006, 42(6): 729~734
    [108]兰玉波,杨清彦,李斌会.聚合物驱波及系数和驱油效率实验研究.石油学报, 2006, 27(1): 64~68
    [109]张涛,林志波,吴文祥.低渗透岩心聚合物驱提高采收率实验研究,油田化学, 2008, 25(2): 162~164
    [110]李华斌,罗平亚.大庆油田疏水缔合聚合物驱物理实验模拟,油田化学, 2001, 18(4): 338~341
    [111]吴文祥,刘洋.聚合物驱后岩心孔隙结构变化特性研究.油田化学, 2002, 19(3): 253~256

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700