乐果对大鼠肝脏氧化应激状态和肝细胞凋亡的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为探讨低浓度乐果对大鼠肝脏氧化应激状态和肝细胞凋亡的影响及其机理,本试验通对大鼠肝脏病理组织和超微结构的观察及肝脏AChE、抗氧化酶和脂质过氧化指标的检测,研究了亚慢性染毒条件下乐果对大鼠肝脏氧化应激状态的影响;同时,通过体外原代培养肝细胞,研究了乐果对肝细胞的一般毒性和凋亡的影响。细胞凋亡用Annexin-V/PI双染法检测,细胞内活性氧、线粒体膜电位和细胞内Ca2+浓度变化,分别用DCFH-DA、罗丹名123和Fluo-2-AM标记检测,并探讨了以上因素在乐果诱导肝细胞凋亡中的可能机制。
     试验结果表明,分别灌服0、1、6和30mg/kg b.w.乐果染毒30d后,血浆和肝脏AChE活性降低,但并无明显的临床症状,推测中毒症状的出现不仅与血浆AChE活性降低程度有关,更主要与AChE降低速度有关。同时,各染毒组大鼠肝脏SOD活性均明显升高,而GSH-Px、CAT活性变化随染毒剂量增加呈先下降后上升趋势。脂质过氧化产物MDA含量呈上升趋势,与对照组相比,MDA含量分别升高29%、69%和129%。组织学和超微结构变化显示肝小叶充血、脂肪变性、肝细胞核皱缩、裂解,形成凋亡小体等。表明低剂量乐果亚慢性暴露不仅可造成大鼠肝脏氧化应激状态升高,且可造成肝脏一定程度的损伤。
     体外试验结果表明,0、3、30、300μmol/L乐果染毒12、24h均可不同程度抑制肝细胞的增殖,且存在时间-剂量效应。与对照组相比,染毒后48h达到生长高峰时,染毒组细胞存活率分别为对照组的85%、72%和67%,且随染毒时间延长,细胞活率进一步下降。细胞培养液上清中LDH含量升高,与对照组相比差异显著或极显著(P<0.05或P<0.01),300μmol/L组染毒12h和24h培养液上清中LDH含量分别为对照组的7.35倍和8.75倍;染毒组细胞内GSH含量降低,30和300μmol/L组与对照组差异极显著(P<0.01)。本研究表明,不同浓度乐果染毒后,细胞凋亡率明显升高,与对照组相比差异极显著(P<0.01),并且呈时间-剂量效应。细胞内ROS水平在3-100μmol/L范围内随染毒剂量的增大和染毒时间的延长而升高,而在300μmol/L组略有下降。细胞内线粒体膜电位(Δψm)除24h高剂量染毒组(300μmol/L)外均出现持续下降。3μmol/L组细胞内Ca2+浓度极显著高于对照组(P<0.01),但随染毒剂量的进一步增加,细胞内Ca2+浓度逐渐下降。表明乐果诱导的细胞凋亡可能与细胞内ROS生成及细胞膜的损伤有关。
The present study was carried out to investigate the effects and mechanisms of dimethoate-induced oxidative stress and hepatocytes apoptosis in rats’liver, the histopathology and ultramicrostructure changes, anti-oxidative enzymes and lipid peroxidation were detected to determine the role of dimethoate in production oxidative stress in rats’liver. At the same time, the general toxicity and apoptosis effects of dimethoate were researched via primary cultured hepatocytes in vitro. Apoptotic rate was detected by Annexin-V/PI double staining, intracellular ROS, mitochondrial membrane potential and concentration were detected with DCFH-DA, Rodamin 123 and Fluo-2-AM respectively. The mechanism of these factors in dimethoate-induced aoptosis in hepatocytes were disccused in this paper too.
     The results showed that the activity of AChE were both decresed in plasma and liver of experimental rats exposured with 0, 1, 6 and 30mg/kg b.w. dimethoate for 30d respectively, but no obvious clinical symptoms were observed. It could be presumed that the occurrence of clinical symptoms was not only related with the degree of AChE reduction, but mainly with the speed of reduction. The activity of SOD were increased in all treated group accompanied with GSH-Px and CAT decreased in low group but increased in high group. MDA concentration were increased 29%、69% and 129% in treated groups when compared with control group respectivity. Histopathology and ultramicrostructure survey showed congestion of hepatic lobules, fatty degenerationthe, shrinkage, split and apoptotic body of the nucleus. The results showed that subchronic esposure of dimethoate for 30d not only induced oxidative stress, but also cause liver damage in experimental rats.
     The results of in vitro test showed that exposured with dimethoate of 0, 3, 30, 300μmol/L for 12h and 24h could inhibited hepatocytes proliferation at different degree, and present time-dose effects. The survival rate of hepatocytes were 85, 72 and 67% at 48h in treated groups and aggregate with the prolongation of time. Increase of LDH activity were observed in all treated groups which concentration were 7.35 and 8.75 times in medium supernant when compared with control groups in 300μmol/L group at 12h and 24h respectively (P<0.01). Decrease of GSH concentration were decreased in all treated groups and significant in 30 and 300μmol/L groups. Hepatocytes apoptotic rates were increased significantly from 3.1% in control group to 16.9% in 300μmol/L group by flow cytometry detection use Annexin V/PI staining. Intracellular ROS level were increased in 3μmol/L to 100μmol/L group and slightly subside in 300μmol/L group. Decreased of mitochondria membrane potential owing to permeability transition was observed in our study too except in 300μmol/L group at 24h. Intracellular Ca2+ concentration were increased in all group and reached highest peak in 3μmol/L group, diffirent was significant(P<0.01). All indicated that dimethoate-induced apoptosis was related with generation of ROS and damage of hepatocytes membrane.
引文
[1] Gallo M A, Lawryk N J. Organic phosphorus pesticides. In: Hayes W J Jr, Laws E R, Editors, Handbook of Pesticide Toxicology, Classes of Pesticides [M]. San Diego, Academic Press, 1991,2: 917-1123.
    [2] WHO, Guidelines for poison control, Geneva: WHO in collaboration with UNEP and ILO, 1997, 3.
    [3]黄金祥.切实抓好我国急性农药中毒的防治工作[J].中华劳动卫生职业病杂志,2002,20(6):401-402.
    [4] Betrosian A, Balla M, Kafiri G, et al. Multiple systems organ failure from organophosphate poisoning[J]. Toxicol. Clin. Toxicol. 1995, 33 (3):257-260.
    [5] Desi I, Nagymajteny L, Papp A, et al. Epidemiological investigations and experimental model studies of pesticide exposure[J]. Neurotoxicology,1998,19(4-5):611-616.
    [6] Gomes J, Dawodu A H, Lloyd O, et al. Hepatic injury and disturbed amino acid metabolism in mice following prolonged exposure to organophosphorus pesticides[J]. Hum. Exp. Toxicol. 1999,18 (1):33-37.
    [7] Kossmann S, Magner-Krezel Z, Sobieraj R, et al. The assessment of nephrotoxic effect based on the determination of the activity of some selected enzymes in urine[J]. Przegl. Lek. 1997,54 (10):707-711.
    [8]张波,崔博,何一平,等.氧乐果对小鼠心脏的氧化损伤以及抗氧化维生素的防护作用[J].食品科学,2004,25(4):163-164.
    [9] Kamath V, Rajini P S. Altered glucose homeostasis and oxidative impairment in pancreas of rats subjected to dimethoate intoxication[J]. Toxicology, 2007,231(2-3):137-146.
    [10]Bazylewicz-Walczak B, Majczakowa W, Szymczak M. Behavioral effects of occupational exposure to organophosphorus pesticides in female green house planting workers [J]. Neurotoxicology, 1999,20 (5):819-826.
    [11]Kedzierski A. Psychological effects of chronic exposure to organophosphate pesticides, Review of the literature[J].Med Pr, 1990, 41(2):92-94.
    [12]IARC. Monograph on the evaluation of carcinogenic risk of chemicals to man[M]. Norwell: Kluwer Academic Publishers,1983,30,1305-1310.
    [13]叶任高.内科学(第5版)[M].北京:人民卫生出版社,2001:955-960.
    [14]Chambers J E, Carr R, Boone J S, et al. The metabolism of organophosphorus insecticides. In: R. Krieger, Editor, Handbook of Pesticide Toxicology(2nd edition) [M]. San Diego, Academic Press, 2001, 919-927.
    [15]Kappers W A, Edwards R J, Murray S, et al. Diazinon is activated by CYP2C19 in human liver[J].Toxicol Appl Pharmacol. 2001,177:68-76.
    [16]Mutch E, Daly A K, Leathart J S, et al. Do multiple cytochrome P450 isoforms contribute to parathion metabolism in man?[J].Arch Toxicol, 2003,77: 313-320.
    [17]Hodgson E. In vitro human phase I metabolism of xenobiotics I: pesticides and related compounds used in agriculture and public health[J]. J Biochem Mol Toxicol, 2003, 17:201-206.
    [18] Costa L G., Li W F, Richter R J, et al. PON1 and organophosphate toxicity. In: L.G. Costa and C.E. Furlong, Editors, Paraoxonase (PON1)in Health and Disease: Basic and Clinical Aspects[M].Norwell: Kluwer Academic Publishers, 2002: 165-183.
    [19]Lotti M. Organophosphorous compounds. In: Spencer P S, Schaumburg H H, Ludolph A C, Editors, Experimental and Clinical Neurotoxicology[M]. Oxford: Oxford University Press, 2000:898-925.
    [20]Lotti M. Clinical toxicology of anticholinesterase agents in humans. In: Krieger R I, Editor, Handbook of Pesticide Toxicology[M]. San Diego: Academic Press, 2001:1043-1085.
    [21]Cindy S. Roegge, Olga A, et al. Developmental diazinon neurotoxicity in rats: Later effects on emotional response[J].Brain Research Bulletin, 2008,75(1): 166-172.
    [22]IOM (Institute of Medicine). Gulf War and Health[M]. Washington D C: National Academy Press, 2003, 2:600.
    [23]Rosenstock L, Keifer M, Daniell W E, et al. The pesticide health effects study group. Chronic central nervous system effects of acute organophosphate pesticide intoxication[J].Lancet, 1991,338:223-227.
    [24]Steenland K. Chronic neurological effects of organosphate pesticides[J].Br Med J, 1996, 312:1312-1313.
    [25]Costa L G, Schwab B W, Murphy S D. Tolerance to anticholinesterase compounds in mammals[J].Toxicology, 1982,25:79-97.
    [26]McDonald B E, Costa L G, Murphy S D. Spatial memory impairment and central muscarinic receptors following prolonged treatment with organophosphates[J]. Toxicol Lett, 1988, 40:47-56.
    [27]Prendergast M A, Terry A V, Buccafusco J J. Effects of chronic, low-level organophosphate exposure on delayed recall, discrimination, and spatial learning in monkeys and rats[J].Neurotoxicol Teratol. 1998,20:115-122.
    [28]Lotti M. Low level exposures to organophosphorus esters and peripheral nerve function[J]. Muscle Nerve, 2002,25:492-504.
    [29]Colosio C, Tiramani M, Maroni M. Neurobehavioral effects of pesticides: state of the art[J].Neurotoxicology, 2003,24:577-591.
    [30]Eaton D L. Biotransformation enzyme polymorphism and pesticides susceptibility[J]. Neurotoxicology, 2000, 21: 101-111.
    [31]Costa L G. Pesticide exposure, differential risk for neurotoxic outcomes due to enzyme polymorphisms[J]. Clin Occup Environ Med, 2001,1:511-523.
    [32]Ingelman-Sundberg M. The human genome project and novel aspects of cytochrome P450 research[J].Toxicol Appl Pharmacol, 2005,207(Suppl.2):52-56.
    [33]Costa L G, Furlong C E. Paraoxonase (PON1) in Health and Disease: Basic and Clinical Aspects[M]. Norwell: Kluwer Academic Publishers, 2002: 210.
    [34]Costa L G, Cole T B, Furlong C E. et al. Gene-Environment Interactions: Paraoxonase (PON1) and Sensitivity to Organophosphate Toxicity[J].Lab Med. 2006,37(2):109-114.
    [35]Li W F, Costa L G, Richter R J, et al. Catalytic efficiency determines the in vivo efficacy of PON1 for detoxifying organophosphates[J]. Pharmacogenetics, 2000,10:767-799.
    [36]Cole T B, Walter B J, Shih D M, et al. Toxicity of chlorpyrifos and chlorpyrifos oxon in a transgenic mouse model of the human paraoxonase (PON1) Q192R polymorphism[J]. Pharmacogen Genomics, 2005,15:589-598.
    [37]Bartels C F, Zelinski T, Lockridge O. Mutation of codon 322 in the human acetylcholinesterase (AChE) gene accounts for VT blood group polymorphisms[J]. Am J Hum Genet, 1993, 52:928-936.
    [38]Xie W, Wilder P J, Stribley J, et al. Knockout of one acetylcholinesterase allele in the mouse[J]. Chem Biol Interact, 1999, 119-120: 289-299.
    [39]Lockridge O, Duysen E G, Voelker T, et al. Life without acetylcholine-esterase: the implications of cholinesterase inhibition toxicity in AChE-knockout mice[J]. Environ Toxicol Pharmacol, 2005,19:463-469.
    [40]Dam K, Seidler F J, Slotkin T A. Chlorpyrifos exposure during a critical neonatal period elicitsgender-selective deficits in the development of coordination skills and locomotor activity[J]. Dev Brain Res, 2000,121:179-187.
    [41]Aldridge J E, Seidler F J, Meyer A, et al. Serotoninergic systems targeted by developmental exposure to chlorpyrifos: effects during different critical periods[J]. Environ Health Perspect, 2003,111:1736-1743.
    [42]Guizzetti M, Pathak S, Giordano G, et al. Effect of organophosphorus insecticides and their metabolites on astroglial cell proliferation[J].Toxicology, 2005,215:182-190.
    [43]Caughlan A, Newhouse K, Namgung U, et al. Chlorpyrifos induces apoptosis in rat cortical neurons that is regulated by a balance between p38 and ERK/JNK MAP kinases[J].Toxicol Sci , 2004,78:125-134.
    [44]Pope C N, Karanth S, Liu J. Pharmacology and toxicology of cholinesterase inhibitors: uses and misuses of a common mechanism of action[J]. Environ Toxicol Pharmacol, 2005, 19:433-446.
    [45]Pope C N. Organophosphorus pesticides: do they all have the same mechanism of action? [J].J Toxicol Environ Health(Part B):Crit. Rev.,1999,2: 161-181.
    [46]Zaccheo O, Dinsdale D, Meacock P A, et al. Neuropathy target esterase and its yeast homologue degrade phosphatidylcholine to glycerophosphocholine in living cells[J]. J Biol Chem, 2004, 279:24024-24033.
    [47]Quistad G B, Barlow C, Winrow C J, et al. Evidence that mouse brain neuropathy target esterase is a lysophospholipase[J]. Proc Natl Acad Sci(USA), 2003, 100:7983-7987.
    [48]Chang P A, Wu Y J. Characterization of neuropathy target esterase[J].Chem Life, 2004,24(5):424-426.
    [49]Kretzschmar D, Mason G, Sharma S, et al. The Swiss cheese mutant causes glial hyperwrapping and brain degeneration in Drosophila[J]. J Neurosci, 1997, 17:7425-7432.
    [50]Winrow C J, Hemming M L, Allen D M, et al. Loss of neuropathy target esterase in mice links organophosphate exposure to hyperactivity[J]. Nat Genet, 2003, 33:477-485.
    [51]Moser M, Li Y, Vaupel K, et al., Placental failure and impaired vasculogenesis result in embryonic lethality for neuropathy target esterase-deficient mice[J].Mol Cell Biol, 2004, 24:1667-1679.
    [52]Eldelfrawi M E, Eldelfrawi A T. Neurotransmitter receptors as targets for pesticides[J].J Environ Sci Health B, 1983, 18:65-88.
    [53]Huff R A, Corcoran J J, Anderson J K, et al., Chlorpyrifos oxon binds directly to muscarinicreceptors and inhibits cAMP accumulation in rat striatum[J].J Pharmacol Exp Ther, 1994, 289:329-335.
    [54]Howard M D, Pope C N. In vitro effects of chlorpyrifos, parathion, methylparathion and their oxons on cardiac muscarinic receptor binding in neonatal and adult rats[J].Toxicology, 2002, 170:1-10.
    [55]Richards P G, Johnson M K, Ray D E. Identification of acylpeptide hydrolase as a sensitive site for reaction with organophosphorus compounds and a potential target for cognitive enhancing drugs[J].Mol Pharmacol, 2000, 58:577-583.
    [56]Costa L G, Murphy S D. Cholinergic and opiate involvement in the antinociceptive effect of diisopropylfluorophosphate[J].Pharmacol Biochem Behav, 1986, 24:723-736.
    [57]Costa L G, Organophosphorus compounds. In: Galli C L, Manzo L, Spencer P S, Editors, Recent Advances in Nervous System Toxicology[M].New York: Plenum Publishing Corporation, 1988:203-246.
    [58]Quistad G B, Sparks S E, Casida J E. Fatty acid amide hydrolase inhibition by neurotoxic organophosphorus pesticides[J].Toxicol Appl Pharmacol, 2001, 173:48-55.
    [59]Cravatt B F, Giang D K, Mayfield S P, et al., Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides[J].Nature, 1996, 384:83-87.
    [60]Hansson M, Asea A, Ersson U, et al. Induction of apoptosis in NK cells by monocyte-derived reactive oxygen metabolites [J].Immunol, 1996, 156(1):42-47.
    [61]Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-raging implications in tissue kinetics[J]. Br Cancer , 1972,26 (4):239.
    [62]Wang X, Su XZ. The expression of Fas and bcl-2 in hamster buccal[J]. Carcinogen, 2005,14(2):155-158.
    [63]Houston A, O’Connell J, Fmsera A, et al. The Fas signaling pathway and its role in the pathogenesis of cancer. Current Opinion in Pharmacology[J].Cell, 1996,85:781-784.
    [64]Britton R S. Metal-induced hepatotoxicity[J]. Semin Liver Dis, 1996, 16(1): 3-12.
    [65]Komko T, Sudn T. Caspase activation precedes PTP opening in TNF-α-induced apoptosis in L929 cells[J] .Mitochondrion, 2004, 3(5):261-278.
    [66]Pongcharoen S, Searle R F, Bulmer J N. Placental Fas and Fas ligand expression in normal early, term and molar pregnancy[J].Placenta,2004,25 (4):321-330.
    [67]Obert A, Marks N, Evans H L, et al. Lead promotes apoptosis in new born rat cereballar neurons:pathologic implications[J]. Pharmacol Exp Ther, 1996, 279:435-442.
    [68]Min Y J, Lee J H. Prognostic significance of Fas(CD95) and TRAIL receptors (DR4PDR5) expression in acute myelogenous leukemia[J]. Leukemia Res,2004, 28(4): 359-365.
    [69]Schiller M, Javelaud D, Mauviel A. TGFβ-induced SMAD signaling and gene regulation: consequences for extra cellular matrix remodeling and wound healing[J].Sci, 2004, 35(2):83-92.
    [70] Ott M, Robert J D, Gogvadze V, et al. Cytochrome C release from mitochondria proceeds by a two-step process[J]. Proc Natl Acad Sci(USA), 2002, 99 (3):1259-1263.
    [71]Zou H, Li YC, Liu X, et al. An APAF212 Cytochrome C multimetric complex is a functional apoptosis that activates procaspase 9[J]. Biol Chem, 1999, 274(11):549-556.
    [72]Joza N, Susin S A, Daugas E, et al. Essential role of the mitochondrial apoptosis-inducing factor programmed cell death [J]. Nature, 2001, 410:549-554.
    [73]Susin SA , Lorenzo H K, Zamzami N, et al. Molecular characterization of mitochondrial apoptosis-inducing factor[J].Nature, 1999, 397:441-446.
    [74]Liang W J, Zhang W D. Signal transduction of tumor necrosis factor induced cell apoptosis[J].World Chin J Digestol,2000,8:329-331.
    [75]Kaplowitz N, Tsukamoto H. Oxidative stress and liver disease[J]. Prog Liver Dis,1996, 131-159.
    [76] Banerjee B D, Seth V, Bhattacharya A, et al. Biochemical effects of some pesticdes on lipid peroxidation and free radical scavengers[J].Toxicol Lett, 1999,107(1-3):33-47.
    [77]Carlson K, Jortner B S, Ehrich M. Organophosphorus compound induced apoptosisd in SH2SY5Y human neuroblastona cells[J].Toxicol Appl Pharmacol, 2000,168(2):102-113.
    [78]Yukti Sharma, Somia Bashir, Irshad M, et al. Dimethoate-induced effects on antioxidant status of liver and brain of rats following subchronic exposure[J]. Toxicology, 2005(215): 173-181.
    [79]Faingold C L, Ngouemo P, Riaz A. Ethanol and neurotransmitter interaction from molecular to integrative effects[J].Progressin Biology, 1998,55:509-535.
    [80]刘茹,陈建锋,何俊,等.辛硫磷对大鼠卵巢抗氧化系统功能的影响[J].环境与职业医学.2004,21(2):94-97.
    [81]马红霞,王伟利,李炳霞,等.乐果亚急性暴露对大鼠胆碱酯酶浓度及细胞色素P450亚型表达量的影响[J].中国兽医科学. 2006,36(08):655-658.
    [82]Bagchi D, Bagchi M, Hassoun E A, et al. In vitro and in vivo generation of reactive oxygen species, DNA damage and lactate dehydrogenase leakage by selected pesticides[J]. Toxicology,1995,104:129-140.
    [83]WHO/IPCS. Principles and methods for assessing direct immunotoxicity associated with exposure to chemicals. Environmental Health Criteria[M]. Geneva:WHO,1996,180:110-112.
    [84]Sturm A, Wogram J, Hansen P D, et al. Potential use of cholinesterase in monitoring low levels of organophosphates in small streams: natural variability in three-spined stickleback (Gasterosteus aculeatus) and relation to pollution[J]. Environ Toxicol,1999,18:194-200.
    [85]李焕德,许树梧.急性中毒毒物检测与诊疗[M].长沙:湖南科学技术出版社,2000,501-505.
    [86]方克美.有机磷农药中毒急救治疗进展[J].急诊医学,2000,9(4):283-285.
    [87]Abdollahi M, Sara M, Pournourmohammadi S, et al. Oxidative stress and cholinesterase inhibition in saliva and plasma of rats following subchronic exposure to malathion[J]. Comparative Biochemistry and Physiology,2004, 137:29-34.
    [88]Chance B, Siess H, Boberis A. Hydroperoxide metabolism in mammalian organs[J]. Phys Rev,1979,59:527-605.
    [89]Fridovich I, In: Proyer W Q. (Ed.), Free Radicals in Biology[M]. New York: Academic Press, 1978, 1:239.
    [90]Halliwell B, Gutteridge J C. Oxygen toxicity, oxygen radicals, transition metals and disease[J]. Biochem J, 1984, 219:1-14.
    [91]Fang Y Z, Yang S, Wu G. Free radicals, antioxidants, and nutrition[J]. Nutrition,2002, 18(10):87-91.
    [92]Gupta R C, Milatovic D, Dettbarn W D. Depletion of energy metabolites following acetylcholinesterase inhibitor-induced status epilepticus: protection by antioxidants[J]. Neutotoxicology,2001,22:271-282.
    [93]Prakasam A, Sethupathy S, Lalitha S. Plasma and RBCs antioxidant status in occupational male pesticide sprayers[J]. Clin Chim Acta, 2001, 310:107-112.
    [94]Antunes-Madeira M C, Madeira V C. Partition of malathion in synthetic and native membranes[J]. Biochim Biophys Acta, 1987,901:61.
    [95]Datta C, Dasgupta J G, Sengupta D. Interaction of organophosphorus insecticides phosphamidon and malathion on lipid profile and acetylcholinesterase activity in human erythrocyte membrane[J]. Ind J Med Res, 1994,100, 87-89.
    [96] Seglen P O. Prepatation of rat liver cells[J]. Experimental Cell Research, 1973, 76:25-30.
    [97]彭齐荣,袁爱力,赖卓胜,等.肝细胞的大量制备技术[J].中华肝脏病杂志,1999:7(4):246
    [98]夏世钧,吴中亮.分子毒理学基础[M].武汉:湖北科学技术出版社,2001:87-90
    [99]郑梁荣,黄中洋.自由基生物学(第三版)[M].北京:高等教育出版社,2007:56-57.
    [100]Langdon R G. Properties and mechanism of action of purified glutathione reduction[J]. Biochem Biophys Acta, 1958,30:432-433.
    [101]Grimes A J. Human Red Cell Metabolism[M]. Oxford:Blackwell Scientific, 1980: 257.
    [102]Merritt J E, McCarthy S A, Davies MPA, et al. Use of Fluo-2 to measure Ca2+ in platelet and neutrophils[J].Biochem J, 1990.269:513-519.
    [103]Carlson K, Jortner B S, Ehrich M. Organophosphorus compound induced apoptosisd in SH2SY5Y human neuroblastona cells[J].Toxicol Appl Pharmacol, 2000,168(2):102-113.
    [104]曾明,路嘉宏,张才云,等.乐果对小鼠骨骼肌细胞毒性作用及凋亡的诱导[J].中国公共卫生,2005,9(9):1105-1106.
    [105]McConkey D J. The role of calcium in the regulation of apoptosis[J]. Scanning Microse,1996,10(3):777-793.
    [106]Gy?rgy Hajnóczky, Gy?rgy Csordás, Sudipto Das, et al., Mitochondrial calcium signalling and cell death: Approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis[J]. Cell Calcium, 2006, 40(5-6): 553-560.
    [107]Zhu W H, Loh T T. Roles of calcium in the regulation of apoptosis in HL-60 promyelocytic leukemia cells[J].Life Sci, 1995,57(23):2091-2099.
    [108] Ichas F, Mazat J P. From calcium signaling to cell death: two conformations for the mitochondria permeability transition proe, Switching from low-to high-conductance state[J].Biochem Biophs Acta, 1998,1366:33-50.
    [109]Tatton W G, Olanow C W. Apoptosis in neurodegenerative disease: the role of mitochondria[J].Biochem Biophs Acta,1999,1410:195-213.
    [110]Susin S A, Lorenzo H K, Zamzani N, et al. Molecular characterization of mitochondria apoptosis-induing factor[J].Nature, 1999,397:441-446.
    [111]Kroemer G, Zamzami N, Susin S A. Mitochondria control of apoptosis[J]. Immunologu Today, 1997,18(1):44-51.
    [112]Trrens J F. Mitochondrial formation of reactive oxygen species[J]. J physiol, 2003, 552(Pt2):335-344.
    [113]Chen F, Shi X L. Intracellular signal transduction of cells in response to carcinogenic metals[J]. Critical Reviews in Oncology/Hematology,2002,42:105-121.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700