中国特有小型猪内源性反转录病毒的检测与特性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于人源供体器官的短缺,人们希望借助异种移植来获得大量的组织/器官移植物,猪被选定为最合适的异种移植供体。然而,猪内源性反转录病毒(Porcine endogenous retrovirus, PERV)在体外能够感染多种人源细胞的发现,引起了人们对异种移植病原安全性的广泛关注,即带有PERV的猪细胞/组织/器官一旦植入处于高度免疫抑制的病人体内,是否可能突破种间屏障造成人源大流行?国际上要求对人类异种移植建立远期评估的呼声越来越高,有关PERV生物学特性的研究及对PERV的病原安全性进行评价成为一个新的热点。
     我国丰富的小型猪种资源有望为猪→人异种移植提供优良供体,目前已经开展异种移植的相关研究,人用转基因猪皮肤已经进入产业化阶段,但对PERV的研究尚未引起充分的重视。为了开发利用我国小型猪种资源,为异种器官移植受体提供安全可靠的供体器官,我们在前期研究的基础上,有必要深入开展PERV相关研究。一方面进一步了解我国小型猪种群中PERV的存在状况,为筛选PERV低拷贝猪奠定基础;另一方面研究我国小型猪内源性释放毒株的生物学特性,并探索嗜人性PERV感染人源细胞后产生的分子效应,为揭示PERV的潜在病理作用及进行异种移植的病原安全性评价打下基础。为此本研究主要进行了以下工作:
     (1)中国特有小型猪内源性反转录病毒拷贝数的检测
     设计并合成了检测PERV pol基因的引物,运用实时荧光定量PCR方法对中国特有小型猪基因组中整合的PERV拷贝数进行了系统检测,结果表明,五指山猪与巴马小型猪基因组中均可检测到pol基因的存在,五指山猪单细胞基因组中PERV的拷贝数为1.38±0.33至14.23±3.31之间,巴马小型猪单细胞基因组中PERV的拷贝数为2.96±0.76至58.46±3.50之间。统计学分析表明五指山猪与巴马小型猪单细胞基因组中PERV的拷贝数具有显著性差异,五指山猪基因组中整合的PERV拷贝数较低。
     五指山猪基因组中PERV的基因序列负荷较低,因此有希望通过选择性育种获得PERV低拷贝猪,在此基础上则易于进一步筛选出无完整PERV前病毒的小型猪个体,也易于通过基因敲除去除PERV,从而为异种移植提供合适供体。此外,基于SYBR Green I的PERV拷贝数的定量PCR检测方法,与Southern Blot检测拷贝数的方法相比具有明显的优越性,简便易行,可在短时间内检测大量样品,费用低廉,利于对猪群进行大规模筛选,既可用于实验用猪的病原安全性评价,也可用于异种移植后PERV存在与表达状况的监测。
     (2)五指山猪内源性反转录病毒前病毒全基因克隆与序列分析
     应用PCR技术将五指山猪内源性反转录病毒前病毒全基因分为两段进行扩增,然后构建前病毒全基因克隆,运用生物信息学方法对其序列进行分析,并与Genbank中收录的其他PERV全基因序列进行比对,在此基础上还进行了进化分析,构建了基于Env氨基酸序列的进化树。结果表明,五指山猪来源的PERV前病毒全长为8899bp,含有完整的gag、pol、env的ORF,两端为5’LTR与3’LTR两个长末端重复序列。序列比对分析发现PERV-WZSP与其他来源的PERV毒株高度相似但仍具有一定的差异性。进化分析结果表明PERV-WZSP与其他A亚型毒株属于同一分支,这与PCR分型鉴定的结果也相一致。此外,我们还发现该株PERV前病毒的5’LTR中有多个U3重复盒的存在,这可能会导致PERV-WZSP在宿主细胞中复制能力的增强;3’LTR中含有PERV-C亚型中的特异性序列,这将可能导致部分的PERV-C序列与PERV-A序列发生重组。然而,我们还需要进行更深入的研究来对这种推测进行验证。
     本研究有助于深入了解五指山猪内源性反转录病毒的分子生物学特性,并为下一步构建PERV感染性克隆奠定了良好基础。
     (3)嗜人性PERV感染人源细胞模型的构建与鉴定
     为了研究嗜人性PERV感染人源细胞后的分子效应并探索其可能的病理作用,我们首先构建并筛选具有较高反转录酶活性的PERV细胞感染模型。采用细胞共培养的方法,将五指山猪PBMC与HEK293细胞共培养24h后除去PBMC,建立五指山猪来源PERV的体外细胞感染模型。共培养后的HEK293细胞在形态、生长特性及折光性上与阴性对照HEK293细胞没有明显差异。
     为证实共培养后的HEK293细胞感染了PERV,采用了PCR方法检测共培养后HEK293细胞中PERV结构基因gag、pol、env的存在,采用RT-PCR检测gag、pol、env的mRNA的表达,采用Western Blot方法鉴定Gag蛋白的表达,进一步采用反转录酶活性检测实验筛选具有较高反转录酶活性的嗜人性PERV的人源细胞,结果表明共培养后第49天左右时反转录酶活性较高,于是提取此时的细胞总蛋白,用于下一步蛋白质组学分析。(4)嗜人性PERV感染人源细胞后的蛋白质组学分析PERV感染人源细胞后,细胞并不产生任何形态学的改变或生长状态的改变,为了揭示嗜人性PERV感染人源细胞后究竟产生了怎样的分子效应,并探索其是否具有与其他γ群反转录病毒类似的致病性,我们运用比较蛋白质组学方法从全细胞水平上对嗜人性PERV感染人源细胞后的蛋白质表达的变化进行研究。
     通过2-DE比较分析感染PERV的HEK293细胞与阴性对照HEK293细胞的总蛋白谱,采用高解析离子淌度质谱分析鉴定差异表达的蛋白,鉴定出10种差异表达蛋白,与对照相比,其中6个为上调蛋白,4个为下调蛋白。通过实时定量RT-PCR与Western Blot验证,证实差异表达结果可靠。这些差异蛋白参与信号转导、细胞凋亡、蛋白合成等生命过程,其中有数种蛋白与肿瘤的发生发展有关。该研究结果有望为深入研究嗜人性PERV与人源细胞的相互作用及PERV感染后的分子效应等提供一定的线索,也提示了PERV感染后可能会对细胞的生长、生理功能等造成影响,甚至存在潜在的致病性。本研究为研究PERV感染人源细胞后潜在的分子效应奠定了基础,对于异种移植中PERV的病毒安全性评价具有重要意义。
Xenotransplantation is considered to be a promising approach to alleviate the shortage of human donor organs. Pigs are selected as the most suitable animals. However, concerns regarding the microbial safety of xenotransplantation were raised when PERVs were shown to infect human cells in vitro. It is feared that xenotransplantation of porcine cells/tissue/organs to immunosupressed patients might cause cross-species infections of PERV and in a worst case scenario, the pandemic in the human community. It is necessary to establish long-term appraisal for the risk posed by PERV in xenotransplatation. Studies on PERV biology and potential for pathogenicity to increase our understanding of the risk in pig to human xenotransplantation have become a new research focus.
     Chinese miniature pigs are the potential organ donors for pig-to-human xenotransplantation. Studies on xenotransplantation have been carried out and transgenic porcine skin for pig to human xenotransplantation is in industrialization. However, so far, in China, an adequate level of information on PERV from Chinese miniature pigs has not been available. To expore the resourses of Chinese miniature pigs and to provide safe organ donors for xenotransplantation, it’s essential to do further studies on PERV on the basis of our previous studies. In this study, we intended to estimate copy numbers of PERV integrated in the host genome. This will be helpful for screening donor pigs with few copies of PERV and be beneficial for pig to human xenotransplantation. Besides, we intended to do studies on the characteristics of PERV from Chinese miniature pigs and tried to learn the molecular effect of human-tropic PERV on human cells. These studies will be helpful for revealing PERV potential pathogenesis and for the safety appraisal in xenotransplatation. The studies include the following:
     (1) Detection of copy numbers of porcine endogenous retrovirus from Chinese miniature
     The oligonucleotide primers used for real-time amplification of PERV were designed from the polymerase (pol) gene. Real-time PCR was performed to detect the copy numbers of PERV integrated in the host genome.The copy numbers of PERV from WZSP genomic DNA was in the range of 1.38±0.33 to 14.23±3.31, while the copy numbers of PERV from BMP genomic DNA was in the range of 2.96±0.76 to 58.46±3.50 (Table 3). The statistical analysis showed significant differences between these two breeds (P<0.01; Wilcoxon 2-Sample Test). The copy numbers of PERV from WZSP genomic DNA was less than that from BMP genomic DNA.
     The PERV sequence load was lower in the genome of WZSP. Thus WZSP with few copies of PERV could probably be screened by selecting breeding. Then miniature pigs without intact PERV proviruses could be screened and PERV might be knocked out. Thus the elimination of PERV could be achieved. Therefore, compared with other breeds, WZSP has the potential to be a favorable choice for xenotransplantation. In addition, compared with Southern Blot, the SYBR Green I-based real-time quantitative PCR assay described here provide a simple and rapid method for estimating copy numbers of PERV integrated in the genome and could be applied to do large-scale screening. It could be an excellent tool for screening donor pig and also be helpful for evidence of PERV transmission in clinical samples from human subjects treated with porcine xenotransplantation products.
     (2) Cloning and characterization of full-length proviral DNA of PERV from WZSP
     PERV provirus was amplified in two overlapping halves. 5’and 3’fragments were isolated, subcloned and fused to generate full-length proviral DNA using the unique restriction site within the overlap between 5’and 3’halves. Full-length nucleotide sequences of PERV-WZSP and other PERVs were aligned and phylogenetic tree was constructed from deduced amino acid sequences of env. The results indicated that the sequence of PERV-WZSP was 8,899 bp long. It had intact gag, pol, env ORFs flanking by two LTRs. Sequence alignment showed that PERV-WZSP had high similarities with PERV of other origins but differences still existed. Phylogenetic analysis indicated that PERV-WZSP belongs to the same branch with other PERV-A strains, which is consistent with the result of subtyping assay. In addition, the U3 region in 5’LTR contained three 39bp repeats which suggested that PERV of Chinese origin probably have potential capacity for increased replication in host cells. PERV-C specific sequence exited in 3’LTR of PERV-WZSP, thus suggested that partial PERV-C sequence may recombine with PERV-A sequence. Nevertheless, this implication need further study on characterization of LTR of PERV provirus from Chinese Wuzhishan miniature pigs inbred.
     This study is helpful for further understanding the characteristics of PERV-WZSP and also important for our further study of constructing infectious clones of PERV-WZSP.
     (3) Construction and identification of human cell model infected with human-tropic PERV
     To study the molecular effect of human-tropic PERV on human cells and explore its potential pathogenicity, we constructed human cell model infected with human-tropic PERV and screened the cells with higher RT activity. PBMCs from WZSP and HEK293 cell line were co-cultured for 24h, then PBMCs were eliminated. There was no obvious difference in the appearance, growth characteristics and refraction between HEK293 cells post coculture and HEK293 cells as control. Several assays were done to demonstrate that HEK293 cells were infected by human-tropic PERV post coculture.
     PCR was applied to detect the structural genes including gag, pol and env. RT-PCR was done to detect the expression of mRNA of gag, pol and env. Western Blot was done to detect Gag protein. Then RT activity assay was done to screen the infected cells with higher RT activity. The result indicated that RT activity reached the peak around the 49th day post coculture. Thus total protein of the cells around this day was prepared for the following analysis.
     (4) Proteomic analysis of human cells infected with human-tropic PERV Human cells didn’t show any difference in cell morphology and growth after infection by PERV. In order to reveal the molecular effect of human-tropic PERV on human cells, and to explore the potential pathogenic effects of human-tropic PERV which may be similar with other C-type retroviruses, proteomic analysis was done to study the differences of protein profile after infection of human cells by human-tropic PERV.
     The protein profiles of infected HEK293 cells and uninfected control were compared and analyzed by 2-DE. Ten differentially expressed proteins were identified by HDMS, including 6 upregulated proteins and 4 downregulated proteins. Real time RT-PCR and Western Blot were applied to confirm change of these proteins at the mRNA level and protein level, respectively. These differentially expressed proteins are closely related to signal transduction, cell apoptosis and protein synthesis. These identified proteins provide a number of clues and potential links to understanding the molecular effect of the infection by human-tropic PERV. This study will facilitate the appraisal of PERV in xenotransplantation.
引文
1. French AJ, Greenstein JL, Loveland BE, et al. Current and future prospects for xenotransplantation. Reprod Fertil Dev. 1998, 10(7-8):683-696.
    2. Sachs DH. The pig as a potential xenograft donor. Vet Immunol Immunopathol. 1994, 43(1-3):185-191.
    3. Taniguchi S, Cooper DK. Clinical xenotransplantation: past, present and future. Ann R Coll Surg Engl. 1997, 79(1):13-19.
    4. Leyh RG, Wilhelmi M, Walles T, et al. Acellularized porcine heart valve scaffolds for heart valve tissue engineering and the risk of cross-species transmission of porcine endogenous retrovirus. J Thorac Cardiovasc Surg. 2003, 126(4):1000-1004.
    5. Gu C, Wei X, Wang Y, et al. No infection with porcine endogenous retrovirus in recipients of acellular porcine aortic valves: a two-year study. Xenotransplantation. 2008, 15(2):121-128.
    6. Chiu T, Burd A. "Xenograft" dressing in the treatment of burns. Clin Dermatol. 2005, 23(4):419-423.
    7. Elliott RB, Escobar L, Garkavenko O, et al. No evidence of infection with porcine endogenous retrovirus in recipients of encapsulated porcine islet xenografts. Cell Transplant. 2000, 9(6):895-901.
    8. Louz D, Bergmans HE, Loos BP, et al. Reappraisal of biosafety risks posed by PERVs in xenotransplantation. Rev Med Virol. 2008, 18: 53-65.
    9. Yang YG, Sykes M. Xenotransplantation: current status and a perspective on the future. Nat Rev Immunol. 2007, 7(7):519-531.
    10. Cozzi E, White DJ. The generation of transgenic pigs as potential organ donors for humans. Nat Med. 1995, 1(9): 964-966.
    11. Patience C, Takeuchi Y, Weiss RA. Infection of human cells by an endogenous retrovirus of pigs. Nat Med. 1997, 3(3): 282-286.
    12. Heneine W, Tibell A, Switzer WM, et al. No evidence of infection with porcine endogenous retrovirus in recipients of porcine islet-cell xenografts. Lancet. 1998, 352(9129): 695-699.
    13. Paradis K, Langford G, Long Z, et al. Search for cross-species transmission of porcine endogenous retrovirus in patients treated with living pig tissue. The XEN ⅢStudy Group. Science. 1999, 285(5431):1236-1241.
    14. Garkavenko O, Croxson MC, Irgang M, et al. Monitoring for presence of potentially xenotic viruses in recipients of pig islet xenotransplantation. J Clin Microbiol. 2004, 42(11): 5353-5356.
    15. Di Nicuolo G, van de Kerkhove MP, Hoekstra R, et al. No evidence of in vitro and in vivo porcine endogenous retrovirus infection after plasmapheresis through the AMC-bioartificial liver. Xenotransplantation. 2005, 12(4): 286-292.
    16. Martina Y, Marcucci KT, Cherqui S, et al. Mice transgenic for a human porcine endogenous retrovirus receptor are susceptible to productive viral infection. J. Virol. 2006, 80(7): 3135-3146.
    17. Patience C, Switzer WM, Takeuchi Y, et al. Multiple groups of novel retroviral genomes in pigs and related species. J Virol. 2001, 75:2771-2775.
    18. Ericsson T, Oldmixon B, Blomberg J, et al. Identification of novel porcine endogenous betaretrovirus sequences in miniature swine. J Virol. 2001, 75:2765-2770.
    19. Klymiuk N, Muller M, Brem G, et al. Characterization of porcine endogenous retrovirus gamma pro-pol nucleotide sequences. J Virol. 2002, 76:11738-11743.
    20. Takeuchi Y, Patience C, Magre S, et al. Host range and interference studies of three classes of pig endogenous retrovirus. J Virol. 1998, 72(12):9986-9991.
    21. Akiyoshi DE, Denaro M, Zhu H, et al. Identification of a full-length cDNA for an endogenous retrovirus of miniature swine. J Virol. 1998, 72(5):4503-4507.
    22. Le tissier P, Stoye JP, Takeuchi Y, et al. Two sets of human-tropic pig retrovirus. Nature. 1997, 389(6652):681-682.
    23. Niebert M, Rogel-Gaillard C, Chardon P, et al. Characterization of chromosomally assigned replication-competent gamma porcine endogenous retroviruses derived from a large white pig and expression in human cells. J Virol. 2002, 76(6): 2714-2720.
    24. Herring C, Quinn G, Bower R, et al. Mapping full-length porcine endogenous retroviruses in a large white pig. J Virol. 2001, 75(24): 12252-12265.
    25. Bosch S, Arnauld C, Jestin A. Study of full-length porcine endogenous retrovirus genomes with envelope gene polymorphism in a specific-pathogen-free Large White swine herd. J Virol. 2000, 74(18): 8575-8581.
    26. Oldmixon BA, Wood JC, Ericsson TA et al. Porcine Endogenous retrovirus transmission characteristics of an inbred herd of miniature swine. J Virol. 2002, 76(6):3045-3048.
    27. Harrison I, Takeuchi Y, Bartosch B et al. Determinants of high titer in recombinant porcine endogenous retroviruses. J Virol. 2004,78(24):13871-13879.
    28. Bartosch B, Stefanidis D, Myers R et al. Evidence and consequence of porcine endogenous retrovirus recombination. J Virol. 2004, 78(24):13880-13890.
    29. Zhang L, Yu P, Li S, Li Y, Chen J, and Bu H. Phylogenetic analysis of porcine endogenous retroviruses expressed in Chinese pigs based on envelope sequences. Transpl P. 2006, 38: 2252-2257.
    30. Tacke S, Specke V, Stephen O, et al. Porcine endogenous retroviruses: diagnostic assays and evidence for immunosuppressive properties. Transplant Proc. 2000, 32(5): 1166.
    31. Tacke SJ, Kurth R, Denner J. Porcine endogenous retroviruses inhibit human immune cell function: risk for xenotransplantation? Virology. 2000, 268(1): 87-93.
    32. Bester AC, Schwartz M, Schmidt M, et al. Fragile sites are preferential targets for integrations of MLV vectors in gene therapy. Gene Ther. 2006, 13(13): 1057-1059.
    33. Fujino Y, Ohno K, Tsujimoto H. Molecular pathogenesis of feline leukemia virus-induced malignancies: Insertional mutagenesis. Vet Immunol Immunopathol. 2008, doi:10.1016/j.vetimm.2008.01.019.
    34. Moalic Y, Blanchard Y, Felix H, et al. Porcine Endogenous Retrovirus Integration Sites in the Human Genome: Features in Common with Those of Murine Leukemia Virus. J Virol. 2006, 80(22): 10980-10988.
    35. Denner J, Specke V, Thiesen U, et al. Genetic alterations of the long terminal repeat of an ecotropic porcine endogenous retrovirus during passage in human cells. Virology. 2003, 314(1): 125-133.
    36.杨勇贤,马玉媛,章金刚.小型猪在异种移植中的应用前景.中国实验动物学报. 2008, 16(5): 368-371.
    37. Lv MM, Jin H, Deng R, et al. Polymerase Chain Reaction Detection for Porcine Endogenous Retrovirus in 4 Pig Cell Lines. Chin J Vet Sci. 2003, 23(1): 1-3.
    38. Wu JM, Ma YY, Lv MM, et al. Large-scale survey of porcine endogenous retrovirus in Chinese miniature pigs. Comparat Immunol Microbiol Infect Dis 2008, 31: 367-371.
    39. Ma YY, Lv MM, Wu JM, et al. Detection and characterization of porcine endogenous retrovirus in Chinese miniature pigs. Exp Anim. 2008, 57:231.
    40. Ma YY, Lv MM, Xu S, et al. Identification of full-length proviral DNA of porcine endogenous retrovirus from Chinese Wuzhishan miniature pigs inbred. Comparat Immunol Microbiol Infect Dis. 2008, doi:10.1016/j.cimid.
    41. Argaw T, Ritzhaupt A, Wilson CA. Development of a real time quantitative PCR assay for detection of porcine endogenous retrovirus. J Virol Med. 2002, 106(1):97-106.
    42. Krach U, Fischer N, Czauderna F, et al. Comparison of replication-competent molecular clones of porcine endogenous retrovirus class A and class B derived from pig and human cells. J Virol. 2001, 75(12): 5465-5472.
    43. Wilson CA, Wong S, VanBrocklin M, Federspiel MJ. Extended analysis of the in vitro tropism of porcine endogenous retrovirus. J Virol. 2000, 74(1): 49-56.
    44. Onions D, Cooper DK, Alexander TJ, et al. An approach to the control of disease transmission in pig-to-human xenotransplantation. Xenotransplantation. 2000, 7(2): 143-155.
    45. Wang RF, Kushner SR. Construction of versatile low-copy-number vectors for cloning, sequencing and gene expression in Escherichia coli. Gene. 1991, 100:195-199.
    46. Fan H. Influences of the long terminal repeats on retrovirus pathogenicity. Semin. Virol. 1990, 1:165–174.
    47. Wolgamot G, Miller AD. Replication of Mus dunni endogenous retrovirus depends on promoter activation followed by enhancer multimerization. J Virol. 1999, 73 (12):9803-9809.
    48. Scheef G, Fischer N, Krach U, et al. The number of a U3 repeat box acting as an enhancer in long terminal repeats of polytropic replication-competent porcine endogenous retroviruses dynamically fluctuates during serial virus passages in human cells. J Virol. 2001, 75(15): 6933-6940.
    49. Wilson CA, Wong S, Muller J, et al. Type C Retrovirus released from porcine primary peripheral blood mononuclear cells infects human cells. J Virol. 1998, 72 (4):3082-3087.
    50. Martin U, Kiessig V, Blusch JH, et al. Expression of pig endogenous retrovirus by primary porcine endothelial cells and infection of human cells. Lancet. 1998, 352: 692-694.
    51. Takeuchi Y. Risk of zoonosis in xenotransplantation. Transplant Proc. 2000, 32(8):2698-2700.
    52. Check E. A tragic setback. Nature. 2002, 420(6912):116-118.
    53. Hacein-Bey-Abina S, Von Kalle C, Schmidt M. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science. 2003, 302(5644): 415-419.
    54. Denner J. Immunosuppression by oncogenic retroviridae. In“Immune Modulation by Infectious Agents”(W. Zschiesche, Ed.). Jena, Gustav Fischer Verlag, 1987, 140-201.
    55. Denner J. Immunosuppression by retroviruses: Implications for xenotransplantation. Ann N Y Acad Sci. 1998, 862: 75-86.
    56. Denner J, Persin C, Vogel T, et al. The immunosuppressive peptide of HIV-1 inhibits T and B lymphocyte stimulation. J Acquir Immune Defic Syndr Hum Retrovirol. 1996, 12(5): 442-450.
    57. Pahwa S, Pahwa R, Saxinger C, et al. Influence of the human T-lymphotropic virus/lymphadenopathy-associated virus on functions of human lymphocytes: evidence for immunosuppressive effects and polyclonal B-cell activation by banded viral preparations. Proc Natl Acad Sci U S A. 1985, 82(23): 8198-8202.
    58. Denner J, Wunderlich V, Bierwolf D. Suppression of human lymphocyte mitogen response by disrupted primate retroviruses of type C (baboon endogenous virus) and type D (PMFV). Acta Biol Med Germ. 1980, 39(11-12): K19-26.
    59. Denner J, Wunderlich V, Bierwolf D. Suppression of human lymphocyte mitogen response by proteins of the type-D retrovirus PMFV. Int J Cancer. 1986, 37(2): 311-316.
    60. Yu P, Zhang L, Li SF. Long-term effects on hek-293 cell line after co-culture with porcine endogenous retrovirus. Transplant Proc. 2005, 37: 496-499.
    61.钱小红,贺福初.蛋白质组学:理论与方法.科学出版社. 2003, 68-116.
    62. Benlhabib H, Herrera JE. Expression of the Op18 gene is maintained by the CCAAT-binding transcription factor NF-Y. Gene. 2006, 377: 177-185.
    63. Nogales E, Wang HW. Structural intermediates in microtubule assembly and disassembly: How and why? Curr Opin Cell Biol. 2006, 18: 179-184.
    64. Cassimeris L. The oncoprotein 18/stathmin family of microtubule destabilizers. Curr Opin Cell Bio. 2002, 14(1): 18-24.
    65. Parker CG, Hunt J, Diener K, et al. Identification of stathmin as a novel substrate for p38 delta. Biochem Biophys Res Commun. 1998, 249(3):791-796.
    66. Friedrich B, Gronberg H, Landstrom M, et al. Differentiation stage specificexpression of oncoprotein 18 in human and rat prostatic adenocarcinoma. Prostate. 1995, 27: 102-109.
    67. Price DK, Ball JR, Bahrani-Mostafavi Z, et al. The phosphoprotein Op18/stathmin is differentially expressed in ovarian cancer. Cancer Invest. 2000, 18:722-730.
    68. Takahashi M, Yang XJ, Lavery TT, et al. Gene expression profiling of favorable histology Wilms tumors and its correlation with clinical features. Cancer Res 2002, 62: 6598-6605.
    69. Bieche I, Lachkar S, Becette V, et al. Overexpression of the stathmin gene in a subset of human breast cancer. Br J Cancer. 1998, 78: 701-719.
    70. Kouzu Y, Uzawa K, Koike H. Overexpression of stathmin in oral squamous-cell carcinoma: correlation with tumour progression and poor prognosis. Br J Cancer. 2006, 94: 717-723.
    71. Brattsand G. Correlation of oncop rotein 18/stathmin exp ression in human breast cancer with established p rognostic factors. J Cancer. 2001, 83 (3): 311-318.
    72. Iancu C, Mistry SJ, Arkin S, et al. Taxol and anti-stathmin therapy: a synergistic combination that targets the mitotic spindle. Cancer Res. 2000, 60(13): 3537-3541.
    73. Mistry SJ, Atweh GF. Therapeutic interactions between stathmin inhibition and chemotherapeutic agents in prostate cancer. Mol Cancer Ther. 2006, 5(12): 3248-3257.
    74. Rana S, Maples PB, Senzer N, et al. Stathmin 1: a novel therapeutic target for anticancer activity. Expert Rev Anticancer Ther. 2008, 8(9):1461-1470.
    75. Yenofsky R, Cereghini S, Krowczynska A, et al. Regulation of mRNA utilization in mouse erythroleukemia cells induced to differentiate by exposure to dimethyl sulfoxide. Mol Cell Biol. 1983, 3(7): 1197-1203.
    76. Chitpatima ST, Makrides S, Bandyopadhyay R, et al. Nucleotide sequence of a major messenger RNA for a 21 kilodalton polypeptide that is under translational control in mouse tumor cells. Nucleic Acids Res. 1988, 16(5): 2350.
    77. Bommer UA, Thiele BJ. The translationally controlled tumour protein (TCTP). Int J Biochem Cell Biol. 2004, 36(3):379-385.
    78. Arcuri F, Papa S, Meini A, et a1. The translationally controlled tumor protein is a novel calcium binding protein of the human placenta and regulates calcium handling in trophoblast cells. Biol Reprod. 2005, 73(4):745-751.
    79. Tuynder M, Fiucci G, Prieur S, et a1.Translationally controlled tumor protein is a target of tumor reversion. PNAS. 2004, 101(43): 15364-15369.
    80. Chen SH, Wu PS, Chou CH, et a1. A knockout mouse approach reveals that TCTP functions as an essential factor for cell proliferation and survival in a tissue- or cell type-specific manner. Mol Biol Cell. 2007, 18:2525-2532.
    81. Kuramitsu Y, Nakamura K. Proteomic analysis of cancer tissues: shedding light on carcinogenesis and possible biomarkers. Proteomics. 2006, 6:5650-5661.
    82.马大龙.新细胞因子及细胞凋亡基因的发现与功能研究.北京大学学报(医学版). 2002, 34(4): 488-492.
    83. Rui M, Chen Y, Zhang Y, et a1. Transfer of anti-TFAR19 monoclonal antibody into HeLa cells by in situ electroporation can inhibit the apoptosis. Life Sciences. 2002, 71: 1771-1778.
    84. Hedenfalk I, Duggan D, Chen Y, et al. Gene expression profiles hereditary breast cancer. N Engl J Med. 2001, 344(8): 539-548.
    85. Xu XR, Huang J, Xu ZG, et al. Insight into hepatocellular carcinogenesis at transcriptome level by comparing gene expression profiles of hepatocellular carcinoma with those of corresponding noncancerous liver. Proc Natl Acad Sci USA. 2001, 98(26): 15089-15094.
    86. Liu ZH, Zhang D, Li KM, et al. Expression of PDCD5 in tissues of normal cervix, CIN I–III and cervical cancer. J Pek Univer (Health sciences) 2004; 36(4): 407-410.
    87. Yang YH, Zhao M, Li WM, et al.Expression of programmed cell death 5 gene involves in regulation of apoptosis in gastric tumor cells. Apoptosis. 2006, 11(6): 993-1001.
    88. Chen Y, Sun R, Han W, et al. Nuclear translocation of PDCD5 (TFAR19): an early signal for apoptosis? FEBS Lett. 2001, 509(2):191-196.
    89. Tao Y, Skrenta HM, Chen KY. Deoxyhypusine synthase assay based on the use of polyhistidine-tagged substrate and metal chelate-affinity chromatography. Anal Biochem. 1994, 221(1):103-108.
    90. Ramaswamy S, Ross KN, Lander ES, et al. A molecular signature of metastasis in primary solid tumors. Nat Genet. 2003, 33(1): 49-54.
    91. Hauber I, Bevec D, Heukeshoven J, et al. Identification of cellular deoxyhypusine synt hase as a novel target for antiret roviral therapy. J Clin Invest. 2005, 115: 76-85.
    92. Pollard VW, Malim MH. The HIV-1 Rev protein. Annu Rev Microbiol. 1998, 52: 491-532.
    93. Nair RR, Solway J, Boyd DD. Expression cloning identifies transgelin (SM22) as a novel repressor of 92-kDa type IV collagenase (MMP-9) expression. J Biol Chem. 2006, 281(36): 26424-26436.
    94. Shi YY, Wang HC, Yin YH, et al. Identification and analysis of tumour-associated antigens in hepatocellular carcinoma. Br J Cancer. 2005, 92: 929-934.
    95. Mikuriya K, Kuramitsu Y, Ryozawa S, et al. Expression of glycolytic enzymes is increased in pancreatic cancerous tissues as evidenced by proteomic profiling by two-dimensional electrophoresis and liquid chromatography-mass spectrometry/mass spectrometry. Int J Oncol. 2007, 30: 849-855.
    96. Shields JM, Rogers-Graham K, Der CJ. Loss of transgelin in breast and colon tumors and in RIE-1 cells by Ras deregulation of gene expression through Raf-independent pathways. J Biol Chem. 2002, 277: 9790-9799.
    97. Yang Z, Chang YJ, Miyamoto H, et al. Transgelin functions as a suppressor via inhibition of ARA54-enhanced androgen receptor transactivation and prostate cancer cell growth. Mol Endocrinol. 2007, 21: 343-358.
    98. Huang QJ, Huang QL, Chen WN, et al. Identification of transgelin as a potential novel biomarker for gastric adenocarcinoma based on proteomics technology. J Cancer Res Clin Oncol. 2008, 134: 1219-1227.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700