ZSM‐5分子筛的合成、表征及MTO反应性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低碳烯烃(乙烯、丙烯和丁烯)是重要的石油化工基础原料。目前,其主要来源于以石油为原料的蒸汽裂解和催化裂化工艺。随着石油资源的日趋减少和石油价格的不断攀升,开发非石油基的低碳烯烃生产技术已是大势所趋。甲醇转化制低碳烯烃(MTO)技术和甲醇转化制丙烯(MTP)技术是我国石油化工行业的战略选择,具有巨大的发展潜力。
     本文以粗孔微球硅胶和硅溶胶作为双硅源,成功合成出了ZSM-5分子筛。随着硅源中硅溶胶比例的增加,分子筛的硅铝比逐渐升高,说明在合成ZSM-5分子筛时,硅溶胶作为硅源的利用率更高。
     实验发现:不同添加剂对ZSM-5分子筛合成的影响差别很大。NaF使ZSM-5分子筛的晶体形貌发生明显变化,生成了较多的50nm左右厚度薄片的聚集体。KCl和NH4F对ZSM-5分子筛的合成产生强烈的抑制作用。少量NaCl可以减小ZSM-5晶粒尺寸,过量则会增大其尺寸。N-甲基吡咯烷酮和甘油可以促进ZSM-5形成大晶体,其中加入甘油作为添加剂,可以合成出55μm大小的晶体。
     微米、纳米ZSM-5的MTO反应性能结果表明:常规钠型ZSM-5分子筛基本没有强酸性位,催化甲醇转化为低碳烯烃的活性非常低;低硅铝比的微米H-ZSM-5分子筛和纳米H-ZSM-5分子筛均具有高的MTO反应活性,但低碳烯烃选择性较低;氟硅酸铵改性可以大幅提高纳米HZSM-5分子筛的硅铝比,增大其外比表面积,同时使低碳烯烃选择性得到显著提高。
     此外,本文合成的一种大晶粒、低钠含量的钠型ZSM-5分子筛,具有较多的强酸性位,不需经过铵交换即可具有很高的MTO反应活性。随分子筛硅铝比的升高,分子筛的酸性下降,低碳烯烃选择性升高。经过铵交换以后,分子筛的钠含量明显下降,酸性有所增强,乙烯选择性升高,丙烯和丁烯选择性下降。
     磷改性和正硅酸乙酯沉积改性均可以提高ZSM-5分子筛的低碳烯烃选择性,其中磷改性Na-ZSM-5分子筛的丙烯选择性可以升高到44.2%。
     总之,强酸性位是MTO反应的活性中心,适宜强酸量和大外表面积的ZSM-5分子筛有利于MTO反应。
Light olefins(ethylene、propylene and butylene)are very important basic feedstocks of petrochemical industry. Olefins are traditionally produced from petroleum feedstock by steam and catalytic cracking processes. With the decrease of oil resources and the rise in oil prices, it is a trend to develop non-petroleum based technologies to produce olefins. Methanol to olefins (MTO) and methanol to propylene (MTP) processes are the strategy choices of Chinese petrochemical industry and have great potential in development and application.
     ZSM-5 zeolite was synthesized successfully using silica gel microspheres and silicon sol as double silicon source in this paper. As the proportion of silicon sol in the silicon source increased, the Si/Al ratio of obtained ZSM-5 zeolite increased. Results indicated that the utilization ratio of silicon sol was higher than silica gel microspheres in the synthesis of ZSM-5 zeolite.
     It was found that effects vary greatly according to different additives on the synthesis of ZSM-5 zeolite. Crystal morphologies were strongly influenced by the addition of NaF and many aggregates made up of sheets with the thickness of 50nm were produced. KCl and NH4F restrained the formation of ZSM-5 zeolite. A small amount of NaCl could decrease the crystal size of ZSM-5 zeolite, while the size increased when excessive NaCl was added. N-Methyl pyrrolidone and glycerol were beneficial to promote the crystal size of ZSM-5 zeolite and ZSM-5 zeolite with crystal size of 55μm was obtained when glycerol was used as additive.
     Catalytic performances of commercial ZSM-5 zeolite with micro size and nano size for the MTO reaction indicated that there were few strong acid sites for conventional Na-ZSM-5 and its reactivity for MTO reaction was very low. Microsize and nanosized H-ZSM-5 both showed high activity toward MTO reaction, while their selectivities to olefins were very low. Si/Al ratios of nanosized H-ZSM-5 could be enhanced greatly and the external surface areas were also increased by ammonium hexafluorosilicate modification, so the selectivity toward olefins was also increased greatly.
     Moreover, one type of Na-ZSM-5 with large partical size and low Na content was synthesized in this paper, it possessed lots of strong acid sites. This new type of Na-ZSM-5 exhibited high MTO activity without ammonium exchange. As the Si/Al ratio of Na-ZSM-5 increased, the acidity decreased and the selectivity to olefins increased. After ammonium exchange, the Na content decreased notably and the acidity was strengthened, the ethylene selectivity increased and the selectivity to propylene and butylene both decreased.
     Selectivity to olefins was increased by phosphorus modification and ethyl orthosilicate deposition modification, the selectivity to propylene was increased to 44.2% by using phosphorus modified Na-ZSM-5 as catalyst.
     In conclusions: strong acid sites are the active centers to catalyse MTO reaction, ZSM-5 zeolite with the proper amount of strong acid sites and large external specific surface area is beneficial for the MTO reaction.
引文
[1]徐如人,庞文琴.沸石分子筛与多孔材料化学[M],科学出版社,北京, 2004: 46-47, 250-251.
    [2]林世雄.石油炼制工程(第三版)[M],石油工业出版社,北京, 2006: 344.
    [3] Walter L. H., Frank J. D. Zeolite catalyst and preparation[P]. US3663165. 1972.
    [4]孙书红,马建泰,庞新梅,等.高岭土微球合成ZSM-5沸石及其催化裂化性能[J].硅酸盐学报, 2006, 34(6): 757-761.
    [5] Sun S.H, Ma J.T, Gao X.H. Synthesis of ZSM-5 on kaolin microspheres in the absence of an organic amine template[J]. Clay Minerals, 2007, 42: 203-211.
    [6] Rosinski, Edward Joseph. Process for preparing discrete, zeolite-containing particles[P]. EP 0156595, 1985.
    [7] Xu M T, Macaoay J. In-situ ZSM-5 Synthesis[P]. US 0181933, 2005.
    [8]冯会,李春义,山红红.以苏州高岭土为原料合成ZSM-5分子筛[J].炼油技术与工程, 2008, 38(1): 50-54.
    [9]冯会,李春义,山红红.晶化时间对高岭土微球上ZSM-5沸石的原位合成及其催化性能的影响[J].石油学报(石油加工), 2008, 4(4): 438-445.
    [10]王有和,李翔,刘欣梅,等.高岭土微球上无胺法ZSM-5的原位合成[J].无机化学学报, 2009, 25(3): 533-538.
    [11] Y. Cheng, Lian-Jun Wang, Jian-Sheng Li, et al. Preparation and characterization of nanosized ZSM-5 zeolites in the absence of organic template[J]. Materials Letters, 2005, 59: 3427-3430.
    [12]王科,许智芳,张淑珍,等. ZSM-5分子筛合成研究[J].江苏化工, 2008, 36(5): 19-22.
    [13] Shin Dong Kim, Si Hyun Noh, Jun Woo Park, et al. Organic-free synthesis of ZSM-5 with narrow crystal size distribution using two-step temperature process[J]. Microporous and Mesoporous Materials, 2006, 92: 181-188.
    [14] Q.Li,D.Creaser,J.Sterte. The nucleation period for TPA-silicalite-1 crystallization determined by a two-stage varying-temperature synthesis[J]. Microporous andMesoporous Materials, 1999, 31: 141-150.
    [15] Landau M V, Zaharur N, Herskowitz M. Silica-supported small crystals of ZSM-5 zeolite[J]. Applied Catalysis A: General, 1994, 115: L7-L14.
    [16] Stephen J. Miller. Method for making ZSM-5 zeolites[P]. US 6261534, 2001.
    [17]王殿中,刘冠华,何鸣元,等.一种晶态二氧化硅分子筛的合成方法[P]. CN1057976C, 2000.
    [18]王殿中,刘冠华,舒兴田,等.一种高硅ZSM-5分子筛的合成方法[P]. CN1057066C, 2000.
    [19]王殿中,舒兴田,何鸣元.硅源对合成高硅ZSM-5分子筛的影响[J].石油炼制与化工, 2002, 33(6): 16-18.
    [20] FENG Hui, CHEN Yan-hong, LI Chun-yi, et al. In-situ synthesis of ZSM-5 on silica gel and studies on its catalytic activity[J]. J Fuel Chem Technol, 2008, 36(2): 144-150.
    [21] Bibby D M , Dale M P. Synthesis of silica-sodalite from non-aqueous systems[J]. Nature, 1985, 317: 157.
    [22] Kanno N, Miyake M, Sato M. Syntheses of ferrierite, ZSM-48, and ZSM-5 in glycerol solvent[J]. Zeolites, 1994, 14: 625-630.
    [23] E. Narita. A kinetic study of the crystallization of zeolite ZSM-5 in organic solvent/water mixture systems[J]. Journal of Crystal Growth, 1986, 78: 1-8.
    [24]霍启升,冯守华,徐如人.非水介质中全硅沸石分子筛合成的研究全硅方钠石和全硅ZSM-39的晶化[J].化学学报, 1990, 48: 639-643.
    [25] Alex kuperman, Susan Nadimi, Scott Oliver et al. Non-aqueous synthesis of giant crystals of zeolites and molecular sieves[J], Letters to Nature, 1993, 365(6443): 239-242.
    [26]高敏,刘春燕,王刃,等.在含乙醇的硅铝凝胶中合成ZSM-5沸石[J].化学通报, 2009, 12: 1097-1103.
    [27] Reda M. Mohamed, Hisham M. Aly, Mohamed F. El-Shahat, et al. Effect of the silica sources on the crystallinity of nanosized ZSM-5 zeolite[J]. Microporous and Mesoporous Materials, 2005, 79: 7-12.
    [28] O.A. Fouad, R.M. Mohamed, M.S. Hassan, et al. Effect of template type andtemplate/silica mole ratio on the crystallinity of synthesized nanosized ZSM-5[J]. Catalysis Today, 2006, 116: 82-87.
    [29] Nan Ren, Zhi-Jian Yang, Xin-Chun Lv, et al. A seed surface crystallization approach for rapid synthesis of submicron ZSM-5 zeolite with controllable crystal size and morphology[J]. Microporous and Mesoporous Materials, 2010, 131: 103-114.
    [30] ShiralkarV P, Joshi P N, Eapen M J, et al. Synthesis of ZSM-5 with Variable Crystallite Size and its Influence on Physicochemical Properties[J]. Zeolites, 1991, 11(5): 511-516.
    [31] Shiyun Sang, Fuxiang Chang, Zhongmin Liu, et al. Difference of ZSM-5 zeolites synthesized with various templates[J]. Catalysis Today, 2004, 93-95: 729-734.
    [32]邢淑建,项寿鹤.小晶粒丝光沸石合成的研究[J].分子催化, 2006, 20(3): 273-275.
    [33] Na Young Kang, Bu Sup Song, Chul Wee Lee, et al. The effect of Na2SO4 salt on the synthesis of ZSM-5 by template free crystallization method[J]. Microporous and Mesoporous Materials, 2009, 118: 361-372.
    [34]程志林,晁自胜,林海强,等.碱金属盐对ZSM-5分子筛晶化的影响[J].无机化学学报, 2003, 19(4): 396-400.
    [35]刘明,项寿鹤.不同形貌和晶粒大小ZSM-5分子筛合成的研究[J].石油学报(石油加工), 2001, 17(2): 24-29.
    [36] Antoinette Lombard, Angélique Simon-Masseron, Loic Rouleau, et al. Synthesis and characterization of coreshell Al-ZSM-5silicalite-1 zeolite composites prepared in one step[J]. Microporous and Mesoporous Materials, 2010, 129: 220-227.
    [37] R. Aiello, F. Crea, E. Nigro et al. The influence of alkali cations on the synthesis of ZSM-5 in fluoride medium[J]. Microporous and Mesoporous Materials, 1999, 28: 241-259.
    [38] Beno?t Louis, Lioubov Kiwi-Minsker. Synthesis of ZSM-5 zeolite in fluoride media: an innovative approach to tailor both crystal size and acidity[J]. Microporous and Mesoporous Materials, 2004, 74: 171-178.
    [39] Changlu Shao, Xiaotian Li, Shilun Qiu et al. Size-controlled synthesis of silicalite-1 single crystals in the presence of benzene-1,2-diol[J]. Microporous and Mesoporous Materials, 2000, 39: 117-123.
    [40]李玉芳,伍小明.国内外乙烯工业现状及发展趋势[J].中国石油和化工经济分析, 2007, 19: 56-61.
    [41]孙可华.国内外丙烯生产及供需分析[J].石油化工设计, 2004, 21(1): 25-29.
    [42]刘王呈,范楼珍.通过《BP世界能源统计2008》解读中国能源状况[J].应用能源技术, 2009, 2: 1-5.
    [43]温鹏宇,梅长松,刘红星.甲醇分压和ZSM-5晶粒大小对甲醇制丙烯的影响[J].化学反应工程与工艺, 2007, 23(6): 481-486.
    [44]崔飞,张璐璐,李建青.改性HZSM-5催化剂用于MTP反应的研究[J].天然气化工, 2008, 33(4): 13-16.
    [45]刘红星,谢在库,张成芳,等.甲醇制烯烃(MTO)研究新进展[J].天然气化工, 2002, 27(3): 49-56.
    [46]赵毓璋,景振华.甲醇制烯烃催化剂及工艺的新进展[J].石油炼制与化工, 1999, 30(2): 23-28.
    [47] Stocker M. Methanol-to-hydrocarbons: catalytic materials and their behavior[J]. Microporous and Mesoporous Materials 1999, 29(1-2): 3-48.
    [48] Leonardo Travalloni, Alexandre C.L. Gomes, Alexandre B. Gaspar, et al. Methanol conversion over acid solid catalysts. Catalysis Today, 2008, 133-135: 406-412.
    [49] M. Firoozi, M.Baghalha, M.Asadi. The effect of micro and nano particle sizes of H-ZSM-5 on the selectivity of MTP reaction[J]. Catalysis Communications, 2009, 10: 1582-1585.
    [50]温鹏宇,梅长松,刘红星. ZSM-5硅铝比对甲醇制丙烯反应产物的影响[J].化学反应工程与工艺, 2007, 23(5): 385-390.
    [51]王志彦,李金来.不同硅铝比HZSM-5分子筛催化剂上甲醇制丙烯反应催化性能[J].化学反应该工程与工艺, 2008, 24(5): 440-444.
    [52]刘烨,虞贤波,廖祖维,等.长链阳离子表面活性剂对ZSM-5结构及其甲醇制烯烃反应性能的影响[J].石油学报(石油加工), 2010, 26(5): 767-772.
    [53] Ho-Jeong Chae, Young-Ha Song, Kwang-Eun Jeong, Chul-Ung Kim, Soon-Yong Jeong. Physicochemical characteristics of ZSM-5/SAPO-34 composite catalyst for MTO reaction[J]. Journal of Physics and Chemistry of Solids, 2010, 71: 600-603.
    [54] Liu Ye, Yu Xian bo, Qin Lei, et al. In-situ Synthesis of ZSM-5 Zeolite from Metakaolin/Spinel and Its Catalytic Performance on Methanol Conversion[J]. China Petroleum Processing and Petrochemical Technology, 2010, 12(1): 23-28.
    [55] Changsong Mei, Pengyu Wen, Zhicheng Liu, et al. Selective production of propylene from methanol: Mesoporosity development in high silica HZSM-5[J]. Journal of Catalysis, 2008, 258: 243-249.
    [56] Svetlana Ivanova, Charline Lebrun, Estelle Vanhaecke, et al. Influence of the zeolite synthesis route on its catalytic properties in the methanol to olefin reaction[J]. Journal of Catalysis, 2009, 265: 1-7.
    [57] Teng Xu, Jeffrey L.White.Production of light olefins from oxygenate using framework gallium-containing medium pore molecular sieve. US, 0018231 A1[P]. 2003.
    [58]毛东森,郭强胜,孟涛,等.水热处理对纳米HZSM-5分子筛酸性及催化甲醇制丙烯反应性能的影响[J].物理化学学报, 2010, 26(2): 338-344.
    [59]武传昌,李汉昆,顾良证. ZSM-5沸石的有效孔径对甲醇转化反应中低碳烯烃选择性的影响[J].南京大学学报, 1990, 26(1): 70-76.
    [60] Jeongnam Kim, Minkee Choi, Ryong Ryoo. Effect of mesoporosity against the deactivation of MFI zeolite catalyst during the methanol-to-hydrocarbon conversion process[J]. Journal of Catalysis, 2010, 269: 219-228.
    [61] Peng Li, Weiping Zhang, Xiuwen Han, et al. Conversion of Methanol to Hydrocarbons over Phosphorus-modified ZSM-5/ZSM-11 Intergrowth Zeolites[J]. Catal Lett, 2010, 134: 124-130.
    [62] Yun-Jo Lee, Ye-Won Kim, Nagabhatla Viswanadham, et al. Novel aluminophosphate (AlPO) bound ZSM-5 extrudates with improved catalytic properties for methanol to propylene (MTP) reaction[J]. Applied Catalysis A:General, 2010, 374: 18-25.
    [63] Jian Liu, Chenxi Zhang, Zhenhao Shen, et al. Methanol to propylene: Effect of phosphorus on a high silica HZSM-5 catalyst[J]. Catalysis Communications, 2009, 10: 1506-1509.
    [64] Tian-Sheng Zhao, Tomokazu Takemoto, Noritatsu Tsubaki. Direct synthesis of propylene and light olefins from dimethyl ether catalyzed by modified H-ZSM-5[J]. Catalysis Communications, 2006, 7: 647-650.
    [65] Tian-Sheng Zhao, Tomokazu Takemoto, Yoshiharu Yoneyama, et al. Selective Conversion of Dimethyl Ether to Propylene and Light Olefins over Modified H-ZSM-5[J]. Chemistry Letters, 2005, 34(7): 970-971.
    [66]张飞,姜健准,张明森.甲醇制低碳烯烃催化剂的制备与改性[J].石油化工, 2006, 35(10): 919-923.
    [67]刘克成,李玉玲. MgO改性HZSM-5催化剂上甲醇制烯烃反应性能研究[J].南阳师范学院学报, 2007, 6(3): 33-34.
    [68] Suhong Zhang, Bianling Zhang, Zhixian Gao, et al. Ca modified ZSM-5 for high propylene selectivity from methanol[J]. Reac Kinet Mech Cat, 2010, 99: 447-453.
    [69] Adnan M. Al-Jarallah, Usman A. El-Nafaty, Mohamed M. Abdillahi. Effects of metal impregnation on the activity, selectivity and deactivation of a high silica MFI zeolite when converting methanol to light alkenes[J]. Applied Catalysis A: General, 1997, 154: 117-127.
    [70]郭强胜,毛东森,劳嫣萍,等.氟改性对纳米HZSM-5分子筛催化甲醇制丙烯的影响[J].催化学报, 2009, 30(12): 1248-1254.
    [71]白尔铮,金国林.甲醇制烯烃(MTO)和MTP工艺[J].化学世界, 2003, 12: 674-677.
    [72]齐国祯,谢在库,钟思青,等.煤或天然气经甲醇制低碳烯烃工艺研究新进展[J].现代化工, 2005, 25(2): 9-13.
    [73]王平尧.甲醇制烯烃技术进展及其对国内烯烃工业的影响刍议[J].化肥设计, 2008, 46(2): 13-16.
    [74]王天雁.甲醇制烯烃技术状况与发展趋势预测分析-MTO部分[J].科技咨询, 2009, 2: 2.
    [75]胡玉梅.甲醇制丙烯技术应用前景及装置建设相关问题探讨[J].国际石油经济, 2005, 13(9): 45-49.
    [76]钱伯章.鲁奇甲醇制烯烃技术被大唐和神华集团选用[J].化学反应该工程与工艺, 2007, 23(1): 71.
    [77]煤气化合成甲醇生产丙烯的组合技术[J].化工进展, 2009, 28: 702.
    [78]王垚,魏飞,钱震,等.流化床催化裂解生产丙烯的方法及反应器[P]. CN1962573A. 2007
    [79]谢在库等著.新结构高性能多孔催化材料[M],中国石化出版社,北京, 2009: 3.
    [80]赵国良,滕加伟,谢在库,等.氟硅酸铵改性的HZSM-5催化剂的表征及其碳四烯烃裂解催化性能[J].催化学报, 2005, 26(12): 1083-1087.
    [81]毛东森,夏建超,陈庆龄,等.氟硅酸铵改性对HMCM-22酸性及双功能催化剂催化合成二甲醚性能的影响[J].催化学报, 2008, 29(12): 1242-1246.
    [82]何农跃,曹洁明,鲍书林,等. (NH4)2SiF6处理对KL沸石孔分布的影响[J].催化学报, 1997, 18(3): 254-256.
    [83]龙化云,王祥生,孙万付,等.脱铝方法对纳米HZSM-5物化性能的影响[J].石油学报(石油加工) , 2009, 25(3): 332-338.
    [84]刘红星,谢在库,张成芳,等. MTO反应中乙烯、丙烯比的变化规律[J].石油化工, 2004, 33(增刊): 1532-1533.
    [85] Yong Tae Kim, Kwang-Deog Jung, Eun Duck Park. Gas-phase dehydration of glycerol over ZSM-5 catalysts[J]. Microporous and Mesoporous Materials, 2010, 131: 28-36.
    [86]朱洪法.催化剂载体制备及应用技术[M].北京:石油工业出版社. 2002: 512-540.
    [87]甄开吉等著.催化作用基础[M],科学出版社,北京, 2005: 249-250.
    [88] Lercher J A, Rumplmyr G. Controlled decrease of acid strength by orthophosphoric acid on ZSM-5[J]. Applied Catalysis, 1986, 25: 215-222.
    [89]乐英红,唐颐,高滋.化学液相沉积法精细调变沸石孔径.[J].石油学报(石油加工), 1997, 13(1): 30-35.
    [90]徐青,乐英红.化学液相沉积与沸石择形催化性能[J].催化学报, 1998, 19(4): 349-353.
    [91] Zheng S, Heydenrych H R, R?ger H P, et al. On the enhanced selectivity of HZSM-5 modified by chemical liquid deposition[J]. Topics Catal, 2003, 22(1/2): 101-107.
    [92] Yue Y H, Tang Y, Gao Z. Chemical Liquid Deposition Zeolites with Controlled Pore-Opening Size and Shape~Selective Separation of Isomers[J]. Ind Eng Chem Res, 1996, 35: 430-33.
    [93] Weiguo Song, David M. Marcus, Hui Fu, et al. An Oft-Studied Reaction That May Never Have Been: Direct Catalytic Conversion of Methanol or Dimethyl Ether to Hydrocarbons on the Solid Acids HZSM-5 or HSAPO-34[J]. J. AM. CHEM. SOC. 2002, 124: 3844-3845.
    [94] JAMES F. HAW, WEIGUO SONG, DAVID M. MARCUS, et al. The Mechanism of Methanol to Hydrocarbon Catalysis[J]. Acc. Chem. Res. 2003, 36: 317-326.
    [95] Ivar M. Dahl. On the reaction mechanism for propene formation in the MTO reaction over SAPO-34. Catalysis Letters, 1993, 20: 329-336.
    [96] Ivar M. Dahl. Stein Kolboe. On the reaction mechanism for hydrocarbon from methanol over SAPO-34[J]. Journal of Catalysis, 1994, 149: 458-464.
    [97] Morten Bj?rgen, Stian Svelle, Finn Joensen, et al. Conversion of methanol to hydrocarbons over zeolite H-ZSM-5:On the origin of the olefinic species[J]. Journal of Catalysis, 2007, 249: 195-207.
    [98] Stian Svelle, Finn Joensen, Jesper Nerlov, et al. Conversion of Methanol into Hydrocarbons over Zeolite H-ZSM-5: Ethene Formation Is Mechanistically Separated from the Formation of Higher Alkenes[J]. J. AM. CHEM. SOC. 2006, 128: 14770-14771.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700