高驱油剂浓度条件下二元复合驱采出水破乳研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来国内外油田为提高采油率实施了各种原油增产措施。随着化学驱、蒸汽驱等强化采油技术的应用,油田采出水成分变得更加复杂。聚合物/表面活性剂二元复合驱作为一种重要的采油技术,具有驱油效率高的显著特点,但是近年来二元复合驱驱油用新型化学品的应用和原油劣质化导致采出水乳化严重。论文针对高驱油剂浓度条件下聚合物/表面活性剂二元复合驱采出水破乳开展研究,论文具有重要的意义。本文考察了驱油剂浓度对原油单驱和复合驱采出水稳定性的影响;分析了微波、超声波及气浮强化传质方法对二元复合驱采出水的破乳效果;合成了新型的BH系列絮凝剂,考察其对二元复合驱采出水的脱油效果并采用红外光谱对效果最好的BH-3进行了分子结构表征。
     研究结果表明:不同类型的破乳剂评选中ZU-4和HB-913具有较好效果。采用超声波-热沉降组合、微波-热沉降组合及热沉降-气浮组合法用于二元复合驱采出水(聚合物和表面活性剂均为800 mg/L)分离特性研究。热沉降过程加入100 mg/L的ZU-4,在超声波时间为10 min、功率100 W及频率40 KHz的条件下可达到90.7%的脱油率;在微波时间60s、微波功率800 W的条件下可达到91.1%的脱油率。
     以聚硅酸与不同的铝盐和铁盐为原料合成BH系列絮凝剂,其中BH-3效果最好。采用红外光谱对BH-3进行表征说明:Fe和A1羟合物交叉共聚的作用加强,BH-3中铝离子、铁离子及水解络合铝离子、铁离子可与共存的聚硅酸起络合作用生成铁铝硅聚合物。二元复合驱采出水加入100 mg/L的HB-913热沉降120 min,然后气浮30 min,气浮时加入100 mg/L和200 mg/L的BH-3可使水中油含量从2500mg/L分别降至89.8 mg/L和71.0 mg/L,脱油率分别达到96.4%和97.2%。BH-3中S042-通过氢键将共聚体连接起来增大了聚合度,具有聚硅酸粘结聚集、吸附架桥效能及铝盐和铁盐电中和能力强的特点。
In order to enhance oil recovery of oilfields, various measures have been adopted to increase the production domestic and overseas in recent years. With the use of Chemical flooding, Steam flooding and other enhanced oil recovery technologies, oil field produced water composition become more complex. As an important oil recovery technology, SP flooding has the significant characteristic of high oil displacement efficiency. However, due to the use of chemicals during SP flooding and the poor quality of crude oil, produced water becomes more difficult to demulsified. The study has great significance because much research have been done to improve the efficiency of demulsification of SP flooding produced water under high oil displacement agent concentration. The influences of polymer and surfactant on the stability of polymer flooding, suifactant flooding and SP flooding produced water were investigated in this study. The demulsification efficiencies of microwave, ultrasonic and flotation methods of enhancing mass transfer of SP flooding produced water were analysised. A new type of flocculants of BH series were synthesized and then the demulsification efficiencies were studied and finally the molecular structure of BH-3 which performed best was obeserved using infrared spectrum.
     The selection results of different demulsifiers showed that HB-913 and ZU-4 performed better than any other demulsifiers. Using ultrasonic-thermal settlement, microwave-thermal settlement and thermal settlement-flotation combination methods to study the separation characteristics of SP flooding produced water(polymer and surfactant concentration are 800 mg/L). Under the condition that ZU-4 dosage was 100 mg/L, sedimentation time was 120 min, ultrasonic time was 10 min, power was 100 W and frequency was 40 KHz, the oil removal rate of SP flooding produced water can reach 90.7%. And under the condition that microwave time was 60 s, power was 800 W, the removal rate can reach 91.1%.
     BH series were prepared by introducing inorganic aluminum salt and/or iron salt into polysilic acid.Within all BH series of flocculants, BH-3 performed best. The infrared spectrum showed that Al3+, Fe3+, hydroxyl aluminum ion, hydroxyl ferric ion and polysilicic acid ion can be chelated and produce new polymer. Under the same condition that HB-913 dosage was 100 mg/L, sedimentation time was 120 min,and flotation time was 30 min, change the dosage of BH-3,when the dosage were 100 mg/L and 200 mg/L,the removal rate can come up to 96.4% and 97.2% respectively.SO42- in BH-3 can increase the degree of polymerization by linking the copolymer using hydrogen bonds.
引文
[1]岳湘安等.提高石油采收率基础[M].北京:石油工业出版社.2007:5
    [2]叶仲斌等.提高采收率原理[M].北京:石油工业出版社.2007:2-52
    [3]张长宝.驱油用烷醇酰胺的合成及与大庆原油配伍性研究[D].大庆石油学院,2007:7-8
    [4]贾贺峰等.三次采油技术的研究现状[J].化工科技市场.2006,31-34
    [5]郭东红,李森,袁建国.表面活性剂的驱油机理与应用[J].精细石油化工进展.2002(7):36-41
    [6]吕鑫,张健,姜伟.聚合物/表面活性剂二元复合驱研究进展[J].西南石油大学学报.2008,30(3):27-130
    [7]Kevin C. Taylor, Hisham A. Nasr-El-Din. The effect of synthetic surfactants on the interfacial behavior of crude oil/alkali/polymer systems [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects.1996,108:49-72
    [8]Y. H. Kim, D. T. Wasan, P. J. Breen, A study of dynamic interfacial mechanisms for demulsification of water-in-oil emulsions[J]. Colloids and Surfaces A:Physicochem. Eng. Aspects.1995,95:235-247
    [9]M. Nedjhioui, N. Moulai-Mostefa, A. Morsli, et al.. Combined effects of polymer/surfactant/oil/alkali on physical chemical properties [J]. Desalination.2005,185: 543-550
    [10]N. Bjorndalen, M. R. Islam. The effect of microwave and ultrasonic irradiation on crude oil during production with a horizontal well[J]. Journal of Petroleum Science and Engineering.2004,43:139-150
    [11]Zhang Ruiquan, Liang Chenghao, Wu Di, Deng Shubo. Characterization and demulsification of produced liquid from weak base ASP flooding[J]. Colloids and Surfaces A:Physicochem. Eng. Aspects.2006,290:164-171
    [12]Alejandro A. Pena, George J. Hirasaki, Clarence A. Miller. Chemically Induced Destabilization of Water-in-Crude Oil Emulsions[J]. Ind. Eng. Chem. Res..2005, 44(5):1139-1149
    [13]S. L. Mason, K. May, S. Hartland. Drop size and concentration profile determination in petroleum emulsion separation[J]. Colloids Surfaces A:Physicochem. Eng. Aspects. 1995,96:85-92
    [14]Zhongkui Zhao, Chenguang Bi, Weihong Qiao, Dynamic interfacial tension behavior of the novel surfactant solutions and Daqing crude oil[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects.2007,294:191-220
    [15]孙中华,冯英明,陈忠喜,邓启刚.聚表剂驱采出水油水分离性质[J].油气田地面工程.2009,28(10):18-20
    [16]徐明进,‘李明远,彭勃等Zeta电位和界面膜强度对水包油乳状液稳定性的影响[J]. 应用化学.2007,24(6):623-627
    [17]赵国玺,朱步瑶.表面活性剂作用原理[M].2003,1:572-584
    [18]胡同亮,杨柯,马良军等.原油脱盐脱水研究进展[J].抚顺石油学院学报.2003,23(3):1-4
    [19]Tsuneki Ichikawa, Keisuke Itoh, Shigeki Yamamoto, Masanao Sumita. Rapid demulsification of dense oil-in-water emulsion by low external electric field I. Experimental evidence[J]. Colloids and Surfaces A:Physicochem. Eng. Aspects.2004, 242:21-26
    [20]康万利,孙春柳.油田乳状液破乳方法研究进展[J].管道技术与设备.2006,2:1-4
    [21]张贤明,吴峰平,陈彬等.油包水型乳化液破乳方法研究现状及展望[J].石化技术与应用.2010,28(2):159-163
    [22]任卓琳,牟英华,崔付义.原油破乳剂机理与发展趋势[J].油气田地面工程.2005,24(7):16-17
    [23]Klaus Barthold, Richard Baur et al. Method of demulsifying crude oil and water mixtures with copolymers of acrylates or methacrylates and hydrophilic commonomers.US US5472617,1995
    [24]Douglas F. Bourg. Demulsification of oil and water emulsions. US US6153656,2000
    [25]吴晓根,韩永忠,李俊等.含油废水处理技术进展[J].环境科技.2010,23(2):64-67
    [26]骆广生,邹财松,孙永等.微滤膜破乳技术的研究[J].膜科学与技术.2001,21(2):62-66
    [27]LU W. F., KOCHERGINSKYN. M., ZHANG C. X., et al.. A novel method of breaking water-in-oil emulsions by using micro porous membrane[J]. Transactions of Tianjin University.2001,17(3):210-213
    [28]魏凤玉,肖翔,亲水性混合纤维素酯微孔膜对O/W乳液的破乳[J].应用化学.2006,23(8):881-885
    [29]Yue Wen, Hang Cheng et al.. Analysis of biological demulsification process of water-in-oil emulsion by Alcaligenes sp.S-XJ-1[J]. Bioresource Technology.2010,101: 8315-8322
    [30]黄翔峰,闻岳,杨葆华等.破乳菌种TR-1的筛选与破乳性能实验研究[J].油田化学.2006,23(2):136-139
    [31]孙宝江,颜大椿,乔文孝.乳化原油的超声波脱水研究[J].声学学报.1999,2(3):327-331
    [32]虞建业,袁萍,顾春光等.超声辐照法原油破乳脱水的室内研究[J].油田化学.2002,19(2):141-143
    [33]金钦汉,戴树珊,黄卡玛.微波化学[M].北京:科学出版社.1999:271-272
    [34]黄莉,袁宗明,蒋华义等.微波作用下原油脱水规律的实验研究[J].吉林化工学院学报(自然科学版).2005,22(3):14-15
    [35]刘惠玲.微波脱水技术[J].油田地面工程.1992,11(4):22-25
    [36]蒋华义,黄莉,魏爱军.稠油微波脱水的实验研究[J].西安石油大学学报(自然科学版).2005,20(5):49-51
    [37]范永平,王化军,张强.油田沉降罐中间层复杂乳状液微波破乳-离心分离[J].过程工程学报.2007,7(2):258-261
    [38]洪品杰.微波用于破乳的研究[J].化学研究与应用.1993,5(1):83-85
    [39]梁金禄,丁彬,罗健辉等.稠油破乳技术研究进展[J].石油化工应用.2010,29(8):1-11
    [40]马自俊.乳状液与含油污水处理技术[M].2006,9:215-297
    [41]SHAMRANI A A, JAMES A, XIAO H. Seperation of oil from water by dissolved air flotation[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2002, 209:15-26
    [42]王涛.用气浮法提高污水沉降罐除油效率[J].油气田地面工程.2007,26(7):26-27
    [43]朱东辉,郑召宏.MAF旋切气浮技术在炼油厂污水处理中的应用[J].石油化工环境保护.2002,25(3):16-18
    [44]李志健,付政辉.电凝聚气浮技术处理采油废水的研究[J].中国给水排水.2009,25(7):83-86
    [45]张健,向问淘,韩明等.乳化原油的化学破乳作用[J].油田化学.2005,22(3):283-288
    [46]Goldszal A, Bourrel M. Demulsification of crude oil emulsion:correlation to microemulsion phase behavior[J]. Ind Engng Chem Res.2000,39:2746-2751
    [47]Brown, Adam, P., et al.. Oil/Water Separation of Well Stream by Flocculation-Demulsification Process[P]. EPO, WO2008020907A2,2008
    [48]Tereza Neuma de Castro Dantas, Afonso Avelino Dantas Neto, Everlane Ferreira Moura. Microemulsion systems applied to breakdown petroleum emulsions[J]. Journal of Petroleum Science and Engineering.2001,32:145-149
    [49]Wanli Kang, Guolin Jing, Hongyan Zhang, et al.. Influence of demulsifier on interfacial film between oil and water[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2006,272:27-31
    [50]S. Bratskaya, V. Avramenko, S. Schwarz, I. Philippova, Enhanced flocculation of oil-in-water emulsions by hydrophobically modified chitosan derivatives[J]. Colloids and Surfaces A:Physicochem. Eng. Aspects.2006,275:168-176
    [51]David N. Roark, Baton Rouge,La. Demulsification of oil-in-water emulsion[P]. US US4614593,1985
    [52]Paul R.Hart, Chen, Clifton Park. Copolymer formulations for breaking oil-and-water emulsions[P]. US US 5921912,1999
    [53]李世洪.BH-1反相破乳剂的研制与应用[J].油气田地面工程.2000,19(5):33-34
    [54]朱剑钊.KW-04稠油污水反相破乳剂[J].新疆石油科技.1998,8(4):51-54
    [55]夏峥嵘,林正欢,李绵贵.多功能水处理剂LBT6的应用研究[J].湖北化工.2003,1:28-30
    [56]王晓阳.石油化工企业含油污水处理及回用水处理工艺设计[J].工业用水与废水.2010,4(41):50-53
    [57]王车礼,张登庆,陈毅忠等.电解絮凝浮选法处理油田废水[J].水处理技术.2003,29(3):163-165
    [58]N. Moulai Mostefa, M. Tir. Coupling flocculation with electroflotation for waste oil/water emulsion treatment. Optimization of the operating conditions[J]. Desalination. 2004,161:115-121.
    [59]Bate J B. Clarification of Produced Water in the Oil and Gas Industry[P]. US US5543043,1996
    [60]Khalid A. Hashmi, Hassan A. Hamza, James C. Wilson. CANMET hydrocyclone:an emerging alternative for the treatment of oily waste streams[J]. Minerals Engineering. 2004,17(5):643-649
    [61]E.Bessa, G. L.Sant'Anna Jr., M. Dezotti. Photocatalytic/H2O2 treatment of oil field produced waters[J]. Applied Catalysis B.2001,29:125-134
    [62]G..Li, T. An et al.. Photoelectrocatalytic decontamination of oilfield produced wastewater containing refractory organic pollutants in the presence of high concentration of chloride ions[J]. Journal of Hazardous Materials B.2006,138:392-400
    [63]Xuqing Gu, Shiao-Hung Chiang. A novel flotation column for oily water cleanup[J]. Seperation and Purification Technology,1999,16(3):193-203
    [64]邓秀英.油田采出水处理技术综述[J].工业用水与废水.1999,30(2):7-9
    [65]张登庆,任连锁,裴俊峰等.电气浮技术在油田采出水处理中的应用研究[J].石油矿场机械.2002,31(2):11-14
    [66]夏福军,邓述波,张宝良.水力旋流器处理聚合物驱含油污水的研究[J].工业水处理.2002,22(2):14-19
    [67]王宝辉,孔凡贵,张铁锴等.高铁酸钾氧化去除油田污水中聚丙烯酰胺的研究[J].工业水处理.2004,24(1):21-23
    [68]李明远,吴肇亮.石油乳状液[M].北京:科学出版社.2009,1:436-437
    [69]陈建东,油田水处理存在的主要问题与发展方向[J].内江科技.2008,11:52
    [70]陈兰,张贵才,刘敏.油田含油污水处理中膜技术的研究与应用[J].精细石油化进展.2006,7(2):52-56
    [71]苏克曼,潘铁英,张玉兰.波谱解析法[M].上海:华东理工大学出版社.2002:80

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700