小麦种质“矮孟牛”及衍生品种(系)间品质性状的遗传传递及遗传多样性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦的骨干亲本是遗传育种研究及新品种选育的重要资源。本研究以我国小麦骨干亲本“矮孟牛”及其衍生品种(系)为材料,对品质性状的遗传传递、HMW-GS组成的遗传变异以及1B/1R易位系鉴定和醇溶蛋白的遗传多样性进行了分析。为总结小麦骨干亲本的创制利用经验,研究小麦骨干亲本主要性状形成的生物学基础及其演变规律,完善骨干亲本培育和利用方法,培育高产优质多抗的小麦新品种提供参考。取得的主要结果如下:
     1.“矮孟牛”及其衍生品种(系)品质性状的遗传变异对矮孟牛及衍生品种(系)的品质性状的遗传传递研究表明,矮孟牛及衍生品种(系)的籽粒蛋白质含量、白度和亮度遗传变异系数较小,沉降值、b*(黄蓝值)、硬度和湿面筋含量遗传变异系数中等,a*和面团吹泡特性遗传变异系数较大,存在较大的变异,而且通过分析可以看出,在矮孟牛及衍生品种(系)中,由种质到衍生品种(系)蛋白质、沉降值、白度、亮度、a*(红绿值)、b*和面团吹泡特性等品质性状遗传变异系数增大,说明在品种选育过程中通过利用新的亲本增加了其遗传多样性。而硬度、湿面筋含量的遗传变异系数降低,可能是由于各育种单位在育种过程中对其进行选择而造成的,使其遗传多样性降低。
     对各品质性状进行相关分析表明,蛋白质含量与沉降值达极显著正相关,与白度达极显著负相关,与b*、硬度和W呈显著正相关;沉降值与a*、W和P/L达极显著正相关,与湿面筋含量呈极显著负相关,与b*达显著正相关;白度与L*、a*和L值达极显著正相关, b*、硬度、P和P/L呈极显著负相关,与湿面筋呈显著负相关;硬度与b*、P值、W和P/L达极显著正相关,与白度、L*、和L值达极显著负相关,与蛋白质含量、沉降值、a*呈显著正相关;湿面筋含量与沉降值、a*、P值、W值和P/L达极显著负相关,与b*呈显著正相关,与白度呈显著负相关。
     2.“矮孟牛”及其衍生品种(系)HMW-GS的遗传变异HMW-GS的遗传传递研究发现,供试材料的HMW-GS组合主要以Null或1/7+9或7+8/2+12为主。在Glu-A1位点,3个原始亲本中矮丰3号和孟县201的亚基都为1,牛朱特为N亚基; 7个矮孟牛种质含有1和N亚基,128个矮孟牛衍生品种(系)中亚基有1、N、2*;在Glu-B1位点,原始亲本矮丰3号、孟县201和牛朱特亚基分别为7+9、7+8和7;7个矮孟牛种质含有7+9、7+8和14+15亚基,128个矮孟牛衍生品种(系)中含有7+9、7+8、14+15和17+18亚基;在Glu-D1位点, 3个原始亲本和7个矮孟牛种质的亚基都为2+12,128个矮孟牛衍生品种(系)中含有2+12、5+10、2+10。说明由种质到衍生品种(系)的选育过程中随着含有新的高分子谷蛋白亚基材料的引入,HMW-GS亚基类型越来越多,拓宽了其遗传基础。
     3.“矮孟牛”及其衍生品种(系)的1B/1R易位系的鉴定及品质性状分析
     138个“矮孟牛”及其衍生品种(系)中86份品种(系)含有1BL/1RS易位,占样品总数的62.32%。在3个原始亲本中只有牛朱特含有1B/1R易位系,7个杂交形成的“矮孟牛”种质中除Ⅲ型未发现易位系外,其他六个种质均含有易位系,在128个“矮孟牛”衍生品种(系)中79份品种(系)含有1BL/1RS易位,占品种的61.72%,分布相当广泛,说明1BL/1RS易位具有稳定传递的遗传特点,易于在育种中利用。
     1BL/1RS易位品种沉淀值、湿面筋含量、P值和P/L值的变异系数明显小于非1BL/1RS易位品种,硬度的变异系数则明显大于非1BL/1RS易位品种,而其他性状的变异系数在1BL/1RS易位品种和非1BL/1RS易位品种之间无明显差别。可见,1BL/1RS易位系的引入增加了品种间籽粒硬度的差异,降低了沉淀值、湿面筋含量等的差异。
     籽粒硬度、蛋白质含量和湿面筋含量等主要反映蛋白质数量的品质性状的平均值在1BL/1RS和非1BL/1RS易位品种间差异不显著,而沉降值、韧性(P值)、延伸性(L值)和烘焙力(W值)等主要反映蛋白质(面筋)质量的性状平均值在两类品种间差异均极显著,即1BL/1RS易位品种的面筋质量(强度和延伸性)极显著低于非1BL/1RS易位品种。
     4.“矮孟牛”及其衍生品种(系)醇溶蛋白遗传多样性分析
     利用醇溶蛋白电泳在138份小麦材料中分离出42条迁移率不同的醇溶蛋白谱带。每个品种少者可分离出12条,多者可达19条,多数品种在14~16条之间。谱带1、2出现频率最大,为91.30%;谱带18出现频率最小,为0.072%。138份材料间的遗传距离变异范围在0~0.84之间,平均值为0.452。品种118和119、86、87和88的GD值最小为0,品种92和121的GD值最大为0.84,表明供试品种之间存在着较大的遗传差异。根据材料的谱带类型利用UPGMA非加权成对群算术平均数方法进行聚类分析,在相似系数为0.568水平上将“矮孟牛”及其衍生品系分成五大类,能较好的反映品种(系)之间的遗传差异。
The backbone of wheat is an important resource for the genetics and breeding research of new varieties. In this research, the backbone of China's wheat“Aimengniu”and its derivative varieties (lines) were used to study genetic transmission of quality traits, genetic variation of HMW-GS composition, as well as the1B/1R identification and genetic diversity analysis. The main results were as follows:
     1. The genetic variation of quality traits in“Aimengniu”and its derivative varieties (lines)
     The transmission of quality genetic traits of China's wheat“Aimengniu”and its derivative varieties (lines) was analyzed. The results showed that the coefficients of genetic variation of protein contents, whiteness and brightness were lower, while sedimentation volume, b* and wet gluten content were medium, and genetic characteristics of dough were higher. And the coefficient of genetic variation of derivative varieties (lines) is larger than germplasm and significant difference. These indicated the genetic characterisitics were improved by introducing new blood during breeding.
     The analysis of quality traits showed that significant correlations were detected between protein content and sedimentation value, but significantly negatively correlates with whiteness; sedimentation value positively correlates with a*, w-value, P/L value and b* character, but negatively correlates with wet gluten content; whiteness positively corelates with L*, a* and L, and negatively correlates with b*, hardness, P, P/L value and wet gluten content; Seed hardness negatively correlates with whiteness, L*, and positively correlates with others; Wet gluten content negatively correlates with sedimentation value, a*, P-value, P/L and whiteness.
     2. The genetic variation of HMW-GS in“Aimengniu”and its derivative varieties (lines)
     Subunits Null, 1/7+9 and 7+8/2+12 were the mainly subunit compositions in these materials. At Glu-A1 locus, the subunit 1 was in“Aifeng 3”and“Mengxian201”, and Neuzucht has Null subunit. There are 1 and N subunit in seven germplasms of“Aimengniu”and 1, N, and 2* in 128 derivative varieties (lines). The subunit of original parent“Aifeng 3”,“Mengxian201”and Neuzucht is 7+9, 7+8 and 7 at Glu-B1 locus, respectively, Seven“Aimengniu”germplasms have 7+9, 7+8 and 14+15 subunits. 128 derivative varieties (lines) have 7+9, 7+8, 14+15 and 17+18 subunits. At Glu-D1 locus, subunis 2+12 were mainly in three original parents and seven germplasms of Aimengniu, while 128 derivative varieties (lines)have 2+12、5+10、2+10. These illustrated that more and more types of subunits appeared with new HMW-GS’s introduced during breeding , which would widen the hereditary basis.
     3. The 1B/1R identification in“Aimengniu”and its derivative varieties (lines) and the analysia of quality traits
     There were 1BL/1RS in the 86 varieties of 138, which is 62.32% of total number of samples. The reason was speculated that 1BL/1RS transposal contributed significantly to wheat yield. The 1BL/1RS translocation lines appeared in“Aimengniu”germplams except the III type, and the Neuzucht was also 1BL/1RS lines. 1BL/1RS translocation lines was found in 79 varieties of 128 derivative varieties which is 61.72% of total. These indicated that the 1BL/1RS transposal distributed extensively and stablely transferred, which is easy to be utilized in breeding.
     The variation coefficients of 1BL/1RS translocations forsedimentation volume, wet gluten content, P-value and P/L-value were obviously lower than that of non-1BL/1RS translocation, and the coefficient of variation of hardness was higher than that of non-1BL/1RS translocation. There were no obvious differences in other traits between 1BL/1RS species translocation and varieties of non-1BL/1RS translocation.
     The average of the quality traits mainly reflect quantitative traits of proteins such as Grain hardness, protein content and wet gluten content were no significant differences between 1BL/1RS species translocation and varieties of non-1BL/1RS translocation, but the average of the quality traits mainly reflect quality traits of proteins such as sedimentation value, P-value, L-value and W-value protein content and wet gluten content were significantly correlations between 1BL/1RS species translocation and varieties of non-1BL/1RS translocation, that is, the gluten quality of 1BL/1RS significantly lower than the varieties of non-1BL/1RS.
     4. The genetic diversity analysis of“Aimengniu”and its derivative varieties (lines)
     Genetic diversity analysis of“Aimengniu”and its derivative varieties (lines) were studied by using gliadin mark, and 42 bands were obtained. At least 12 bands were separated in each varieties, most of the varieties contained 14~16 bands, special varieties had and 19 bands. The variation range of 138 varieties is 0~0.84, the average is 0.452. The least GD value of variety 118,119, 86, 87and 88 was 0, and the biggest GD value of variety 92 and 121 was 0.84. The obvious differences among in different varieties were shown by dividing materials into 5 types using UPGMA cluster analysis, which could reflect the genetic variation among the varieties.
引文
1.白建荣,贾旭,刘坤凡,王道文.乌拉尔图小麦(Triticum urartu) 1Ay高分子量麦谷蛋白亚基基因编码区的克隆与鉴定[J].植物学报. 2004, 46(4):463-471
    2.曹莉,王辉,李学军.黄淮冬麦区区试小麦品种(系)的品质性状分析及评价[J].麦类作物学报. 2001, 21(3):68-71
    3.常胜合,舒海燕,童依平,李滨,李振声.三个类核糖核酸酶基因在磷饥饿条件下的表达[J].作物学报.2005,31(9):1115-1119
    4.陈洪文.春小麦品种数量性状遗传距离的测定及其系谱分析[J].遗传.1985,7(1):7-10
    5.陈玉清,郑有良,魏育明.四川小麦主栽品种醇溶蛋白遗传差异分析[J].四川农业大学学报.1999,17:254-259.
    6.董玉琛.我国作物种质资源研究的现状与展望[J].中国农业科技导报. 1999,2:36-40
    7.方先文.小麦优异亲本资源的遗传聚类分析[J].江苏农业科学.1996,(4):28-31
    8.韩金梅.春小麦品种资源多元遗传分析[J].种子.1992,(4):22-28韩新年,郑有良,魏育明等.新疆主栽小麦HMW谷蛋白亚基遗传变异研究[J].西北农业学报,2003,12(1):12-14
    9.郝晨阳.甘肃省春小麦资源高分子量麦谷蛋白亚基遗传变异研究[C].甘肃农业大学硕士论文
    10.郝晨阳等.我国西北春麦区小麦育成品种种遗传多样性的AFLP分析[J].植物遗传资源学报.2003,4(4):285-291
    11.胡延吉.普通小麦“矮孟牛”等的主要经济性状配合力分析[J].山东农业大学学报.1991, 12(4): 361-368
    12.贾继增,张启发.为第二次“绿色革命”发掘基因资源[J].中国基础科学.2001, 7:4-8
    13.李鸿恩等.我国小麦种质资源主要品质特性鉴定结果及评价[J].中国农业科学.1995,28(5):29-37
    14.李晴祺.冬小麦种质创新与评价利用.济南:山东科学技术出版社,1998:31-34
    15.李雪莉,郑有良,魏育明等.小麦抗白粉病优质高产T1BL.1RS易位系的鉴定与分析[J].四川农业大学学报.1999,17(4):367-373
    16.李竹林,王涛.四川小麦的高分子谷蛋白亚基遗传变异分析[J].四川大学学报(自然科学版).1998,35(论文集):30-35
    17.李宗智等.小麦遗传资源籽粒硬度和面粉沉淀值的研究[J].中国农业科学. 1993,26(4):15-20
    18.栗站稳,卜学路,卢少源.早代筛选小麦HMW麦谷蛋白优质亚基的SDS-PAGE方法[J].北京农业科学.1995,13(3):17-20
    19.栗站稳,阎旭东.适于分析小麦高分子量麦谷蛋白亚基的SDS-PAGE方法[J].河北农业大学学报.1994,17(2):19-23
    20.刘华,王宇生,张辉,等.小麦种质资源醇溶蛋白指纹图谱数据库的初步建立及应用[J].作物学报. 1999, 25(6):674-682
    21.刘广田,李保云.小麦品质性状的遗传及其遗传改良[J].农业生物技术学报.2000,8(4):307-314
    22.刘广田等.普通小麦子粒品质性状研究.Ⅱ.子粒品质性状与农艺性状的相关[J].作物学报.1990.16-19
    23.刘建军,何中虎,Pena R J等.1BL/1RS易位对小麦加工品质的影响[J].作物学报.2004,30(2):149-153
    24.刘丽,周阳,何中虎,等.Glu-1和Glu-3等位变异对小麦加工品质的影响[J].作物学报.2004,30(10):959-968
    25.刘三才,郑殿升,曹永生等.中国小麦选育品种与地方品种的遗传多样性[J].中国农业科学.2000,33(4):20-24
    26.刘现鹏,田纪春,张永祥.山东省不同年代主要栽培小麦品种(系)高分子量谷蛋白亚基分布[J].中国粮油学报.2002,17(2):12-17.
    27.刘志杰,张学民,万永芳,刘坤凡,王道文.小伞山羊草高分子量麦谷蛋白亚基及其基因的鉴定[J].植物学报.2002,44(7):809-814
    28.毛沛,李宗智,卢少源等.小麦遗传资源HMW麦谷蛋白亚基组成及其与面包烘烤品质关系的研究[J].中国农业科学.1995,28(增):22-27
    29.潘幸来,潘前颖,史引红等.小麦形态性状的变频及基因[J].麦类作物.1999,19(3):3-7
    30.亓增军,刘大钧,陈佩度等.冬小麦种质“矮孟牛”中新型小麦-黑麦复杂易位的遗传传递分析[J].作物学报.2001,27(5):582-587
    31.任燕,R.A.Graybosch,王涛.小麦中的1BL/1RS染色体易位[J].麦类作物学报.2006,26(3):152-158
    32.司红起,马传喜.SDS-PAGE和PCR检测1B/1R易位系研究初报[J].中国农学通报.2006,22(7):95-97
    33.苏雅蕊,张大乐,高安礼等.小麦1BL/1RS易位系1RS分子标记位点的稳定性分析[J].麦类作物学报,2006,26(6):6-10
    34.田纪春.优质小麦.山东科学技术出版社,1995
    35.王光瑞等.我国小麦主要优良品种的面包烘烤品质研究[J].1987年总结报告.庄巧生论文集.中国农业出版社.1999,433-460
    36.王辉,马志强,曹莉等.我国冬小麦品质现状与问题[J].西北农林科技大学学报(自然科学版).2003,31(4):34-40
    37.王珊珊,李秀全,田纪春.利用SSR标记分析小麦骨干亲本“矮孟牛”及衍生品种(系)的遗传多样性[J].分子植物育种,2007,5(4):485-490
    38.王岳光,刘广田.小麦籽粒蛋白质的研究概况.北京农业优质小麦研究专辑,1994.
    39.蔚然.优质小麦快速检测方法的探讨[J].粮食储藏.2003, 32: 43-45
    40.魏育明,郑有良,刘登才等.四川小麦地方品种Gli-1、Gli-2和Glu-1位点的遗传多样性[J].植物学报.2000, 42(5):496-501.
    41.魏育明,郑有良,周永红等.中国特有小麦Gli-1,Gli-2和Glu-l位点的遗传多样性[J].植物学报.2001,43(8):834一839.
    42.吴崇明,徐智斌,王涛:小麦1BL/1RS易位系的生化和分子标记鉴定[J].西南农业学报.2007,20(1):15-20
    43.颜启传,黄亚军,徐媛.试用ISTA推荐的种子醇溶蛋白电泳方法鉴定大麦和小麦品种[J].作物学报. 1992, 18(1):61-68.
    44.晏月明,刘广田,S Prodanovic,等.小麦醇溶蛋白的遗传与品质改良明[J].麦类作物学报.1998,18(l):22-26
    45.晏月明,茹岩岩,余建中,等.中国小麦品种醇溶蛋白Gli-1和Gli-2编码位点等位基因组成分析[J].农业生物技术学报. 2000, 8(1): 23-27.
    46.杨国华,苏俊英,李滨,刘建中,李鸣,肖艳梅,李继云,童依平,李振声.来源于中国春×洛夫林10的DH群体的磷利用效率的鉴定[J].植物学报. 2004, 46(3):302-310
    47.杨足君.几个外源物种抗条锈病白粉病基因在小麦背景中的表达[C].四川农业大学博士论文,2000
    48.殷贵鸿,韩玉林,于海飞等.小麦新品种周麦18号的选育及配套栽培技术[J].中国种业, 2006,1:46-47
    49.张彩英,常文锁,孙惠贤.我国北方冬小麦主要推广品种品质性状研究[J].西北植物学报.2002, 22 (5):1176-1184
    50.张怀刚,陈集贤,赵绪兰.青海高原春小麦品种HMW-GS组成[J].西北农业学报.1995,4(4):6-l0
    51.张惠叶.小麦优质资源鉴定及应用[J].作物品种资源.1992(2):10-14
    52.张立平,何中虎,陆美琴等.用Glu-B3、Gli-B1和SEC-1b复合引物PCR检测普通小麦1BL/1RS易位系[J].中国农业科学.2003,36(12):1566-1570
    53.张瑞奇,胡林,许为钢等.黄淮麦区不同时期大面积推广品种的高分子量麦谷蛋白亚基组成分析[J].麦类作物学报.2006,26(2):63-67
    54.张学勇,庞斌双,游光霞等.中国小麦品种资源Glu-1位点组成概况及遗传多样性分析[J].中国农业科学.2002,35(11):1302-1310
    55.张学勇,杨欣明,董玉琛.醇溶蛋白电泳在小麦种质资源遗传分析中的应用[J].中国农业科学.1995, 28(4): 25-32
    56.张延滨,祁适雨,肖志敏等.适于我国小麦品质育种的SDS-PAGE方法[J].哈滨师范大学自然科学学报,1997,5:60-63
    57.张延滨,祁适雨.黑龙江省小麦品种的HMW麦谷蛋白亚基组成和血缘关系的研究[J].东北农业大学学报.1998,29(2):111-116
    58.张延滨.黑龙江省主要小麦品种及品系的HMW麦谷蛋白亚基分析[J].哈尔滨师范大学自然科学学报.1999,15(3):93-97
    59.张谊寒,张改生,马守才.普通小麦品种间醇溶蛋白遗传多样性分析[J].西北植物学报.2005,25(4):668-672.
    60.张玉良,曹永生.我国小麦品种资源蛋白质含量的研究[J].中国粮油学报.1995,10(2):5-8
    61.张正斌.小麦遗传学[M].北京:中国农业出版社,2001:228-229
    62.赵和等.普通小麦高分子量麦谷蛋白亚基遗传变异及与其它性状的关系[J].河北农业大学学报.1993, 16(1): 8-12
    63.周阳,何中虎,张改生等.1BL/1RS易位系在我国小麦育种中的应用[J].作物学报.2004,30(1):531-535
    64.周阳,何中虎,张改生等.1BL/1RS易位系在我国小麦育种中的应用[J].作物学报.2004,30(1):531-535
    65. Berzonsky W, Francki M G. Biochemical, molecular, and cytogenetic technologies for characterizing 1RS in wheat. Euphytica.1999, 108:1-19.
    66. Bumorf T, Bouriquet R. Gluten in subunits of genetically related European hexaploid wheat cultivars their relation to bread-making quality [J]. The oretical and Applied Genetics, 1980, 58:107-111
    67. Bushuk W. Wheat cultlvar identification by glindin elctrophoregrams [J]. Can J. Plant Sei, 1978, 58:112-116
    68. Chengsong Zhu, Michael Gore, Edward S. Buckler, and Jianming Yu. Status and Prospects of Association Mapping in Plants [J]. The Plant Genome, 2008, 1(1): 5-18
    69. Draper S R,ISTA Committee Report of the working group for biochemieal of test for cultivar Encoding genes in Aegilops ventricosa [J]. Molecular breeding, 2006, 17:191-200
    70. Environmental and experimental factors on the gliadin electrophoregrams [J].Can J.Plant Sei.,1979,59:281-288
    71. Freeling, M. Grasses as a Single Genetic System [J]. Reassessment 2001. Plant Physio., 2001, 125: 1191 -1197
    72. Froidmont D.A co-dominant marker for the 1BL/1RS wheat-rye translocation via multiplex PCR [J]. Journal of Cereal Science. 1998, 27 : 229-232
    73. Hoisington D, Khairallah M, Reeves T, Ribaut J M, Skovmand B, Taba S, Warburton M. Plant Genetic Resources: What can They Contribute TowardIncreased Crop Productivity Proc. Natl. Acad. Sci. 1999, 96: 5937-5943
    74. Huang DY,Khanl K. A modified SDS-PAGE Procedure to separate high molecular weight glutenin subunit 2 and 2*[J]. Journal of the science of cereal science,1998,27(3):237-279
    75. Kawaura K, Mochida K, Ogihara Y. Expression profile of two storage-protein gene families in hexaploid wheat revealed by large-scale analysis of expressed sequence tags [J]. PlantPhysiology, 2005, 139 (4): 1870-1880.
    76. Koornneef M, Stam P. Changing Paradigms in Plant Breeding [J]. Plant Physio, 2001, 125: 156-159
    77. Leif Skot, Mervyn O. Humphreys, Ian Armstead, Sue Heywood, Kirsten P. Skot, Ruth Sanderson, Ian D. Thomas, Ken H. Chorlton and N. Ruaraidh Sackville Hamilton. An association mapping approach to identify flowering time genes in natural populations of Lolium perenne [J]. Molecular Breeding 2005, 15 : 233-245
    78. Metakovsky E V, Branlard G. Genetic diversity of French wheat germplasm based on gliandin alleles [J]. Theor ApplGenet, 1998, 96: 209-215
    79. Metakovsky E V, Novoselskaya A Y, Sozinov A A. Geneticanalysis of gliadin components in winter wheat using two-dimensional polyacrylamide gel electrophoresis [J]. Theoretical and Applied Genetics, 1984, 69 (1): 31-37
    80. Metakovsky E V, et al. Gliadin alleles composition of Yugoslav winter wheat cultivar [J]. Euphytica, 1991, 54: 285-295
    81. Metakovsky E V, Pogno N E, et al. Gliandin alleles composition of common wheat cultivars grown in Italy [J]. J. Genet &Breed, 1994, 48: 55-60
    82. Metakovsky E V, Branlard G.Genetic diversity of French common wheat germplasm based on gliadin alleles [J].Theor Appl Genet, 1998, 96:209- 218
    83. Metakovsky E V, Gomez M, Vazquez J F. High genetic diversity of Spanish common wheats as judged from gliadin alleles [J]. Plant Breeding, 2000, 119:37-242
    84. Moghaddam, M., Ehdaie, B., and Waines, J. G. Genetic Variation andinterretionships of agronomic character in landraces of bread wheat from southeasternIran.Euphytica.1997, 95: 361-369
    85. Morgante M, Salamini F. From Plant Genomics to Breeding Practice [J]. Current Opinion in Biotech, 2003, 14: 214-219
    86. Nei M. Analysis of gene diversity in subdivided populations [J]. Proceedings of National Academy of Sciences of the U-nited States of America, 1973, 70 (12): 3321-3323
    87. Negassa, N.Estimates of phenotypic diversity and breeding potential of Ethiopian wheats [J].Hereditas.1986, 104:41-48
    88. Nieto-Taladriz MT, Branlard GD, ardevet M.Polymorphism of omegagliadins in durum wheat as revealed by the two-step APAGE/SDSPAGE technique [J]. Theor Appl Genet, 1994, 87:1001-1005
    89. Orth RA,Bushuk W.A comparative study of the proteins of wheat of diverse baking qualities [J]. Cereal Chem,1972,49:268-275
    90. Payne P I, Corfield K G, Blackman J A. Identification of high molecular weight subunit of gluten in whose presence correlates with bread making quality in wheat of related pedigree [J]. Theoretical and Applied Genetics, 1979, 55:153-159.
    91. Payne P.I., Holt L.M., Jaekson E.A.etal. Wheatstorageproteins: Their Geneties and their Potential for Manipulation by Plantbreeding [J]. Philos. Trans.R. SOC. Lond,1984,304:359~371
    92. Payne P L,Lawrence G J. Catalogue of alleles for the complex gene loci,Glu-Al,Glu-Bl and Glu-D1which code for high molecular weight subunits of glutenin in hexaploid wheat [J]. Cereal rescomm, 1983, 11:29-35
    93. Poiarkova, H., and Blum, A. Landraces of wheat from the northern region inIsrael [J].Euphytica.1983, 32: 257-271
    94. Robbie Waugh, Jean-Luc Jannink, Gary J Muehlbauer and Luke Ramsay. The emergence of whole genome association scans in barley [J]. Current Opinion in Plant Biology, 2009, 12: 1-5
    95. Rogosky P M, Sorrels M E.Characterization of wheat-rye recombinants with RFLP and PDR [J].Theor Appl Genet, 1993, 85:1023-1028
    96. Sozinov A, Novoselskaya A Y, Lushnikova A, et al.Cotological analysis of bread wheat variants with 1B/1R substitution and translocationin thekarayotype [J].Tsitologiya I Genetika.1987, 21(4):256
    97. Suton KH,Bietz JA.Variation among high molecular weight Subunits of glutenin detected by capillary electionphonesis [J]. Cereal Science,1997,25:9-16
    98. Szucs P,Juhasz A,Karsail.Use of molecular markers for studying genetic diversity in durum wheat (Tritieum durum Desf.) [J]. Journal of genetics and breeding,2000,54 (l):25~33.
    99. Zellerf. J. 1B/1R wheat-rye chromosome substitutions and transloctions. In: Proc.4th. Iter [J]. Wheat Genet Symp.1973.209~211
    100. Villareal R. L, S. Rajaram, A. Mujeeb-kazietal.The effect of chromosome
    1B/1R translocation on the yield potential of certain springwheats (TriticumaestivumL.) [J]. PlantBreeding, 1991, 106:77~81

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700