荧光和共振瑞利散射法在法莫替丁和吩噻嗪类药物中的分析应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
法莫替丁和吩噻嗪类药物在药用性质方面,具有其独特的地位。本文主要以法莫替丁(FMTD)、盐酸氯丙嗪(CPZ)和盐酸异丙嗪(PMZ)为研究对象,研究、发展和建立简便快速测定法莫替丁和吩噻嗪类药物的共振瑞利散射(Resonance Rayleigh Scattering, RRS)、二级散射(Second-Order Scattering, SOS)和倍频散射(Frequency Doubling Scattering, FDS)方法,并将这些方法运用于药物制剂和动物肉类食品的检测。研究体系如下:
     1.钯(Ⅱ)与法莫替丁和卤代荧光素染料三元离子缔合物纳米微粒的共振瑞利散射和共振非线性散射光谱及其分析应用研究
     在pH 3.5~4.7 NaAc-HAc的缓冲溶液中,法莫替丁(FMTD)与Pd(Ⅱ)形成五元环螯合阳离子([Pd(FMTD)]2+),再与二氯荧光素(DCF)、二溴荧光素(DBF)、二碘荧光素(DIF)、赤鲜红(ER)、曙红Y(EY)、乙基曙红(EE)等卤代荧光素(HF)反应形成1:1:2的三元离子缔合物[Pd(FMTD)]·(HF)2。[Pd(FMTD)]·(HF)2在疏水作用和范德华力的作用下进一步聚集形成平均粒径为9 nm左右的纳米微粒,此时将引起体系吸收光谱变化、荧光猝灭和共振瑞利散射(RRS)、二级散射(SOS)和倍频散射(FDS)急剧增强。[Pd(FMTD)]·(HF)2的最大吸收峰位于476 nm (DCF体系)、540 nm (DBF体系)、553 nm (DIF体系)、560 nm (ER体系)、547 nm (EY体系)、549 nm (EE体系),最大散射波长分别位于302~361 nm(RRS法)、544~644 nm(SOS法)和320~390 nm (FDS法),3种散射增强程度(△I)在一定的范围内与FMTD的浓度成良好的线性关系,检出限为1.0~2.6 ng/mL(RRS法)、4.2~13.0 ng/mL (SOS法)和3.6~10.7 ng/mL (FDS法)。据此提出了灵敏度高、选择性好、快速准确测定FMTD的分子光谱新方法。适用于片剂、胶囊和注射液等药物制剂的测定。文中研究了反应的适宜条件、影响因素和分析化学特性,并结合吸收、荧光光谱的变化和纳米微粒的形成,讨论了反应机理和散射增强的原因。
     2.汞(Ⅱ)与法莫替丁和阴离子表面活性剂三元混配物的共振瑞利散射,二级散射和倍频散射光谱及其分析应用
     在pH 5.9 NaAc-HAc的缓冲溶液中,FMTD与Hg(Ⅱ)形成五元环螯合阳离子([Hg(FMTD)]2+),再进一步与十二烷基硫酸钠(SLS),十二烷基苯磺酸钠(SDBS)和十二烷基磺酸钠(SDS)等阴离子表面活性剂(AS)反应形成1:1:2的三元混配物([Hg(FMTD)(AS)2])。此时,RRS、SOS和FDS的显著增强。最大的散射波长位于345~352 nm (RRS法)、544 nm (SOS法)和352 nm (FDS法),3种散射强度(△I)的顺序均为SLS>SDS>SDBS,在一定范围内△I与FMTD的浓度成良好的线性关系,检出限为3.3~3.9 ng/mL (RRS法)、14.6~16.3 ng/mL (SOS法)和7.0~8.5 ng/mL(FDS法)。据此提出了灵敏度高、选择性好、快速准确测定FMTD的光散射新方法。适用于注射液、血清和尿样中FMTD含量的测定。文中探讨了[Hg(FMTD)(AS)2]的形成对吸收和RRS光谱的影响及引起RRS增强的原因。
     3.荧光光谱法研究法莫替丁-钯(Ⅱ)-卤代荧光素染料的相互作用及其分析应用
     在pH 3.2~4.1 NaAc-HAc介质中,FMTD与Pd(Ⅱ)形成螯合阳离子,它能进一步与二溴荧光素(DBF)、曙红Y(EY)、乙基伊红(EE)和荧光桃红(TCBF)等卤代荧光素(HF)类染料反应形成三元离子缔合物[Pd(FMTD)]·(HF)2,引起DBF、EY、EE和TCBF吸收光谱变化和荧光猝灭。离子缔合物的最大吸收峰位于541 nm(DBF体系)、547 nm (EY体系)、549 nm (EE体系)、558 nm (TCBF体系),最大荧光发射波长(λem)在513~540 nm范围内,荧光猝灭程度(△F)顺序为DBF>EY>EE>TCBF。△F在一定的范围内与FMTD的浓度成正比,检出限为13.6-29.6 ng/mL。据此提出了灵敏度高、选择性好、快速准确测定FMTD的荧光光谱新方法。可用于服用FMTD后尿药浓度的测定,为FMTD药代动力学研究提供借鉴。文中还对三元离子缔合物的组成、结构和荧光猝灭机理进行了讨论。
     4.流动注射-共振瑞利散射法测定盐酸氯丙嗪和盐酸异丙嗪
     在HCl介质中,12-钨磷酸(TP)分别与盐酸氯丙嗪(CPZ)和盐酸异丙嗪(PMZ)反应形成离子缔合物,导致溶液的RRS显著增强,并产生新的RRS光谱。它们的最大RRS峰位于359 nm (TP-CPZ)和346 nm (TP-PMZ),并且在一射定范围内,CPZ和PMZ的浓度与散射强度呈线性关系,据此提出流动注射-共振瑞利散射(FIA-RRS)联用技术测定CPZ和PMZ的新方法,CPZ和PMZ的检出限分别为1.7 ng/mL和3.0 ng/mL。实验优化了流动注射(FIA)参数和反应条件,并以灵敏度较高的CPZ为例,考察了共存物质的影响。本方法具有良好的选择性和重复性;用于药片和猪肝中CPZ的测定,结果满意。
     5.盐酸异丙嗪和盐酸氯丙嗪与12-钨磷酸相互作用的共振非线性散射光谱及其分析应用
     在pH=1.0的盐酸介质中,TP分别与PMZ和CPZ反应形成离子缔合物时,吸收光谱仅发生微小变化,而SOS和FDS却发生明显的增强。它们的最大SOS峰位于585 nm (TP-PMZ)、588 nm (TP-CPZ),最大的FDS峰位于388nm(TP-PMZ)、329 nm (TP-CPZ)附近。其中SOS法较灵敏,它对PMZ和CPZ的检测限分别为2.0 ng/mL和3.1 ng/mL。本文以灵敏度最高的PMZ为例,试验了共存物质的影响及分析应用,表明方法具有良好的选择性和较高的重复性。文中还根据这2种药物的电荷分布,摩尔比法和连续变化法探讨了反应机理,并且讨论了SOS和FDS光谱产生和增强的原因。
Famotidine and thiadiazide in the medicinal properties, have unique position. New RRS, SOS and FDS methods for the determination of famotidine (FMTD), chlorpromazine hydrochloride (CPZ) and promethazine hydrochloride (PMZ) have been established and developed. It can be used in the determination of trace drugs in the pharmaceutical preparation and food. Main investigated systems are listed as follow:
     1. Study on the ternary ion-association complex nanoparticles of palladium(Ⅱ)-famotidine and halogen-fluorescein dyes by the resonance Rayleigh scattering and resonance nonlinear scattering spectra and their application
     In pH 3.5-4.7 NaAc-HAc buffer medium, famotidine (FMTD) reacted with palladium (Ⅱ) (Pd (Ⅱ)) to form chelate cation, which further reacted with halogen-fluorescein dyes (HF) such as dichlorofluorescein (DCF), dibromofluorescein (DBF), diiodofluorescein (DIF), erythrosine (ER), eosine (EY) and eosin (EE) to form ternary ion-association complex [Pd(FMTD)]·(HF)2. The Pd(FMTD)·(HF)2 further aggregate to form average diameter of about 9 nm nanoparticles by hydrophobic forces and Van der Waals forces. As a result, the absorption bands of DCF, DBF, DIF, ER, EY, EE were shifted, the fluorescences of them were quenched and the resonance Rayleigh scattering (RRS), second-order scattering (SOS) and frequency doubling scattering (FDS) were enhanced greatly. The maximum absorption wavelengths of [Pd(FMTD)·(HF)2] were located at 476 nm (DCF system),540 nm (DBF system),553 nm (DIF system),560 nm (ER system),547 nm (EY system),549 nm (EE system) and the maximum RRS, SOS and FDS wavelengths of those were located at 302~361 nm, 536~564 nm and 320~390 nm, respectively. The three△I were proportional to the FMTD concentration in a certain range and the detection limits were 1.0~2.6 ng/mL (RRS method),4.2~13.0 ng/mL (SOS method) and 3.6~10.7 ng/mL (FDS method), respectively. Based on it, a high sensitive, good selective, rapid and new molecular spectrum method had been proposed to determine FMTD. It can be applied to determine FMTD in pharmaceutical preparation such as tablets, gelatin capsule and injection. In this work, the optimum reaction conditions, the influences of coexisting substances and the properties of analytical chemistry are investigated, and the mechanism of ion-association reaction and the reasons of enhancement for RRS are also discussed by the change of UV, F and the formation of nanoparticles.
     2. Study on the ternary mixed ligand complex of Hg(Ⅱ)-famotidine and anionic surfactant by the resonance Rayleigh scattering, second-order scattering and frequency doubling scattering spectra and their analytical applications
     In pH 5.9 NaAc-HAc buffer medium, FMTD reacted with Hg(Ⅱ) to form chelate cation ([Hg(FMTD)]2+), which further reacted with anionic surfactants (AS) such as sodium dodecylsulfate (SLS), sodium dodecylbenzene sulfonate (SDBS) and sodium dodecylsulphate (SDS) to form ternary mixed ligand complex ([Hg(FMTD)(AS)2]). As a result, RRS, SOS and FDS were enhanced greatly. Their maximum wavelengths were located at 345~352 nm,544 nm and 352 nm, respectively. The three scattering intensity (△I) were proportional to the FMTD concentration in a certain range, and their detection limits were 3.3~3.9 ng/mL (RRS method),14.6~16.3 ng/mL (SOS method) and 7.0~8.5 ng/mL (FDS method). Based on it, the simple, rapid, accurate and sensitive light scattering methods had been proposed to determine FMTD in injection, serum and urine sample. The effects of formation of [Hg(FMTD)(AS)2] on absorption and RRS spectra were investigated, and the reasons of enhancement for RRS were also discussed.
     3. Study on the interaction between palladium(Ⅱ)-famotidine and halogen-fluorescein dyes by fluorescence quenching method and their analytical applications
     The interaction between palladium(Ⅱ)-famotidine and halogen-fluorescein dyes (HF) was investigated by fluorescence and absorption spectrum. In pH 3.2~4.1 NaAc-HAc buffer medium, FMTD reacted with palladium(Ⅱ) (Pd(Ⅱ)) to form chelate cation, which further reacted with dibromofluorescein (DBF), eosine (EY), eosin (EE) and tetrabromotetrachloroflurescein (TCBF) to form ternary ion-association complexes [Pd(FMTD)]·(HF)2. As a result, the absorption bands of DBF, EY, EE, TCBF were shifted and the fluorescences of them were quenched. The maximum absorption wavelengths of [Pd(FMTD)]·(HF)2 were located at 541 nm (DBF system),547 nm (EY system),549 nm (EE system),558 nm (TCBF system) and the maximum fluorescence emission wavelengths of them were located at 513~540 nm, the order of quenching values (△F) was DBF>EY>EE>TCBF. The△F was proportional to the FMTD concentration in a certain range and the detection limit was 13.6~29.6 ng/mL. Based on it, a high sensitive, good selective, simple, rapid and new fluorescence quenching method had been proposed to determine FMTD. It can be applied to determine metabolites of FMTD in human urine, which provide reference for pharmacokinetics of the FMTD. The composition and structure of [Pd(FMTD)]·(HF)2 and fluorescence quenching mechanism were fully discussed.
     4. Determination of chlorpromazine hydrochloride and promethazine hydrochloride by resonance Rayleigh scattering method coupled with flow injection technique
     In pH 1.0 HCl medium,12-tungstophosphoric acid (TP) reacted with chlorpromazine hydrochloride (CPZ) or promethazine hydrochloride (PMZ) to form ion-association complexes, respectively, which resulted in significant enhancement of the RRS intensity. The maximum peaks were located at 359 nm (TP-CPZ) and 346 nm (TP-PMZ). In a certain range, the RRS intensity was proportional to the concentration of CPZ or PMZ. Based on it, a flow injection analysis (FIA) coupled to resonance Rayleigh scattering (RRS) method was developed for the determination of CPZ and PMZ. The detection limits were 1.7 ng/mL for CPZ and 3.0 ng/mL for PMZ. The reaction conditions and FIA parameters for the systems were optimized. Take TP-CPZ system with high sensitivity as an example, the effect of coexisting substances was investigated, which showed that the method had good selectivity. The proposed method was used for the determination of CPZ in the pharmaceutical formulation and in pig liver with satisfactory results.
     5. Study on the resonance nonlinear scattering spectra of the interactions of promethazine hydrochloride and chlorpromazine hydrochloride with 12-tungstophosphoric acid and their analytical applications
     In pH 1.0 HCl medium, TP reacted with PMZ and CPZ to form ion-association complexes respectively, which led to a great enhancement of the resonance nonlinear scattering such as SOS and FDS. Their maximum SOS and FDS peaks were located at 585 nm (TP-PMZ),584 nm (TP-CPZ) and 388 nm (TP-PMZ),329 nm (TP-CPZ), respectively. These results provided some indication for the determination of PMZ and CPZ by SOS and FDS methods. The linear range of TP-PMZ and TP-CPZ systems were 0.0069~2.5μg/mL,0.102~5.0μg/mL (SOS) and 0.079~6.0μg/mL,0.0133~5.0μg/mL (FDS), respectively. The detection limits (3σ) of PMZ and CPZ were 2.08 ng/mL,3.07 ng/mL (SOS) and 2.22 ng/mL,3.98 ng/mL (FDS), respectively. In this work, the optimum reaction conditions, the influences of coexisting substances and ionic strength and analytical application were investigated. The methods have been successfully applied to determination of PMZ and CPZ in tablets. In addition, the composition of ion-association complexes and the reaction mechanism were also discussed.
引文
[1]国家医药管理局科技教育司.药物化学.北京:中国医药科技出版社,1996,88-89.
    [2]尤启冬.药物化学.北京:化学工业出版社,2004,134-135.
    [3]陈新谦,金有豫,汤光主编.新编药物学.北京:人民卫生出版社,2003,431.
    [4]汪建龙,梁芝萍.法莫替丁的不良反应.中国误诊学杂志,2006,6(5):985-987.
    [5]林小明,刘彦青.紫外分光光度法测定法莫替丁氯化钠注射液的含量.中国药师,2007,7(1):31-32.
    [6]张慧芬,盛炳义,郦柏平.法莫替丁注射液静滴致过敏性休克死亡1例.中国医院药学杂,2007,27(2):284.
    [7]Ibrahim-Darwish A, Samiha-Hussein A, Ashraf-Mahmoud M, Ahmed-Hassan I. Spectrophotometric determination of H2-receptor antagonists via their oxidation with cerium(IV). Spectrochimica Acta Part A,2008,69:33-40.
    [8]Ali-Abu-Zuhri Z, Raqi-Shubietah M, Ghassan-Badah M. Extractional-spectrophotometric determination of famotidine in pharmaceutical formulations. Journal of Pharmaceutical and Biomedical Analysis,1999,21:459-465.
    [9]Walash MI, El-Brashy A, N El-Enany, Kamel ME. Spectrofluorimetric determination of famotidine in pharmaceutical preparations and biological fluids, application to stability studies. Journal of Fluorescence,2009,19:333-344.
    [10]El-Bayoumia A, El-Shanawany AA, El-Sadek ME, Abd-El-Sattar A. Synchronous spectrofluorimetric determination of famotidine, fluconazole and ketoconazole in bulk powder and in pharmaceutical dosage forms. Spectroscopy Letters,1997,30:25-46.
    [11]Tomas-Perez-Ruiz-Martinez-Lozano C, Tomas V, Brvo E, Galera R. Direct determination of ranitidine and famotidine by CE in serum, urine and pharmaceutical formulations. Journal of Pharmaceutical and Biomedical Analysis,2002,30:1055-1061.
    [12]吕娟丽,孙燕芳,李国辉,梁贵键,郝勇,朱莉.高效液相色谱法测定法莫替丁含量.解放军药学学报,2000,16(3):154.
    [13]Husain S, Khalid S, Nagaraju V, Nageswara-Rao R. High-performance liquid chromatographic separation and determination of small amounts of process impurities of famotidine in bulk drugs and formulations. Journal of Chromatography A,1996,743: 328-334.
    [14]Zarghi-Shafaati A, Foroutan SM, Khoddam A. Development of a rapid HPLC method for determination of famotidine in human plasma using a monolithic column. Journal of Pharmaceutical and Biomedical Analysis,2005,39:677-680.
    [15]Zhong L, Yeh KC. Determination of famotidine in human plasma by high performance liquid chromatography with column switching. Journal of Pharmaceutical and Biomedical Analysis, 1998,16:1051-1057.
    [16]Dowling TC, Frye RF. Determination of famotidine in human plasma and urine by high-performance liquid chromatography. Journal of Chromatography B,1999,732: 239-243.
    [17]谈珺珺,谷薇薇,王金萍,刘伟,张黎娟,刘利苹,张福田.反相高效液相色谱法测定法莫替丁片含量.安徽医药,2005,9(3):197-199.
    [18]邹桂欣,王光函,杜佳林,尤献民,姜鸿.高效液相色谱法测定人血清中法莫替丁的含量.辽宁中医药大学学报,2007,9(2):121-123.
    [19]杨帆,刘丽京,邓艳萍.高效液相色谱法测定血浆中法莫替丁的浓度.黑龙江医药科学,2005,28(5):31-32.
    [20]何树华,何德勇.流动注射-抑制化学发光法测定法莫替丁、西咪替丁和雷尼替丁.分析试验室,2009,28(7):50-53.
    [21]Diane-Ashiru AI, Rajesh P, Abdul-Basit W. Simple and universal HPLC-UV method to determine cimetidine, ranitidine, famotidine and nizatidine in urine:Application to the analysis of ranitidine and its metabolites in human volunteers. Journal of Chromatography B, 2007,860:235-240.
    [22]Novakovic'J. High-performance thin-layer chromatography for the determination of ranitidine hydrochloride and famotidine in pharmaceuticals. Journal of Chromatography A, 1999,846:193-198.
    [23]郑虎.药物化学(6版).北京:人民卫生出版社,2007,26-30.
    [24]李志裕.药物化学.南京:东南大学出版社,2006,32.
    [25]李婷,周启星.氯丙嗪生态毒理效应与人体健康影响研究与展望.生态学杂志,2006,25(12):1554-1558.
    [26]王汝龙,原正平.化工产品手册.药物(第三版).北京:化学工业出版社,1999,133.
    [27]国家药典委员会.中华人民共和国药典(2005年版).北京:化学工业出版社,2005,511,574.
    [28]United States Pharmacopoeia, E-copy on CD, Ver.26-NF 21,2003.
    [29]British Pharmacopoeia, Her Majesty's Stationary Office, London,1993.
    [30]Zhang Q, Zhan XC, Li CR, Lin T, Li LL, Yin XD, He N, Shi Y. Determination of promethazine hydrochloride and its preparations by highly accurate nephelometric titration. International Journal of Pharmaceutical,2005,302:10-17.
    [31]张琦,詹先成,李成容.高精度散射光度滴定法测定盐酸异丙嗪的含量.华西药学杂志, 2005,20(1):34-35.
    [32]陈亚红,田丰收,徐锐.酶催化动力学光度法测定盐酸氯丙嗪.分析化学,2009,37:174.
    [33]陈桂平,华开源.双波长分光光度法直接测定安热静注射液中盐酸氯丙嗪的含量.华西药学杂志,1994,9(4):243-245.
    [34]刘礼涛,李晶,李全民.铁氰化钾-Fe(Ⅲ)分光光度法测定盐酸氯丙嗪.分析试验室,2011,30(1):41-43.
    [35]何灵秀,蔡先东,肖丽英.差示分光光度法测定麻咳合剂中盐酸异丙嗪的含量.广东药学院学报,2005,21(3):270-271.
    [36]潘海宇,韩刚.差示分光光度法测定注射剂中盐酸氯丙嗪的含量.华北煤炭医学院学报,2006,8(2):151-152.
    [37]毛晨梅,张咏梅.紫外分光光度法测定夜咳灵口服液中有效成分的含量.苏州大学学报,2003,23(6):675-676.
    [38]秦宗会,刘绍璞,孔玲,江虹.曙红Y分光光度法测定盐酸异丙嗪.分析化学,2003,31(6):702-705.
    [39]文霞,冉兰.萃取分光光度法测定伤风止咳糖浆中盐酸异丙嗪的含量.华西药学杂志,200l,16(3):219-220.
    [40]Puzanowski-Tarasiewicz H, Tarasiewicz M, Misiuk W, Regulska E. Spectrophotometric determination of titanium (Ⅳ) with chlorpromazine hydrochloride. Microchemical Journal, 1984,29(3):341-344.
    [41]罗建华,江翔国.紫外分光光度法测定夜咳灵口服液中盐酸异丙嗪含量.抗感染药学,2006,3(1):30-31.
    [42]刘砚韬,陈力,黄红,许群芬,张伶俐.紫外分光光度法测定小儿非那根糖浆中盐酸异丙嗪的含量.华西药学杂志,2007,22(2):234-235.
    [43]潘白红,陈丽华,韩永军.荧光桃红分光光度法测定微量盐酸异丙嗪.分析试验室,2010,29(2):115-117.
    [44]Basavaiah K, Swamy JM. Application of potassium dichromate and iron-thiocyanate in the pectrophotometric investigations of phenothiazines. ⅡFarmaco,2001,56:579-585.
    [45]Saif MJ, Anwar J. A new spectrophotometric method for the determination of promethazine-HCl from pure and pharmaceutical preparations. Talanta,2005,67:869-872.
    [46]胡斯,施路宁,王小洁.可见光谱法测定盐酸异丙嗪糖浆的含量.儿科药学杂志,2005,11(4):39-41.
    [47]蔡卓,赵静,江彩英,莫丽君,梁信源,莫利书,黄小凤.卡尔曼滤波紫外分光光度法同时测定盐酸异丙嗪和盐酸氯丙嗪.广西大学学报,2009,34(3):340-346.
    [48]Regulska E, Tarasiewicz M, Puzanowska-Tarasiewicz H. Extractive-spectrophotometric determination of some phenothiazines with dipicrylamine and picric acid. Journal of Pharmaceutical and Biomedical Analysis,2002,27:335-340.
    [49]蔡富春,陈朝晖,刘卫兵.荧光分光光度法测定盐酸氯丙嗪.西南师范大学学报,2002,27(5):739-741.
    [50]杨昌金,梅霓,杨程.荧光分光光度法直接测定盐异丙嗪片剂及注射液的含量.分析科学学报,1999,15(5):412-414.
    [51]何云华,王莉平. K3Fe(CN)6-钙黄绿素体系后化学发光反应测定盐酸氯丙嗪.分析试验室,2009,28(7):96-98.
    [52]Huang YM, Chen ZH. Chemiluminescence of chlorpromazine hydrochloride based on cerium(Ⅳ) oxidation sensitized by rhodamine 6G. Talanta,2002,57(5):953-959.
    [53]何德勇,胡玉斐,章竹君.鲁米诺-铁氰化钾化学发光体系测定盐酸氯丙嗪.西南师范大学学报,2003,28(2):331-333.
    [54]晨晓霓,申双龙.在线电生Mn(Ⅲ)流动注射-化学发光法测盐酸氯丙嗪.山西大学学报,2001,24(3):230-233.
    [55]薛元英,何云华,封满良.流动注射-化学发光法测盐酸氯丙嗪.分析化学,1999,27(4):427-429.
    [56]Salah-Sultan M, Yousif-Hassan AM, Abdalla-Abulkibash M. Chemiluminescence assay of promethazine hydrochloride using acidic permanganate employing flow injection mode operated with syringe and peristaltic pumps. Talanta,2003,59:1073-1080.
    [57]Francisco JL, Ana MGC, Fermin AB, Bosque-Sendra JM. Determination of thiazinamium, promazine and promethazine in pharmaceutical formulations using a CZE method. Analytica Chimica Acta,2005,535:101-108.
    [58]Ni YN, Wang L, Kong S. Voltammetric determination of chlorpromazine hydrochloride and promethazine hydrochloride with the use of multivariate calibration. Analytica Chimica Acta, 2001,439:159-168.
    [59]Alizadeh T, Akhoundian M. Promethazine determination in plasma samples by using carbon paste electrode modified with molecularly imprinted polymer (MIP):Coupling of extraction, preconcentration and electrochemical determination. Electrochimica Acta,2010, 55(20):5867-5873.
    [60]Li JG, Zhao F, Ju HX. Simultaneous determination of psychotropic drugs in human urine by capillary electrophoresis with electrochemiluminescence detection. Analytica Chimica Acta, 2006,575:57-61.
    [61]Ahmed KH, Bahruddin S, Sulaiman AG, Rohana A, Afidah AR, Norariza A, Marina M, Suham TA, Suad MAA. Ionophore-based potentiometric sensors for the flow-injection determination of promethazine hydrochloride in pharmaceutical formulations and human urine. Sensors,2011,11:1028-1042.
    [62]Diane K, Bela K. Determination of methylparaben, propylparaben and chlorpromazinein chlorpromazine hydrochloride oral solution by high-performance liquid chromatography. Journal of Chromatography B,1998,707:181-187.
    [63]程正,万庆,管玉云,吴陵. HPLC法测定复方利血平片中氢氯噻嗪、盐酸异丙嗪和利血平的含量.安徽医药,2010,14(1):38-40.
    [64]韩淑芹,王超众,张连成,邓兴玉.高效液相色谱法测定盐酸异丙嗪注射液的含量和有关物质.药物分析杂志,2010,30(40):651-653.
    [65]王丽娜,李艳杰.高效液相色谱法同时测定罗己降压片中氯氮草卓和盐酸异丙嗪的含量.中国药事,2009,23(1):60-62.
    [66]李美芳,刘敏,李玉兰.高效液相色谱法测定盐酸氯丙嗪片的含量和溶出度.中国医药学杂志,2008,28(23):2059-2061.
    [67]洪月玲,郝学飞,董柯.动物性食品中氯丙嗪残留的液相色谱法检测.食品科学,2009,30(14):269-271.
    [68]董小海,胡京枝,赵光华.动物组织中氯丙嗪残留的检测HPLC法.农业质量标准,2009,(1):32-33.
    [69]Bazhdanzadeh S, Talebpour Z, Adib N, Aboul-Enein HY. A simple and reliable stir bar sorptive extraction-liquid chromatography procedure for the determination of chlorpromazine and trifluoperazine in human serum using experimental design methodology. Journal of Separation Science,2011,34(1):90-97.
    [70]Hamid RS, Yadollah Y, Reza HHBA. Extraction and determination of trace amounts of chlorpromazine in biological fluids using hollow fiber liquid phase microextraction followed by high-performance liquid chromatography. Journal of Pharmaceutical and Biomedical Analysis,2007,45:769-774.
    [71]陈国征.气相色谱法测定尿液中盐酸氯丙嗪.中国卫生检验杂志,2007,17(11):2003-2004.
    [72]贺江南,雷丽红.固相微萃取-气相色谱法检验盐酸氯丙嗪.光谱实验室,2002,19(6):751-754.
    [73]许世富,曾明华,汤春莲,陶小平,潘孝成,赵瑞红.气相色谱质谱法测定猪肉中氯丙嗪残留量的研究.现代农业科技,2008,14:203,219.
    [74]吕燕,杨挺,赵健,杨炳建,李彦.气相色谱-质谱法测定猪肝中氯丙嗪残留量.分析试验室,2008,27(3):119-122.
    [75]齐士林,吴敏,严丽娟,吴抒怀,邹伟,林立毅,周昱.超高效液相色谱-质谱对动物源食 品中氯丙嗪、异丙嗪及其代谢物的测定.分析测试学报,2009,28(6):677-681.
    [76]吴鸳鸯,施卫星,陈枢青.同时检测人体尿液中三甲基氯化锡和盐酸氯丙嗪含量的GC/MS分析法探讨.毒理学杂志,2010,24(5):420-421.
    [77]李丹妮,黄士新,张文刚,张鑫.超高效液相色谱-串联质谱法检测六种动物组织中盐酸氯丙嗪残留.中国兽药杂志,2010,44(2):7-11.
    [78]李利军,郝学超,李彦青,程昊.阳离子选择性耗尽进样-胶束电动色谱法对可非糖浆中盐酸异丙嗪与磷酸可待因的测定.分析测试学报,2010,29(4):394-397.
    [79]Wang EK. New Developments of Analytical Chemistry. Science Press:Beijing, PRC,2002, 280.
    [80]Guo M, Wang LT, Wu X, Xu W, Yang JH. A new method for the determination of nucleic acid using an Eu3+-nicotinic acid complex as a resonance light scattering probe. Molecules,2009,14(1):8-10.
    [81]Du J, Zheng HZ, Huang CZ, Wen CY, Hao JY, Hu YF, Zhou DB, Liu L. Positive charged polymer as a probe for DNA determination by resonance light scattering. Analytical Sciences, 2009,25(5):727-730.
    [82]Wei X, Hao QL, Zhou Q, Wu JK, Lu LD, Wang X, Yang XJ. Interaction between promethazinehy drochloride and DNA anditsapplication Inelectrochemical detection of DNA hybridization. Electrochimica Acta,2008,53(24):7338-7343.
    [83]刘江涛,刘绍璞,刘忠芳.博莱霉素铜配合物-DNA体系的共振瑞利散射及其分析应用.中国科学,2010,40(1):372-378.
    [84]董存智,梁丽娜,张淑静,TiO-SiO2纳米粒子的合成及二级散射光谱法测定核糖核酸,分析化学,2009,37(2):279-282.
    [85]Xiufen Long, Qiang Miao, Shuping Bi, Desheng Li, Caihua Zhang, Hong Zhao. Resonance Rayleigh scattering method for the recognition and determination of double-stranded DNA using amikacin. Talanta,2004,64:366-372.
    [86]Dong LJ, Chen XG, Hu ZD. Total internal reflected resonance light scattering determination of protein in human blood serum at water/tetrachloromethane interface with arsenazo-TB and cetyltrimethylammonium bromide. Talanta,2007,71(2): 555-560.
    [87]Li L, Song GW, Fang GR. Determination of bovine serum albumin in the form of its triple complex with Fe(bpy)(phen)SO4-myristylpyridinium bromide by resonance light-scattering technique. Chemia Analityczna,2009,54(1):99-107.
    [88]Li YF, Shen XW, Huang CZ. A coupled reagent of o-phthalaldehyde and sulfanilic acid for protein detection based on the measurements of light scattering signals with a common spectrofluorometer. Talanta,2008,75(4):1041-1045.
    [89]Lu X, Luo ZH, Liu CW, Zhao SL. Resonance Rayleigh scattering for detection of proteins in HPLC. J. Journal of Separation Science,2008,31(16-17):2988-2993.
    [90]Wei Q, Li Y, Dong W, Du B. Determination of protein in milk powder using 2-sulfophenylazo-rhodanine as a probe by the enhanced resonance Rayleigh light-scattering technique. Journal of AOAC International,2006,89(5):1353-1359.
    [91]刘健,刘忠芳,胡小莉,孔玲,刘绍璞.用硫酸软骨素A作探针共振瑞利散射及共振非线性散射法测定蛋白质.化学学报,2010,68(12):12l0-1216.
    [92]刘健,刘忠芳,胡小莉,刘绍璞.牛血清白蛋白共振瑞利散射和共振非线性散射法测定硫酸软骨素.西南大学学报,2010,32(3):30-33.
    [93]Qi L, Han ZQ. Chen Y. Incorporation of flow injection analysis or capillary electrophoresis with resonance Rayleigh scattering detection for inorganic ion analysis. J of Chromatogra A, 2006,1110:235-239.
    [94]王丹,罗红群,李念兵.碘化物-罗丹明6G体系共振瑞利散射法测定痕量铅.环境化学,2005,24(1):97-100.
    [95]Yang J, Chen X D, Fu R W, Li Y B, Luo W A, Zhang M Q. Phase separation in polystyrene/ poly (vinyl methyl ether) blend revealed by two-dimensional correlation resonance light scattering. spectroscopy Polymer Testing,2009,28:456-460.
    [96]Ma Y, Li NB, Luo HQ. Novel and sensitive methods for the determination of dopamine based on the resonance Rayleigh scattering, second-order scattering and frequency doubling scattering quenching effects. Spectrochimica Acta Part A,2009,73(4):747-751.
    [97]Wang N, Dong ZZ, Xu SK, Wang NZ, Zhang XJ. Resonance Rayleigh scattering spectral method for the determination of procaine hydrochloride with nanogold as probe. Chinese Journal of Analytical Chemistry,2008,36(7):995-998.
    [98]Li YF, Shen XW, Huang CZ, Wang J. Resonance light scattering method for the determination of tryptophan in compound amino acids injection. Chinese Journal of Analytical Chemistry,2008,36(6):819-822.
    [99]Chen ZG, Liu GL, Chen MZ, Xu BJ, Peng YR, Chen MH, Wu MY. Screen anticancer drug in vitro using resonance light scattering technique. Talanta,2009,77:1365-1369.
    [100]Feng SL, Liu JJ, Han XM, Fan J. Resonance light scattering study on the interaction of benproperine phosphate with eriochrome blue black R in the presence of sodium dodecylbenzene sulphonate and its analytical application. Luminesecence,2009,24:67-72.
    [101]Qin MY, Liu SP, Liu ZF, Hu XL. Resonance Rayleigh scattering spectra, non-linear scattering spectra of tetracainehydrochloride-erythrosin system and its analytical application. Spectrochim Acta Part A,2009,71(5):2063-2068.
    [1]Husain S, Khalid S, Nagaraju V, Nageswara-Rao R. High-performance liquid chromatographic separation and determination of small amounts of process impurities of famotidine in bulk drugs and formulations. Journal of Chromatography A,1996,743: 328-334.
    [2]Zarghi-Shafaati A, Foroutan SM, Khoddam A. Development of a rapid HPLC method for determination of famotidine in human plasma using a monolithic column. Journal of Pharmaceutical and Biomedical Analysis,2005,39:677-680.
    [3]Diane-Ashiru AI, Rajesh P, Abdul-Basit W. Simple and universal HPLC-UV method to determine cimetidine, ranitidine, famotidine and nizatidine in urine:Application to the analysis of ranitidine and its metabolites in human volunteers. Journal of Chromatography B, 2007,860:235-240.
    [4]Magda-Ayad M, Abdalla S, Hisham-Abdellatef E, Heba-Elsaid M. Potentiometric determination of famotidine in pharmaceutical formulations. Journal of Pharmaceutical and Biomedical Analysis,2002,29:247-254.
    [5]Tomas-Perez-Ruiz-Martinez-Lozano C, Tomas V, Bravo E, Galera R. Direct determination of ranitidine and famotidine by CE in serum, urine and pharmaceutical formulations. Journal of Pharmaceutical and Biomedical Analysis,2002,30:1055-1061.
    [6]Chang Z, Zheng XW. Highly sensitive electrogenerated chemiluminescence(ECL) method for famotidine with pre-anodizing technique to improve ECL reaction microenvironment at graphite electrode surface. Journal of Electroanalytical Chemistry,2006,587:161-168.
    [7]Ali-Abu-Zuhri Z, Raqi-Shubietah M, Ghassan-Badah M. Extractional-spectrophotometric determination of famotidine in pharmaceutical formulations. Journal of Pharmaceutical and Biomedical Analysis,1999,21:459-465.
    [8]Onoa GB, Moreno V. Palladiumand platinum famotidine complexes. Journal of Inorganic Biochemistry,1998,72:141-153.
    [9]Liu SP, Kong L. Interaction between isopoly-tungstic acid and berberine hydrochloride by Resonance Rayleigh scattering spectrum. Anaysisl Science,2003,19(7):1055-1060.
    [10]McPhie P. Resonance light scattering profiles must be corrected for instrument performance. Analysis Biochemistry,2006,348:157-159.
    [11]中国人民共和国药典编辑委员会.中国人民共和国药典(第二部).北京:化学出版社,1995,361-363.
    [12]Crisponi G, Cristiani F, Nurchi V M, Silvagni R, Ganadu M L, Naldini G L, Panzanelli A. A potentiometric, spectrophotometric and IHNMR study on the interaction of cimetidine, famotidine and ranitidine with platinum(Ⅱ) and palladium(Ⅱ) metal ions. Polyhedron,1995, 14:1517.
    [13]Matveets MA, Shcherbov DP, Akhmetova SD. Study of spectrophotometric and luminescence properties of hydroxyxanthene dyes in aqueous solution. Zhurnal Analiticheskoi Khimii,1979, 34(16):1049-1054.
    [14]Mchedlov-Petrossyan N O, Mayorge R S. Extraordinary character of the solvent influence on protolytic equilibria:inversion of the fluorescein ionization constants in H2O-DMSO mixtures. Journal of the Chemical Society Faraday Transactions,1992,88:3025-3032.
    [15]陈国珍,黄贤智,郑朱梓荧光分析法.北京:科学出版社,1990,199.
    [16]Rocchiccioli-Deltcheff C, Founoer M, Franck R. Vibrational investigations of polyoxometalates.2.evidence for anion-anion interactions in molybdenum (VI) and tungsten(VI) compounds related to the keggin structure. Inorganic Chemistry,1983,22: 207-216.
    [17]中华人民共和国农业部1163公告-8-2009.
    [18]柳士忠,王恩波,许林.希土元素1:12系列杂多配合物的氧化还原性和稳定性质研究.无机化学学报,1994,10(1):40-46.
    [19]Keggin JF. Nature,1933,131:908.
    [20]An LX, Liu SP, Liu ZF, Kong L, Hu XL. Resonance Rayleigh scattering for the determination of chlorpromazine and promethazine. Australian Journal of Chemistry,2006,59:915-920.
    [21]刘绍璞,胡小莉,刘忠芳,李明,王芬.用共振Rayleigh散射光谱研究盐酸氯丙嗪和盐酸异丙嗪与核酸相互作用.中国科学,2005,35(4):312-319.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700