IP数据光网络中的视频通信失真建模与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
视频通信技术的发展,是与其承载网的发展分不开的。视频通信业务可以承载在不同的底层网络上,从早期的PSTN(Public SwitchedTelephone Network,公共交换电话网),到窄带ISDN(Intergrated ServicesDigital Network,综合业务数字网),ATM(Asynchronous Transfer Mode,异步传输模式)和现在的IP网络,都可以成为视频通信业务的承载网。目前,随着底层光网络技术和IP技术的融合,IP数据光网络的概念被提了出来,它被理解为一种能够提供IP数据服务的、以光网络为底层传送网络的宽泛的网络概念。IP数据光网络可以表示为IP/…/Optics的形式。基于IP数据光网络的视频通信技术也成为了一个重要的研究方向。
     目前,无论是服务提供商还是用户,对于视频通信技术的期望都是能够获得有QoS(Quality Of Service,服务质量)保证的视频服务。而对于视频通信质量具有严重影响的因素之一,就是网络的丢包。因此,更准确的理解网络丢包特性与视频通信质量的关系,就显得尤为迫切。由丢包引起的视频通信质量下降这一问题一直是工业界和学术界研究的热点。对于承载于IP数据光网络的视频通信而言,我们同样关注端到端的网络丢包对视频通信质量的影响。研究基于IP数据光网络中端到端丢包与视频通信质量之间的关系,其中最关键的就是要建立适合IP数据光网络丢包特性的视频传输失真模型。为视频传输失真建模的主要目的,就是希望可以准确预测由丢包引发的视频解码失真。在给定网络丢包信息的情况下,如何准确地估计出由丢包产生的视频传输失真,或者说如何建立准确的视频传输失真模型,对于更好的理解IP数据光网络端到端丢包与视频质量之间的关系具有重要意义。
     然而,由于IP数据光网络中端到端的丢包是具有记忆性的突发式丢包过程,其丢包特性可以由马尔可夫丢包模型来描述,而以往的视频失真模型都是针对贝努利丢包网络的,所以,为IP数据光网络建立视频通信失真模型就更为复杂。本论文针对上述问题进行了深入研究,获得了若干具有创新性的成果,根据其中部分成果写成的论文已经被IEEE会刊IEEE Transaction on Circuits and Systems for Video Technology录用。论文主要的工作和创新点包括以下几个方面:
     第一,为了研究IP数据光网络中具有突发特性的端到端丢包对视频通信质量的影响问题,首先将IP数据光网络中的端到端丢包纳入到具有普适性的(m+1)状态马尔可夫丢包模型中,并在这种丢包模型下,提出了视频通信失真的统一的研究框架;
     第二,要研究IP数据光网络中这种马尔可夫式的丢包对视频失真的影响,首先就要建立可以计算任意丢包模式造成的视频失真的数学模型。针对采用混合式编码的视频通信,提出了适用于任意丢包模式下的视频通信失真模型“失真传递模型(Distortion Infection Model)”,该模型复杂性低,比之前的传统模型更加精确;
     第三,基于失真传递模型,提出了二状态马尔可夫丢包过程,即吉尔伯特丢包过程下的视频失真模型“失真网格模型(Distortion TrellisModel)”,该模型可以计算给定吉尔伯特丢包过程导致的视频通信的MSE(Mean Square Error,均方误差)失真期望;
     第四,由于原始的失真网格模型复杂度高,计算量大,因此提出了快速算法“滑动窗口算法(Sliding Window Algorithm)”,使在精度损失很小的情况下模型的计算量降低90%以上。基于该算法,失真网格模型更加实用化,而且可以满足实时化要求。
     第五,对失真网格模型进行扩展,使其可以计算(m+1)状态马尔可夫丢包过程下的视频通信失真,并结合实验网络中采集到的数据说明了模型的具体使用方法。基于本文提出的数学模型,详细分析了IP数据光网络中端到端的丢包过程各参数对视频通信质量的影响,观察到了一些之前未见于其他文献的结果,并通过所提出的数学模型进行了解释,为今后的差错控制技术提供依据和理论基础。文章最后对本文提出的数学模型一些可能的应用做了简要的介绍。
The development of video communication is along with and partly based on the advancement of its underlying network technologies. Generally, video services could be carried through various networks, including the early PSTN, ISDN, and later ATM, as well as the IP networks which are widely deployed currently. Today, a new concept of underlying networks, IP data optical network, has been proposed, to present a relatively broad category of networks, which are based on optical techniques and enable the IP services. It could be denoted as IP/.../optics for clarity. In such a case, researchers have turned into the new subject of video over IP data optical networks.
     The QoS (Quality of Service) in video transmission over IP data optical networks is most important for both service provider and end user. The key factor degrading the video quality in video communication systems is the packet loss. It is thus important to deeply understand the relation between the end-to-end packet losses and the user-perceptive video quality. That is why people in both institutes and industry are interested in this subject for a long time. For video over IP data optical networks, we also focus on the same problem, i.e. the impact of IP data optical network end-to-end packet losses in user-perceptive video quality. To understand the effect of packet loss on video quality, it is desired to model the end-to-end distortion caused by packet loss in decoded video. Based on the distortion model, one can estimate the packet-loss-induced distortion at the encoder for video transmission over lossy channels. It is thus critical for most joint source-channel rate-distortion optimized schemes and channel error control techniques such as inter/intra mode switching and forward error correction.
     When modeling the packet-loss-induced distortion for IP data optical networks, the network loss characteristics should be prior known. A simple assumption is to regard the packet losses as an independent and identically-distributed random process, characterized by a Bernoulli loss model. However, for IP data optical networks, the end-to-end packet losses often exhibit time dependences. It will lead to burst packet loss, a characteristic cannot be found in a Bernoulli loss model, but can be described by a Markov loss model. Many distortion models for video over lossy networks have been proposed. However, all existing models are based on the Bernoulli loss assumption. Modeling the video decoded distortion for Markov-model losses is more complicated than that for Bernoulli losses. This paper focuses on the distortion modeling problems and aims to made one step effort on understanding the impact of IP data optical network losses on user-perceptive video quality. Part of the results proposed in this paper will be published in the IEEE Transaction on Circuits and Systems for Video Technology.
     The main contributions of this paper are summarized as follows.
     (1) To formulate the problem in a mathematic way, we first propose a framework of video decoded distortion modeling, where the packet losses in IP data optical networks are modeled as an (m+1)-state Markov chain.
     (2) To establish the distortion model for video transmission over IP data optical nerworks modeled by Markov loss process, the decoded distortion for arbitrary packet loss pattern should be prior modeled. For video communications using motion composition techniques, we propose a distortion model, denoted as the Distortion Infection, to estimate the decoded distortion caused by arbitrary packet loss pattern.
     (3) Based on the detailed analysis of both the error propagation and the loss burstiness, the Distortion Trellis model is established, enabling us to estimate the expected MSE distortion for two-state Markov losses, or Gilbert losses, at both frame level and sequence level at the encoder. The model is designed to be applicable to most block-based motion compensated encoders. The model also allows for any temporal error concealment at the decoder.
     (4) A siding window algorithm is developed to calculate the MSE estimation with low complexity. Using the sliding window algorithm, in most cases more than 90% computation burden can be saved compared with the original Distortion Trellis model without degrading of accuracy.
     (5) Finally, we extend the proposed model to a more general form, enabling us to calculate the distortion caused by (m+1)-state Markov losses, and thus to estimate the decoded distortion for video transmission over IP data optical networks. Based on the proposed model, we analysis in detail the impact of IP data optical networks losses on video quality and established some new findings that have never been proposed before. The last section mentions some probable practical applications of the proposed models.
引文
[1]黄善国,顾畹仪,张永军,张沛,IP数据光网络技术与应用,人民邮电出版社.
    [2]K.Stuhlmuller,N.Farber,M.Link et al.,Analysis of video transmission over lossy channels,Selected Areas in Communications,IEEE Journal on,vol.18,no.6,pp.1012-1032,2000.
    [3]R.C.Edson,D.Mitchell,and G.P.Reid,Video conference system using voice-switched cameras,U.S.Patent 3-601-530,applied for April 29,1969,issued August 24,1971.
    [4]Eighth International Conference on Video,Audio and Data Recording(Conf.Publ.No.319).
    [5]D.B.Jung,C.Park,T.W.Kang et al.,Considerations for a multipoint video conference in ATM customer premises networks.Proceedings of IEEE Singapore International Conference on Communications and Networks, 1993, pp. 273-277 vol.271.
    [6] B. Girod, Recent advances in mobile video communications, Proc. VLSI Signal Processing, DC, 1996., 1996, pp. 3-12.
    [7] Y.J. Liang, John G. Apostolopoulos and Bernd Girod, Analysis of packet loss for compressed video: does burst-length matter, in Proc. of IEEE Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2003, pp. V-684-687 vol.685.
    [8] Generic coding of moving pictures and associated audio information-Part 1: Systems, ITU-T/ISO/IEC JTC 1, Recommendation H.222.0 and ISO/IEC 13 818-1 (MPEG-2 Systems), Nov. 1994.
    [9] Narrow-band visual telephone systems and terminal equipment, ITU-T, Recommendation H.320,1999.
    
    [10] Packet-based multimedia communications systems, ITU-T, Recommendation H.323,1998.
    [11] Terminal for low bit rate multimedia communication, ITU-T, Recommendation H.324,1996.
    [12] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M. Handley, and E. Schooler, SIP: Session Initiation Protocol, Internet Eng. Task Force (IETF), Request for Comments (RFC) 3261, 2002.
    [13] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, RTP: A transport protocol for real-time applications, Internet Eng. Task Force (IETF), Request for Comments (RFC) 1889, 1996.
    [14] X. Yang, Internet Protocol Television (IPTV): The Killer Application for the Next-Generation Internet, IEEE Magazine on Communications, vol. 45, no. 11, 2007, pp. 126-134.
    [15] Xiaojun Hei, Yong Liu and Ross, K.W, IPTV over P2P streaming networks: the mesh-pull approach, IEEE Magazine on Communications, vol. 46, no. 2, 2008, pp. 86-92.
    [16] Marumori, H., Chiba, H. and Yoshida, S., A real time recording system for camcorders on the DVD video format, IEEE Transactions on Consumer Electronics, vol. 49, no. 14, 2003, pp. 1148-1152.
    [17] G.J. Sullivan and T. Wiegand, Video Compression - From Concepts to the H.264/AVC Standard, Proceedings of the IEEE, vol. 93, no. 1, 2005, pp. 18-31.
    [18] Video codec for audiovisual services at px64 kbit/s, ITU-T, Recommendation H.261, version 1, 1990; version 2, 1993.
    [19] Generic coding of moving pictures and associated audio information-Part 2: Video, ITU-T|ISO/IEC JTC 1, Recommendation H.262 and ISO/IEC 13 818-2 (MPEG-2 Video), Nov. 1994.
    [20] Video coding for low bit rate communication, Int. Telecommun. Union-Telecommun. (ITU-T), Recommendation H.263, version 1,1995; version 2, 1998; version 3, 2000.
    [21] Advanced video coding for generic audiovisual services, ITU-T andISO/IEC JTC 1, Recommendation H.264 and ISO/IEC 14 496-10 (MPEG-4) AVC, 2003.
    [22] Coding of moving pictures and associated audio for digital storage media at up to about 1.5 Mbit/s-Part 2: Video, ISO/IEC JTC 1, ISO/IEC 11 172-2 (MPEG-1), Mar. 1993.
    [23] Coding of audio-visual objects-Part 2: Visual, ISO/IEC JTC 1, ISO/IEC 14 496-2 (MPEG-4 visual version 1), 1999-2003.
    [24] Whybray, M.W. and Ellis W., H.263 video coding recommendation for PSTN videophone and multimedia, IEE Colloquium (Digest) (154), 1995, pp. 6/1-6/9.
    [25] Tajiri, Tetsuo, Suzuki, Yutaka, Nishimura, Shinji and Yoshimura, Hiroshi, Single board video codec for ISDN visual telephone, Proceedings, ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing, 1991, pp. 2853-2856.
    [26] Adaptation of H.320 visual telephone terminals to B-ISDN environments, ITU-T, Recommendation H.321, 1998.
    [27] Broadband audio-visual communications systems and terminal equipment, ITU-T Recommendation H.310 1996.
    [28] Raychaudhuri, D. Reininger and D. Siracusa, R., Video transport in ATM networks: A systems view, 1996, Multimedia Systems 4 (6), pp. 305-315.
    [29] Gringeri S., Khasnabish B., Lewis A., Shuaib K., Egorov, R. and Basch, B., Transmission of MPEG-2 video streams over ATM, 1998, IEEE Multimedia 5(1), pp. 58-71.
    [30] R. Braden Ed, Resource ReSerVation Protocol (RSVP)-Version 1 Functional Specification, Internet Eng. Task Force (IETF), Request for Comments (RFC) 2205, 1997.
    [31] S. Wenger, H.264/AVC over IP, IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, no. 7, 2003, pp. 645-656.
    [32] Y. Watanabe, Low power MPEG-4 ASP codec IP macro for high quality mobile video applications, Proc. Digest of Technical Papers - IEEE International Conference on Consumer Electronics, 2005, pp. 337-338.
    [33] K. Chun-Wei, A High-Definition H.264/AVC Intra-Frame Codec IP for Digital Video and Still Camera Applications, IEEE Transactions on Circuits and Systems for Video Technology, vol. 16, no. 8, 2006, pp. 917-928.
    [34] V. Antonio, UPnP architecture for distributed video voice over IP applications, Proc. 2007 4th Annual IEEE Consumer Communications and Networking Conference, CCNC 2007,2007, pp. 911-915.
    [35] T.H. Szymanski and D. Gilbert, Internet Multicasting of IPTV With Essentially-Zero Delay Jitter, Broadcasting, IEEE Transactions on, vol. 55, no. 1, 2009, pp. 20-30.
    [36] Charlet G, Corbel E, Lazaro J, et al. WDM transmission at 6 Tbit/s capacity over transatlantic distance, using 42.7Gb/s differential phase-shift keying without pulse carver. Washington, DC, United States: Optical Society of America, Washington, DC 20036-1023, United States, 2004.
    [37] Luther G G. New fibers for ultra-high-capacity transmission systems. Anaheim, CA, United States: Institute of Electrical and Electronics Engineers Inc., 2002.
    [38] Jajszczyk A. Automatically switched optical networks: Benefits and requirements. IEEE Communications Magazine, 2005,43(2): 10-15.
    [39] Yue W, Mocerino J V. Broadband access technologies for FTTx deployment. Anaheim, CA, United States: Institute of Electrical and Electronics Engineers Computer Society, Piscataway, NJ 08855-1331, United States, 2007.
    [40] S. Esaki, Overview of the next generation network, NTT Technical Review, vol. 5, no. 6, 2007.
    [41] H. Kasahara, Network core technologies for a next generation network, NTT Technical Review, vol. 5, no. 6, 2007.
    [42] M. Der and P. Bayvel, Analysis of a dynamically wavelength-routed optical burst switched network architecture, Journal of Lightwave Technology, vol. 20, no. 4, 2002, pp. 574-585.
    [43] C. Boworntummarat, Using mesh and multi-ring methods in the design of Survivable wavelength-routed all-optical networks, European Transactions on Telecommunications, vol. 16, no. 2, 2005, pp. 157-172.
    [44] X. Yang and B. Ramamurthy, Sparse regeneration in translucent wavelength-routed optical networks: Architecture, network design and wavelength routing, Photonic Network Communications, vol. 10, no. 1, 2005, pp. 39-53.
    [45] H.erby and N. Stol, Effects of the switching time in OPS/OBS networks, Chinese Optics Letters, vol. 2, no. 3, 2004, pp. 131-134.
    [46] R. Srivastava, R. K. Singh, and Y. N. Singh, WDM-based optical packet switch architectures, Journal of Optical Networking, vol. 7, no. 1, 2008, pp. 94-105.
    [47] R. Nejabati, D. Klonidis, D. Simeonidou, and M. O'Mahony, Demonstration of an agile hybrid IP-optical packet construction mechanism in wavelength routed optical packet switched networks, IEEE Communications Letters, vol. 9, no. 6, 2005, pp. 552-554.
    [48] A. Al Amin, K. Shimizu, et al., Optical burst switching with burst collision resolution using a fast 4 PLZT switch, IEICE Electronics Express, vol. 3, no. 23, 2006, pp. 504-508.
    [49] X. Li, J. Chen, G. Wu, H. Wang, and A. Ye, An experimental study of an optical burst switching network based on wavelength-selective optical switches, IEEE Communications Magazine, vol. 43, no. 5, 2005.
    [50] M.T. Anan and G.M. Chaudhry, SWAP: A slotted wavelength assignment pipeline scheduler for next-generation optical burst switches, Journal of Optical Communications, vol. 28, no. 2, 2007, pp. 103-111.
    [51] J.Y. Cochennec, Activities on next-generation networks under global information infrastructure in ITU-T, IEEE Communications Magazine, vol. 40, no. 7, 2002, pp. 98-101.
    [52] R. Nagarajan and S. Ooghe, Next-generation access network architectures for video, voice, interactive gaming, and other emerging applications: Challenges and directions, Bell Labs Technical Journal, vol. 13, no. 1, 2008, pp. 69-86.
    [53] A. G. Backhouse, I. Y. H. Gu, S. Olafsson, and M. J. Smith, Global optimization of video quality by improved rate control on IP-networks, Proc. Proceedings of SPIE - The International Society for Optical Engineering, 2003, pp. 552-562.
    [54] N. Farber, B. Girod, and J. Villasenor, Extensions of ITU-T recommendation H.324 for error-resilient video transmission, IEEE Magazine on Communications, vol. 36, no. 6, 1998, pp. 120-128.
    [55] G. Tong, G. Lu, and M. Kai-Kuang, Expected Run-Time Distortion Based Scheduling for Scalable Video Transmission with Hybrid FEC/ARQ Error Control, Proc. IEEE Conference on Acoustics, Speech and Signal Processing, (ICASSP), 2007, pp. I-829-I-832.
    [56] W.Q. Tu and H.M. Qiu, Research on guarantee technology of video stream's QoS in the sink over IP network based on RTP, Zhongshan Daxue Xuebao/Acta Scientiarum Natralium Universitatis Sunyatseni, vol. 42, no. 5, 2003, pp. 28.
    [57] T. Pliakas, G. Kormentzas, C. Skianis, and A. Kourtis, MPEG-4 FGS video streaming traffic delivery experimentation in an IP/DVB network, Proc. IEEE International Conference on Communications, 2007, pp. 622-627.
    [58] P. Bottorff and D. Pitt, Networked video: MPEG transport, ATM, or IP?, Proceedings of SPIE - The International Society for Optical Engineering, vol. 3528,1999, pp. 62-68.
    [59] H. Sunan, S. Lisle, and G. Nehib, IPTV transport architecture alternatives and economic considerations, IEEE Magazine on Communications, vol. 46, no. 2,2008, pp. 70-77.
    [60] M. Masugi, T. Takuma, and M. Matsuda, QoS assessment of video streams over IP networks based on monitoring transport and application layer processes at user clients, IEE Proceedings: Communications, vol. 152, no. 3,2005, pp. 335-342.
    [61] Z. Liren, D. Chow, and N. Chee Hock, Cell loss effect on QoS for MPEG video transmission in ATM networks, Proc. IEEE International Conference on Communications, 1999, ICC, pp. 147-151 vol.141.
    [62] X. Fei, V. Markovski, and L. Trajkovic, Packet loss in video transfers over IP networks, Proc. IEEE International Symposium on Circuits and Systems, ISCAS 2001, pp. 345-348 vol. 342.
    [63] Wenyu Liu, Zhenhua Tang and Shuang Zhao, Transmission distortion estimation for real-time video delivery over hybrid channels with bit errors and packet erasures, Computer Communications, 2009, 32,431-438
    [64] R. Koodli and M. Puuskari, Supporting packet-data QoS in next-generation cellular networks, IEEE Communications Magazine, vol. 39, no. 2, 2001, pp. 180-188.
    [65] O. Harmanci and A.M. Tekalp, Rate-distortion optimal video transport over IP allowing packets with bit errors, IEEE Transactions on Image Processing, vol. 16, no. 5, 2007, pp. 1315-1326.
    [66] M. P. Farrera, M. Fleury, M. Ghanbari, and K. Guild, Measurement study of packet loss versus delay in congestion detection for video streaming, Proc. IEEE International Conference on Multimedia and Expo, 2008, pp. 449-452.
    [67] Y. Bai and M.R. Ito, Packet scheduling to support loss guarantee for video traffic, Proc. 10th International Conference on Telecommunications. ICT, 2003, pp. 1343-1348 vol.1342.
    [68] J-C. Bolot, End-to-End Packet Delay and Loss Behavior in the Internet, ACM SIGCOMM, September 1993.
    [69] M.S. Borella, D. Swider, S. Uludag, and G.B. Brewster, Internet Packet Loss: Measurement and Implications for End-to-End QoS, International Conference on Parallel Processing, August 1998.
    [70] V. Paxson, Measurements and Analysis of End-to-End Internet Dynamics, Ph.D. dissertation, Computer Science Department, University of California at Berkeley, 1997.
    [71] O. Ait-Hellal, E. Altman, A. Jean-Marie, and I. A. Kurkova, On loss probabilities in presence of redundant packets and several traffic sources, Performance Evaluation, vol. 36-37, 1999, pp. 485-518.
    [72] H. Yamada, Cell/packet loss behavior in a statistical multiplexer with bursty input, Performance Evaluation, vol. 17, no. 2,1993, pp. 77-90.
    [73] I. Cidon. A. Khamisy. and M. Sidi. Analysis of packet loss processes in high-speed networks, IEEE Tmras Inform. Theoq'. vol. 39. no. 1. pp. 98-108. Jan. 1993.
    [74] D. Loguinov, H. Radha, End-to-end Internet video traffic dynamics: statistical study and analysis, in: Proceedings of the IEEE INFOCOM 2002, June 2002, pp. 723-732.
    [75] E. Martinian and C.E.W. Sundberg, Decreasing distortion using low delay codes for bursty packet loss channels, IEEE Transactions on Multimedia, vol. 5, no. 3, 2003, pp. 285-292.
    [76] I.-C Bolot. End-to-end delay and loss bzhavior in the Internet, in Proc. ACM Sigcomm 1993. Sept. 1993, pp. 289-298.
    [77] Xunqi Yu, James W. Modestino and Xusheng Tian, The Accuracy of Gilbert Models in Predicting Packet-Loss Statistics for a Single-Multiplexer Network Model, IEEE INFOCOM, 2005, pp.2602-2612.
    [78] L. Zhang, D. Chow, and C. H. Ng, Cell loss effect on QoS for MPEG video transmission in ATM networks, in Proc. IEEE Int. Conf. on Commun. (ICC), Jun. 1999, vol. 1, pp.147-151.
    [79] M. Yajnik, S. Moon, J. Kursoe and D. Towsley, Measurement and modelling of the temporal dependence in packet loss, IEEE INFOCOM'99, March 1999, pp. 345-352.
    [80] C. C. Tan, N. C. Beaulieu. On First-Order Markov Modeling for the Rayleigh Fading Channel, IEEE Trans. Commun. 48 (12), December 2000, 2032-2040.
    [81] Pierluigi Salvo Rossi, Gianmarco Romano, Francesco Palmieri. and Giulio Iannello. Joint End-to-End Loss-Delay Hidden Markov Model for Periodic UDP Traffic Over the Internet, IEEE Trans. Sig. Proc, Vol. 54, Nn. 2, Feb 2006, pp. 530-541.
    
    [82] K. Kawai and H. Ichino, 250mW 2.488Gbit/s and 622Mbit/s SONET/SDH bit-error- monitoring LSI, Electronic Letter, 27th May 7999 Vol. 35, No. 11, pp. 914-916.
    [83] C. Guillemot et al., Transparent optical packet switching: the European ACTS KEOPS project approach, Journal of lightwave technology, vol.16, no.12, December, 1998.
    [84] F. Vazquez-Abad et al., Does header length affect performance in optical burst switched networks, Journal of optical networking, vol. 3, no. 5, May 2004.
    [85] Overby, H., Stol, N, Effects of bursty traffic in service differentiated optical packet switched networks, Optics Express, 2004 12 (3), pp. 410-415
    [86] J. G. Kemeny and J. L. Snell, Potentials for denumerable Markov chains, Journal of Mathematical Analysis and Applications 3 (1961), pp.196-260.
    [87] E. N. Gilbert, Capacity of burst-noise channel, Bell Syst. Tech. 39 (September 1960) 1253-1265.
    [88] L. N. Kanal, A. R. K. Sastry, Models for channels with memory and their applications to error control, Proc. IEEE 66 (7) (July 1978) 724-744.
    [89] A. Clark, A. Pendleton, RTCP XR - IP Video metrics report blocks draft-clark-avt-rtcpxr- video-00, January 2006 IETF (Internet draft expires June 2006).
    [90] H. Sanneck and G. Carle, A framework model for packet loss metrics based on loss runlength, in Proc, of the SPIE/ACM SIGMM Multimedia Computing and Networking Conference 2000 (MMCN 2000), San Jose, CA, January 2000.
    [91] P.D. Bergstrom, A markov chain model for an optical shared-memory packet switch, IEEE Transactions on Communications 47 (10), 1999, pp. 1593-1603.
    [92] T. Tachibana, Effect of switching time on timer-based burst assembly and its effect on voice-over-internet protocol quality of service over optical burst switching networks, Journal of Optical Networking 5 (7), 2003, pp. 532-540.
    [93] J.P. A. Adoul, et al, A Critical Statistic for Channels With Memory, IEEE Trans. Inf. Theory, vol. IT-18,no. 1, Jan 1972, pp. 133-141.
    [94] I. Cidon, A. Khamisy, and M. Sidi, Analysis of packet loss processes in high-speed networks, IEEE Trans. Inf. Theory, vol. 39, no. 1, pp. 98-108, Jan. 1993.
    [95] X. Yu, et al., The accuracy of Markov chain models in predicting packet-loss statistics for a single multiplexer, IEEE Trans. Inf. Theory, vol. 54, no. 1, 2008, pp. 489-501.
    [96] Y.J. Liang, et al., Analysis of Packet Loss for Compressed Video: Effect of Burst Losses and Correlation Between Error Frames, IEEE Transactions on Circuits and Systems for Video Technology, vol. 18, no. 7, 2008, pp. 861-874.
    [97] W. Jiang and H. Schulzrinne, Modeling of packet loss and delay and their effect on real-time multimedia service quality, in Proc. 10th Int. Workshop Netw. Oper. Syst. Support for Digital Audio and Video, Jun. 2000.
    [98] Zhicheng Li, Gaoxi Xiao, Yongjun Zhang, Wanyi Gu and Sheng Liang, Modeling of distortion for arbitrary packet loss patterns in video transmission, Proc. of IEEE Conference on Industrial Electronics and Applications (ICIEA), 2008, pp. 1983-1987.
    [99] R. Zhang, S. L. Regunathan, and K. Rose, Video coding with optimal inter/intra-mode switching for packet loss resilience, IEEE J. Selected Areas Commun., vol.18, no.6, 2000, pp. 966-976.
    [100] Y. Hua, Advances in Recursive Per-Pixel End-to-End Distortion Estimation for Robust Video Coding in H.264/AVC, Circuits and Systems for Video Technology, IEEE Transactions on, vol. 17, no. 7, 2007, pp. 845-856.
    [101] S. Ekmekci and T. Sikora, Recursive decoder distortion estimation based on AR(1) source modeling for video, Intl Conference on Image Processing, 2004, pp. 187-190 Vol. 181
    [102] Z. H. He, J. F. Cai, and C. W. Chen, Joint source channel rate-distortion analysis for adaptive mode selection and rate control in wireless video coding," IEEE Trans. Circuits Syst. Video Technol., vol. 12, no. 6, pp. 511-523, Jun 2002.
    [103] Y. Wang, Z. Wu, and J. M. Boyce, Modeling of transmission-lossinduced distortion in decoded video, IEEE Trans. Circuits Syst. Video Technol.,vol.l6, no.6, pp.716-732, Jun 2006.
    [104] C. Zhang, H. Y. S. Yu, and X. Yang, Gop-level transmission distortion modeling for mobile streaming video, Signal Processing: Image Communication, vol. 23, pp. 116-126, 2008.
    [105] J. Chakareski, J. Apostolopoulos, T. Wai-tian, S. Wee, and B. Girod, Distortion chains for predicting the video distortion for general packet loss patterns, in Proc. ICASSP 2004, pp. V-1001-1004 vol.1005.
    [106] Chi-Yuan Hsu, Antonio Ortega and Masoud Khansari, Rate Control for Robust Video Transmission over Burst-Error Wireless Channels, IEEE J. Selected Areas Commun., vol.17, no.5. 1999, pp. 756-773.
    [107] Pascal Frossard, FEC Performance in Multimedia Streaming, IEEE Communication Letter, vol. 5, no. 3, 2001, pp. 122-124.
    [1]S.H.G.Chan,Video loss recovery with FEC and stream replication,IEEE Transactions on Multimedia,vol.8,no.2,2006,pp.370-381.
    [2]T.Wiegand,G.J.Sullivan,G.Bjontegaard,and A.Luthra,Overview of the H.264/AVC video coding standard,IEEE Transactions on Circuits and Systems for Video Technology,vol.13,no.7,2003,pp.560-576.
    [3]G.J.Sullivan and T.Wiegand,Video Compression-From Concepts to the H.264/AVC Standard,Proceedings of the IEEE,vol.93,no.1,2005,pp.18-31.
    [4]N.Farber,K.Stuhlmuller,and B.Girod,Analysis of error propagation in hybrid video coding with application to error resilience,in Proc.Intl Conference on Image Processing(ICIP),1999,vol.552,pp.550-554.
    [5]S.Tao and R.Guerin,Application-specific path switching:A case study for streaming video,presented at the ACM Multimedia,New York,Oct.2004.
    [6]A.R.Reibman and V.Vaishampayan,Quality monitoring for compressed video subjected to packet loss,in Proc.Intl Conference on Multimedia and Expo(ICME),2003,vol.11,pp.I-17-20.
    [7]ATIS Technical Report T1.TR.74-2001,Objective Video Quality Measurement Using a Peak-Signal-to-Noise-Ratio(PSNR) Full Reference Technique.
    [8]Y.J.Liang,John G.Apostolopoulos and Bernd Girod,Analysis of packet loss for compressed video:does burst-length matter,in Proc.of IEEE Conference on Acoustics,Speech,and Signal Processing(ICASSP),2003,pp.V-684-687 vol.685.
    [9] Billing Slepy, Statistical Methods in Markov Chains. Ann. Math.Stat. 32, 1961, pp. 12-40.
    [10] M. Yajnik, Sue Moon, Jim Kurose and Don Towsley, Measurement and modelling of the temporal dependence in packet loss, in Proc. of IEEE INFOCOM, vol. 1, 1999, pp. 345-352.
    [11] H. Sanneck and G. Carle, A framework model for packet loss metrics based on loss runlength, in Proc. of the SPIE/ACM SIGMM Multimedia Computing and Networking Conference 2000 (MMCN 2000), San Jose, CA, January 2000.
    [12] E. N. Gilbert, Capacity of burst-noise channel, Bell Syst. Tech. 39, September 1960, pp. 1253-1265.
    [13] J. C. Bolot, End-to-End Packet Delay and Loss Behavior in the Internet, ACM SIGCOMM, September 1993.
    [14] ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6, JVT-AD010, H.264/MPEG-4 AVC Reference Software Manual, Geneva, CH, 29 Jan -3 Feb, 2009
    [1]Girod and N.Farber,Feedback-based error control for mobile video transmission,in Proc.IEEE, vol. 87, no. 10, Oct 1999, pp. 1707-1723.
    [2] Stuhlmuller K, Farber N, Link M and Girod B, Analysis of video transmission over lossy channels, IEEE J. Selected Areas in Commun., vol. 18, no. 6, 2000, pp. 1012-1032.
    [3] J. U. Dani, Z. H. He, H. K. Xiong, Transmission distortion modeling for wireless video communication, in: Proc. GLOBECOM'05, December 2005.
    [4] J. Chakareski, John G. Apostolopoulos, Susie Wee, Wai-tian Tan and Bernd Girod, Rate-distortion hint tracks for adaptive video streaming, IEEE Transactions on Circuits and Systems for Video Technology, vol. 15, no. 10, 2005, pp. 1257-1269.
    [5] Y.J. Liang, John G. Apostolopoulos and Bernd Girod, Analysis of packet loss for compressed video: does burst-length matter?, in Proc. of IEEE Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2003, pp. V-684-687 vol.685.
    [6] J. Chakareski, J. Apostolopoulos, T. Wai-tian, S. Wee, and B. Girod, Distortion chains for predicting the video distortion for general packet loss patterns, in Proc. of IEEE Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2004, pp. V-1001-4 vol.5.
    [7] Y. Wang, Z. Wu, J. M. Boyce, Modeling of transmission-loss-induced distortion in decoded video, IEEE Trans. Circuits Syst. Video Technol. 16 (6) (June 2006) 716-732.
    [8] Yuan Zhang, Wen Gao, Yan Lu, Qingming Huang and Debin Zhao, Joint Source-Channel Rate-Distortion Optimization for H.264 Video Coding Over Error-Prone Networks, IEEE Trans. Circuits Syst. Video Technol. 9 (3) (April 2007) 445-454.
    [9] O. Harmanci and A. M. Tekalp, Stochastic frame buffers for rate distortion optimized loss resilient video communications, in Proc. ICTP, 2005, pp. 1-789-92.
    [10] Zhihai He, Jianfei Cai and Chang Wen Chen, Joint source channel rate-distortion analysis for adaptive mode selection and rate control in wireless video coding, IEEE Trans. Circuits Syst. Video Technol. 12 (6) (June 2002) 511-523.
    [11] R. Zhang, S. L. Regunathan, K. Rose, Video coding with optimal inter/intra-mode switching for packet loss resilience, IEEE J. Selected Areas Commun. 18 (6) (June 2000) 966-976.
    [12] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, Overview of the H.264/AVC video coding standard, IEEE Trans. Circuits Syst. Video Technol., vol. 13, pp. 560-576, 2003.
    [13] ITU-T Recommendation H.264|ISO/IEC 14496-10 AVC, Advanced Video Coding for Generic Audio-visual Services, May 2003.
    [14] < http://iphome.hhi.de/suehring/tml/download/old_jm/im12.2.zip >.
    [1]Girod and N.Farber,Feedback-based error control for mobile video transmission,in Proc.IEEE,vol.87,no.10,Oct 1999,pp.1707-1723.
    [2]Stuhlmuller K,Farber N,Link M and Girod B,Analysis of video transmission over lossy channels,IEEE J.Selected Areas in Commun.,vol.18,no.6,2000,pp.1012-1032.
    [3]Z.H.He,J.F.Cai,C.W.Chen,Joint source channel rate-distortion analysis for adaptive mode selection and rate control in wireless video coding,IEEE Trans.Circuits Syst.Video Technol.12(6)(June 2002) 511-523.
    [4]H.Yang,K.Rose,Advances in recursive per-pixel end-to-end distortion estimation for robust video coding in H.264/AVC,IEEE Trans.Circuits Syst.Video Technol.17(7)(July 2007)845-856.
    [5]Y.Wang,Z.Wu,J.M.Boyce,Modeling of transmission-loss-induced distortion in decoded video, IEEE Trans. Circuits Syst. Video Technol. 16 (6) (June 2006) 716-732.
    [6] C. Zhang, H. Yang, S. Yu, X. Yang, GOP-level transmission distortion modeling for mobile streaming video, Signal Processing: Image Communication 23 (2008) 116-126.
    [7] J. U. Dani, Z. H. He, H. K. Xiong, Transmission distortion modeling for wireless video communication, in: Proc. GLOBECOM'05, December 2005.
    [8] Y.J. Liang, John G. Apostolopoulos and Bernd Girod, Analysis of packet loss for compressed video: does burst-length matter?, in Proc. of IEEE Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2003, pp. V-684-687 vol.685.
    [1]H.Sanneck and G.Carle,A framework model for packet loss metrics based on loss runlength,in Proc.of the SPIE/ACM SIGMM Multimedia Computing and Networking Conference 2000(MMCN 2000),San Jose,CA,January 2000.
    [2]M.Yajnik,Sue Moon,Jim Kurose and Don Towsley,Measurement and modelling of the temporal dependence in packet loss,in Proc.of IEEE INFOCOM,vol.1,1999,pp.345-352.
    [3]W.Jiang and H.Schulzrinne,Modeling of Packet Loss and Delay and Their Effect on Real-Time Multimedia Service Quality,Proc.NOSSDAV 2000,June 2000.
    [4]< http://www3.ntu.edu.sg/ntrc/>
    [5] D. Loguinov, H. Radha, End-to-end Internet video traffic dynamics: statistical study and analysis, in: Proceedings of the IEEE INFOCOM 2002, June 2002, pp. 723-732.
    [6] Y.J. Liang, John G. Apostolopoulos and Bernd Girod, Analysis of packet loss for compressed video: does burst-length matter?, in Proc, of IEEE Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2003, pp. V-684-687 vol.685.
    [7] R. Zhang, S. L. Regunathan, and K. Rose, Video coding with optimal inter/intra-mode switching for packet loss resilience, IEEE J. Sel. Areas Commun., vol. 18, no. 6, pp. 966-976, Jun. 2000.
    [8] P. A. Chou, Z. Miao, Rate-distortion optimized streaming of packetized media, IEEE Trans. Multimedia 8 (2) (April 2006) 390-404.
    [9] J. Chakareski, Distributed media cooperation for enhanced video communication, in Proc. Int. Packet Video Workshop, Hangzhou, China, Apr. 2006.
    [10] J. Chakareski and P. Frossard, Rate-distortion optimized bandwidth adaptation for distributed media delivery, in Proc. ICME, Amsterdam, The Netherlands, July 2005.
    [11] J. Apostolopoulos, W.-T. Tan, S. Wee, and G.Wornell, Modeling path diversity for multiple description video communication, in Proc. IEEE ICASSP, May 2002, pp. 2161-2164.
    [12] J. Chakareski, J. Apostolopoulos,W.-T. Tan, S.Wee, and B. Girod, Distortion chains for predicting the video distortion for general packet loss patterns, in Proc. ICASSP, vol. 5. Montreal, QC, Canada, May 2004, pp. 1001-1004.
    [13] V. Paxson, Measurements and Analysis of End-to-End Internet Dynamics, Ph.D. dissertation, Computer Science Department, University of California at Berkeley, 1997.
    [14] A. R. Reibman and V. Vaishampayan, Quality monitoring for compressed video subject to packet loss, presented at the IEEE ICME, Baltimore, MD, Jul. 2003.
    [15] A. R. Reibman and V. Vaishampayan, Low complexity quality monitoring of MPEG-2 video in a network, presented at the IEEE ICIP, Middletown, NJ, Sep. 2003.
    [16] A. R. Reibman, V. Vaishampayan, and Y. Sermadevi, Quality monitoring of video over a packet network, IEEE Trans. Multimedia, vol.6, no. 2, pp. 327-334, Apr. 2004.
    [17] S. Tao and R. Guerin, On-line estimation of Internet path performance: An application perspective, presented at the IEEE INFOCOM, Hong Kong, China, Mar. 2004.
    [18] Z. H. He, J. F. Cai, C. W. Chen, Joint source channel rate-distortion analysis for adaptive mode selection and rate control in wireless video coding, IEEE Trans. Circuits Syst. Video Technol. 12 (6) (June 2002) 511-523.
    [19] Yuan Zhang, Wen Gao, Yan Lu, Qingming Huang and Debin Zhao, Joint Source-Channel Rate-Distortion Optimization for H.264 Video Coding Over Error-Prone Networks, IEEE Trans. Circuits Syst. Video Technol. 9 (3) (April 2007) 445-454.
    [20] J. Chakareski, John G.Apostolopoulos, Susie Wee, Wai-tian Tan and Bernd Girod, Rate-distortion hint tracks for adaptive video streaming, IEEE Transactions on Circuits and Systems for Video Technology, vol. 15, no. 10, 2005, pp. 1257-1269.
    [21] J. Chakareski and P. Frossard, Distributed Collaboration for Enhanced Sender-Driven Video Streaming, IEEE Transaction on Multimedia, vol. 10, no. 5, 2008, pp. 858-870.
    [22] J. Chakareski and P. Frossard, Rate-Distortion Optimized Distributed Packet Scheduling of Multiple Video Streams Over Shared Communication Resources, IEEE Transaction on Multimedia, vol. 8, no. 2, 2006, pp. 207-218.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700