熔炼煤性质对COREX流程的影响及流程优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在焦煤资源日趋缺乏的今天,COREX流程使用非焦煤资源作为主体燃料,从根本上改善了炼铁工业的能源结构,其优势日渐显著。COREX是唯一实现工业化的熔融还原流程,为中国钢铁行业的可持续性发展带来了机遇。
     由于发展史较短,目前的COREX流程具有宽广的发展和完善空间。COREX的主要问题有两个,其一是煤耗过高,其二是仍需使用一定比例的焦炭,以补充有效热值和形成含碳固定床。这些问题使国内许多对COREX流程感兴趣的企业望而却步。
     我国在非焦煤资源上占有一定优势,贮量大,选择范围广。基于此原因,希望通过熔炼煤性质研究,找到降低煤耗与能耗的有效措施。
     采用还原竖炉热模型确定了实验室条件下的最佳还原周期,最终测试了还原气利用率,并推导其理论公式;使用高温可调气氛抗压实验机测试煤的热稳定性;经工业分析测得熔炼煤及矿石成分,并通过计算得到相应有效热值、煤气成分与熔炼热。通过对以上指标及其关系研究,得到流程优化的关键是还原气供求平衡,并确定此条件下的金属化率。
     经研究得知,熔炼煤的性质对COREX流程的影响至关重要。使用有效热值适当的熔炼煤可以降低COREX流程的煤耗;选用热稳定性高的煤种可以避免使用焦炭;还原气供求平衡时,整个流程的净能耗降至最低,流程得以优化。
     通过对熔炼煤性质的研究,找到了降低流程煤耗与净能耗的有效措施,并为COREX熔炼煤的选择提供较高的参考价值。
Charred coal storage has been short for recent years. Meantime, COREX process has been famous with usage of normal coal. It changes energy arrangement in iron-making process. It is the only one of smelting and reduction processes which has been industrialized.
     Now, COREX is still a potential and developing process. There are two main problems in the process. Coal consumption of COREX is too much and coke is still used to supply effective calorific value of coal and form a fix bed with carbon. So corporations inland are cautious about COREX process.
     Coal storage in our country is rich. So, a research on coal properties was carried out to find an effective way to decrease energy consumption in COREX process.
     A simulating reductive shaft was used to find the best reduction cycle. Reductive gas utilization ratio and its theoretic formula were got from experiment. A high temperature compression resistive machine was used to test heat stability of coal. Components of smelting coal and iron ore were got from technical analysis. Effective calorific value of coal,component of reductive gas and smelting heat of ore were calculated from the analysis. From researching on relationships between above all, it was proved that the balance of gas needing and supplying was the key to COREX process optimization. At the balance, metallization ratio could be confirmed.
     From research, it was proved that smelting coal properties were important to COREX process. Proper effective calorific value of coal could decrease coal consumption. Smelting coal with high heat stability could avoid coke usage. Energy consumption was minimized at the balance of gas needing and supplying.
     An effective method was found to decrease coal and energy consumption from research. It could be valuable reference for selecting smelting coal in COREX process.
引文
[1] 方觉. 熔融还原与直接还原[M]. 沈阳:东北大学出版社,1996:50
    [2] 方觉. 非高炉炼铁工艺与理论[M]. 北京:冶金工业出版社,2001:87
    [3] 王定武. 熔融还原炼铁技术的新发展[J]. 马钢技术,2005(5):48~49
    [4] 周谕生.非高炉炼铁工艺的现状及其发展[J]. 世界钢铁,1997(2):9~10
    [5] 李维国,钱晖,周渝生等. 熔融还原技术方案探讨[J]. 世界钢铁,2005(1):13~15
    [6] 张汉泉,朱德庆. 熔融还原的现状及今后的发展方向[J]. 钢铁研究,2001(5):32~35
    [7] 金咸栋.选择非高炉炼铁工艺[J]. 钢铁,1998(4):9~12
    [8] 吴俐俊,宋灿阳. 熔融还原炼铁工艺现状[J]. 马钢技术,2001(1):56~57
    [9] 史占彪. 非高炉炼铁学[M]. 沈阳:东北工学院出版社,1991:60
    [10] 杨天均,黄典冰,孔令坛. 熔融还原[M]. 北京:冶金工业出版社,1998:95
    [11] 陈炳庆,张瑞样,刷淘生. COREX熔融还原炼铁技术[J]. 钢铁,1998(2):10~13
    [12] 陈炳庆. COREX 熔融还原炼铁技术[J]. 钢铁,1998(2):l0~l3
    [13] 车荫昌,梁连科,杨怀. 冶金热力学及动力学[M]. 沈阳:东北大学出版社,1990:106
    [14] 王筱留. 钢铁冶金学[M]. 北京:冶金工业出版社,2000:159
    [15] 方觉,王志荣. COREX 流程优化实验研究[J]. 沈阳:东北大学学报. 1995(3):18~21
    [16] 方觉,吕庆,陈炳庆. COREX 竖炉还原热模拟实验研究[J]. 钢铁. 1996(7):59~64
    [17] 梁英教. 无机物热力学数据手册[M]. 沈阳:东北大学出版社,1993:56
    [18] 方觉. 流化床铁矿石还原的粘结失流机理[J]. 钢铁,1991(5):11~15
    [19] J.Fang. Sticking Probleme im Fluidatbett fur Smeltzreduktion[D]. Aachen:RWTH Aachen,1988:21~25
    [20] 方觉,陈满贵. 熔融还原流程优化实验研究[J]. 钢铁,1997(2):14~18
    [21] 储满生,方觉. 循环流化床铁矿石直接还原动力学[J]. 东北大学学报. 2002(1):21~25
    [22] 方觉,储满生. 矿煤混合流化床还原反应[J]. 东北大学学报. 2000(1):62~67
    [23] 李永全. COREX 熔融气化炉炉衬结构的选择[J]. 宝钢技术,1994(4):23~29
    [24] 杨天钧,刘述临. 熔融还原技术[M]. 北京:冶金工业出版社,1991:56
    [25] 封常福. POSCO 的 FINEX 工艺技术[J]. 山东冶金,2004(8):21~23
    [26] 周传典. FINEX 能否代替高炉[J]. 世界钢铁,2004(4):34~36
    [27] 陈淑芳. COREX 熔融还原技术经济指标分析评价和在中国应用的可能性研究[D]. 北京:北京科技大学,1999:32~54
    [28] Goldsworthy T. HIsmelt 一未来的炼铁工艺[C]. 中国炼铁年会论文集. 北京:冶金出版社,2003,604~610
    [29] (奥)K.Wieder 等. COREX 和 FINEX 炼铁新工艺[J]. 世界钢铁,2005(1):21~25
    [30] Steffen R,Lungen. State of the art technology of direct and smelting reduction of iron ores. Revue de Metallurgie. Cahiers D’Informations Techniques[J],2004(3):171~182
    [31] K Wieder,C Bohm. Confronting the Coke Shortage with the COREX and FINEX technology. BHM Berg und Huttenmannische Monatshefte[J],2004(11):379~384
    [32] 王净. 常规高炉流程和 COREX 流程的比较[J]. 钢铁技术,2004(4):35~37
    [33] 朱孔林. 用 COPREX 技术淘汰二次化铁炼钢的可能性[J]. 上海金属,1999(6):8~15
    [34] 金焱,甘宅平. 大型钢铁联合企业应用COREX工艺的探讨[J]. 上海金属,2004(3):57~60
    [35] 杨天钧. 炼铁新流程的进展[C]. 全国炼铁生产技术暨炼铁年会文集,2004:180~195
    [36] 刘浏. 熔融还原炼铁新工艺的发展与展望[C]. 钢铁工业的前沿技术. 2000:112~126
    [37] 杜挺,杜昆. 含碳球团-铁浴熔融还原法关键技术的应用基础研究[J]. 钢铁,1997(2):14~18
    [38] 李久,毕学工(武汉冶金科技大学). 关于熔融还原最佳还原度计算公式的讨论[J]. 烧结球团,1996(6):25~28
    [39] 朱凯荪,李卫国. “析碳-流化-铁浴”熔融还原法中物料,热量平衡及能量分析[J].华东冶金学院学报,1996(1):55~60
    [40] (日)北川融. 熔融还原炼铁法开发的现状[J]. 现代冶金,2003(2):11~14
    [41] TawaraY, ShiraishiT, OneH, etal. Research and Development of Melting Process for Municipal Waste. 新日铁技报. 1996:25~29
    [42] Hasegauash, KoKubuH, HaraT. Development of Smelting Reduction Process for Recycling Steel making Dust. 川崎钢铁技报. 1997(1):51~54
    [43] Tsuge O. Successful Iron Nuggets Production at ITmk3 Pilot Plant[C]. Iron making Proceedings, 2002:511~519
    [44] H.Wiesinger, A.Eberk, D.Siuka. COREX工艺的运行现状、已实现的改进与未来的潜力[J]. 上海宝钢工程设计. 2002(4):89~95
    [45] 马擎侈. COREX 技术的进展及对海南钢铁项目的适用性[J]. 海南矿冶,1996(3):1~6
    [46] Boom R,Zonneveld P,Parker J. 南非钢铁公司完善了 COREX 炼铁工艺[J]. Steel times International,1990(9):8~12
    [47] E.Selvatoreeta1. Effect of coal and coke qualities on blast furnace injection and productivity at Taranto. Iron making conference proceedings[J],1995:61~70
    [48] P Pichestapong,Y K Rao. Modelling of the COREX hot metal process. Challenges in Process Intensification[J],1996:67~83
    [49] Gudenau H. W. Reduktionsverfahren ausserhalb des Hochofens[D]. Aachen: RWTH Aschen,1985:23~27
    [50] Smoot L.D.,Pratt D.T. 煤粉燃烧与气化 [M]. 北京:清华大学出版社,1983:54
    [51] UeboK. Development of New Coke making Process. SCOPE21[C]. Iron making proceedings,2004:589~598
    [52] 刘云彩. 高炉强化方法[J]. 钢铁,2003(9):4~8
    [53] Gudenau H.w..Spezielle eisenhuttenmannische Verfahrenstechnik[D]. Aachen:RWTH Aachen,1978:42~46
    [54] W.Kepplinger, W.Mschlankat, F.Wallner et al. The COREX process-development and further plans[C]. COREX symposium. 1990
    [55] 步学朋, 邓一英, 陈家仁. 热爆无烟煤热处理试验研究[J].洁净煤技术,1999:35~38
    [56] 刘云彩. 炼铁生产的过去、现在和未来[J]. 中国冶金,2005(3):
    [57] 陈炳庆,沈红标. 风口焦炭性状与高炉操作[J]. 钢铁,1996(4):61~63
    [58] Kunitomo K. Direct reduction in circulating fluidized bed [J]. Iron making conference proceeding,1989(48):11~12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700