小麦“永久F_2”群体构建及株高和分蘖特性的QTL定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦等农作物的许多重要农艺性状(如产量性状、生育期、抗逆性等)和品质性状是由多基因控制的数量性状(QTL)。作物性状QTL定位使用的遗传群体主要包括分F2等分离群体和RILs等永久性群体。“IF2”群体由永久群体中的每个纯合株系按一定组配方案两两杂交获得,既具有F2群体信息量大、可以估计显性效应以及与显性有关的上位性效应的优点,又具有RILs或DH等永久群体可以组配出足量的种子满足多年多点试验需要,以取得准确的表型观测值,有利于鉴别紧密连锁的QTL标记的优点。本研究以花培3号×豫麦57的双单倍体(Doubled Haploid,DH)群体为基础构建了永久F2群体,构建了小麦分子遗传图谱,并利用基于混合线性模型的QTLNetwork 2.0软件,对小麦分蘖、株高进行了QTL定位,旨在为研究小麦分蘖、株高QTL及其遗传效应提供参考,对小麦分蘖株高的分子标记辅助选择育种有很大的应用价值和理论意义
     取得的主要结果如下:
     1小麦“永久F2”群体的构建
     花培3号和豫麦57杂交F1通过花药培养,经染色体加倍获得168个双单倍体(doubled-haploid,DH)群体。2007年5月根据“永久F2”组配方案,将168个DH系随机分成两组,每组包含84个DH系,从两组DH系中各随机选择1个DH系组配成一个杂交组合,然后再从剩余的DH系中各选出1个DH系进行组配,依次类推。通过一轮杂交组配84个杂交组合,经两轮杂交,获得包含168个杂交组合的一套“IF2”群体。
     2利用“永久F2”群体定位小麦株高的QTL
     利用一套覆盖小麦21条染色体、含有324个SSR标记的遗传连锁图谱对小麦株高进行QTL定位研究,使用基于混合线性模型的QTLNetwork 2.0软件进行QTL分析。在“永久F2”群体中定位了7个株高QTL,包括4个加性QTL,一个显性QTL,一对上位性QTL,共解释株高变异的20%,其中位于4D染色体的qPh4D,具有最大的遗传效应,贡献率为7.5%;位于2D染色体显性效应位点qPh2D,可解释1.6%的表型变异;位于5B-6D染色体上位效应位点,可解释1.7%的表型变异。还发现加性效应、显性效应和上位效应对小麦株高的遗传起重要作用,并且基因与环境具有互作效应,结果表明利用“永久F2”群体进行QTL定位研究的方法有助于分子标记辅助育种
     3利用“永久F2”群体定位小麦分蘖的QTL
     在“永久F2”群体中定位了3个分蘖QTL,包括2个加性QTL,一个显性QTL,共解释分蘖变异的13.1%,小麦分蘖的2个加性QTL位于5A,5D染色体,其中位于5D染色体的qTn5D,具有最大的遗传效应,贡献率为9.9%,在各环境中稳定表达,并且具有环境互作效应;位于5A染色体的qTn3A可解释0.43%的表型变异。位于5A染色体显性效应位点qTn5A具有环境互作效应,在泰安可解释2.88%的表型变异,在聊城可解释2.68%的表型变异
Common wheat is one of the most important staple crops world-wide. The grain yield and other important agronomic traits and quality traits of wheat are generally controlled by multiple genes, and inherited as QTL. With the development of molecular genetics and genomics, location,seperation and expoiting QTL have become an important and essential component element in crop genetic improvement. The work will not only prepare gene resources for molecular marker assisted selection and molecular breeding by design, but also lay a foundation for fine mapping and clone some important genes. In the present study, we report a new genetic linkage map developed from an immortalized F2, which was generated from the cross between two elite Chinese common wheat varieties Huapei 3 and Yumai 57. QTL analyses were performed using the software of QTLNetwork 2.0 based on the mixed linear model approach. QTLs for plant height and tiller. The results were as the following
     1. A set of doubled haploid (DH) lines were used to construct an immortalized F2 (IF2) population comprising 168 different crosses. Based on the method of the IF2 population, the 168 RILs were first randomly divided into two groups, each group containing 84 RILs. The 84 RILs from one group were each paired with an RIL from the other group without replacement, producing 84 different crosses in one round of interbreeding. This procedure was repeated two times, producing a set of the IF2 populations containing 168 different crosses.
     2. Linkage map was constructed with 324 SSR markers covering the whole wheat genome, including 284 SSR, 37 ESTs loci, 1 ISSR loci and 2 HMW-GS loci, was constructed. This linkage map covered a total length of 2,485.7 cM with an average distance of 7.67 cM between adjacent markers. QTL analyses were performed using the software QTLNetwork version 2.0 based on the mixed linear model at P < 0.05 level. Four additive QTLs, 1 dominance QTL and pair of epistatic QTLs were detected, the total QTL effects detected for the plant height explained 20% of the phenotypic variation. One QTL qPh4D for plant height was identified on chromosome 4D, was identified on chromosome 2D, explaining 7.5% of the phenotypic variances. Dominance effect loci qPh2D was identified on chromosome 2D, explaining 1.6% of the phenotypic variances;Epistatic effects of loci was identified on chromosome 5B—6D,explaining 1.7% of the phenotypic variances . The results indicate additive effects, dominance effects and epistatic effects are important in genetics of wheat for plant height, which are also subjected to environmental modifications. These results further demonstrate that the use of " IF2" groups QTL positioning research methods contribute to the molecular marker-assisted breeding
     3. Linkage map was constructed with 324 SSR markers covering the whole wheat genome, including 284 SSR, 37 ESTs loci, 1 ISSR loci and 2 HMW-GS loci, was constructed. This linkage map covered a total length of 2,485.7 cM with an average distance of 7.67 cM between adjacent markers. QTL analyses were performed using the software QTLNetwork version 2.0 based on the mixed linear model at P < 0.05 level. Two additive QTLs, 1 dominance QTL were detected, the total QTL effects detected for the tiller explained 13.1% of the phenotypic variation. One QTL qTn5D for tiller was identified on chromosome5D, explaining 9.9% of the phenotypic variances. Dominance effect loci qTn5A was identified on chromosome 5A, explaining 2.88% of the phenotypic variances in Taian and explaining 2.68% of the phenotypic variances in liaocheng. The results indicate additive effects, dominance effects and epistatic effects are important in genetics of wheat for tiller, which are also subjected to environmental modifications. These results further demonstrate that the use of " IF2" groups QTL positioning research methods contribute to the molecular marker-assisted breeding
引文
1.陈军方,任正隆,高丽锋,贾继增.从小麦EST序列中开发新的SSR引物[J].作物学报, 2005, 31(2): 154–158
    2.方宣钧,吴为人,唐纪良.作物DNA标记辅助育种[M].科学出版社, 2001
    3.高翔,庞红喜,裴阿卫.分子标记技术在植物遗传多样性研究中的应用[J].河南农业大学学报, 2002, 36 (4): 356–359
    4.郭春强,柏志安,廖平安,靳文奎.优质高产小麦新品种豫麦57[J].中国种业, 2004, 4: 54
    5.海燕,康光明.高产早熟小麦新品种花培3号的选育[J].河南农业科学, 2007,5: 36–37
    6.侯永翠,郑有良,蒲至恩,等.穗数型小麦新品种川农16与大穗型寡分蘖系H461遗传差异研究初报[J].四川农业大学学报, 2003, 21(2): 94-98
    7.金善宝.中国小麦学[M].北京:中国农业出版社, 1996
    8.景蕊莲.小麦分子连锁图谱构建及抗早相关QTL作图[J].全国作物细胞工程与分子技术育种学研讨会论文集, 2003
    9.李硕碧,高翔,单明珠,等.小麦高分子量谷蛋白亚基与加工品质[J].北京,中国农业出版社, 2001
    10.李子先,陈忠权,刘国平,等.水稻抽穗期遗传变异的初步研究[J].作物学报, 1980, 6(3): 179–188
    11.刘来福,毛盛贤,黄远樟,作物数量溃传[J].北京:农业出版社, 1984
    12.宋彦霞,景蕊莲,霍纳新,任正隆,贾继增.普通小麦(T.aestivum L.)不同作图群体抽穗期QTL分析[J].中国农业科学, 2006, 39(11): 2186–2193
    13.吴云鹏,张业伦,肖永责,阎俊,张勇,张晓科,张利民,夏先春,何中虎.小麦重要品质性状的OTL定位[J].中国农业科学, 2008, 41(2): 331-339
    14.夏军红,郑用琏.玉米Rf3近等基因系的分子标记辅助回交选育与效应分析[J].作物学报, 2002, 28(3): 339–344
    15.徐云碧,朱立煌,分子数量遗传学[J].中国农业出版社, 1994
    16.薛勇彪,王道文,段子渊.分子设计育种研究进展[J].中国科学院院报, 2007, 6: 486–490
    17.严建兵,汤华,黄益勤,郑用琏,李建生.玉米F2群体分子标记偏分离的遗传分析[J].遗传学报, 2003, 30: 913-918
    18.尹世强.小麦穗粒重与营养品种关系的研究[J].湖南农业科学, 1990, 1: 18–21
    19.余遥.四川小麦[M].成都:四川科学技术出版社, 1998
    20.张立平.普通小麦品质性状遗传与QTL分析[J],中国农业科学院博士学位论文, 2003
    21.张正斌编著.小麦遗传学[M].北京:中国农业出版社, 2001
    22.中华人民共和国国家标准GB/T 19557.2-2004:植物新品种特异性、一致性和稳定性测试指南[M].普通小麦.北京:中国标准出版社, 2004
    23.朱军.运用混合线性模型定位复杂数量性状基因的方法[J].浙江大学学报, 1999, 33: 327–335
    24. Allard RW. Future directions in plant population genetics, evolution and breeding the proximal region of wheat chromosome 5AL[J]. Plant Breed, 1988, 118: 391–394
    25. Araki E, Miura H, Sawada S. Identification of genetic loci affecting amylose content and agronomic traits on chromosome 4A of wheat[J]. Theor Appl Genet, 1999, 98: 977-984
    26. Araus J I, Bort J, CecCadelli S, Grando S. Relationship between leaf structure and Cadbon isotope discrimination in field grown barley[J], Plant Physiol. Biochem. 1997, 35: 533–541
    27. Atchley W R, Zhu J. Developmental quantitative genetics, conditional epigenetic variability and growth in mice[J]. Genetics,1997,147: 765–776
    28. Borner A, Schumann E, Furste A, Coster H, Leithold B, R?der M S, Weber W E. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.) [J]. Theor Appl Genet, 2002, 105: 921-936
    29. Botstein D, White R L, Skolnick M, Davis R W. Construction of a genetic linkage map using restriction fragment length polymorphisms[J]. Amer. J.Hum. Genet, 1980, 32: 314–331
    30. Bullrich L, Appendino M L, Tranquilli G, Lewis S, Dubcovsky J. Mapping of a thermo-sensitive earliness per se gene on Trticum monococcum chromosome
    1Am[J]. Theor Appl Genet, 2002, 105: 585–593
    31. Burr B, Burr E A, Thompson K H, Albertson M C, Stuber C W. Gene mapping with recombinant inbreds in maize[J]. Genetics, 1988, 118: 519–526
    32. Burr B, Burr E A. Recombinant inbreds for molecular mapping in maize[J]. Trends Genet, 1991, 7: 55–60
    33. Cadalen T, Sourdille P, Charmet G, Tixier M H, Gay G, Boeuf C, Bernard S, Leroy P, Bernard M. Molecular markers linked to genes affecting plant height in wheat using a double haploid population[J]. Theor Appl Genet, 1998. 96: 933-940
    34. Cao G, Zhu J, He C, Gao Y, Yan J, Wu P. Impact of epistasis and QTL×environment interaction on the developmental behavior of plant height in rice [J]. Theor Appl Genet, 2001, 103: 153-160
    35. Cao W D, Jia J Z, Jin J Y. Indentification and interaction analysis of QTL for chlorophyll content in wheat seedlings[J]. Plant Nutr. Ferti. Sci. 2004, 10: 473–478
    36. Chen W, Zhang Y, Liu X-P, Chen B-Y, Tu J-X , Fu T-D. Detection of QTL for six yield-related traits in oilseed rape (Brassica napus) using DH and immortalized F2 populations[J]. Theor Appl Genet, 115: 849-858
    37. Darvasi A, Solier M. Optimum spacing of genetic markers for determining linkage between marker loci and quantitative trait Ioci. Theor Appl Genet, 1994, 89: 351–368
    38. DeVita P, DestriNicosia O, Nigro F, Platani C, Refolo C, Fonzo N, Cattivelli L, 2007. Breeding progress in morpho-physiological traits of durum wheat cultivars released in Italy during the 20th century[J]. Eur J Agron, 26: 39–53
    39. Doerge, Rebecca W. Mapping and analysis of quantitative trait loci in experimental populations. Nature Reviews, 2002, 3: 43–52Donald C. M. The breeding of crop ideotypes[J]. Euphytica, 1968, 17: 385-403
    40. Donis keller H, et al. Linkage map of human genome[J]. Cell, 1987, 51: 319–337
    41. Dubcovsky J, Lijavetzky D, Appendino L, Tranquilli G. Comparative RFLP mapping of Triticum monococcum genes controlling vernalization requirement[J]. Theor Appl Genet 1998, 97: 968–975
    42. Dudley J W, Lamkey K R, Geadelmann J L. Evaluation of populations for their potential to improve three maize hybrids[J]. Crop Sci. 1996, 36: 1553–1559
    43. Ellis M H, Rebetzke G J., Chandler P, Bonnett D, Spielmeyer W, Richards R A. The effect of different height reducing genes on early growth characteristics of wheat[J]. Funct. Plant Biol. 2004, 31: 583–589
    44. Elouafi I, Nachit M M. A genetic linkage map of the Durum×Triticum dicoccoides backcross population based on SSRs and AFLP markers, and QTL analysis for milling traits[J]. Theor Appl Genet. 2004, 108: 401–413
    45. Evans L T(Ed.). Crop evolution, adaptation, and yield[J]. Cambridge University Press, Cambridge. 1993
    46. Falconer DS. Introduction to quantitative genetics[J]. John Wiley and Sons, New York, 1989
    47. Fang P, Yu X M, Zhu R Q, Wu P. QTLs for rice leaf chlorophyll content under low N stress[J]. Pedosphere, 2004, 14: 145–150
    48. Flood R G, Halloran G M. The influence of certain chromosomes of hexaploid wheat cultivar time to ear emergence in Chinese Spring[J]. Euphytica, 1983, 32: 121–124
    49. Frary A, Nesbitt T, Frary A, et al. fw2.2:a quantitative trait locus key to the evolution of tomato fruit size[J]. Science, 2000, 289: 85–88
    50. Gale M D, Cho S, Sharp P J. RFLP mapping in wheat-progress and problems[J].In: Gustafson JP (ed) Gene manipulation in plant improvement II. Plenum Press, NY. 1990, pp. 353–363
    51. Ganal M W, Young N D, Tanksley S D. Pulsed field gel electrophoresis and physical mapping of large DNA fragments in the Tm-2a region of chromosome 9 in tomato[J]. Mol Gen Genet, 1989, 215: 395–400
    52. Giunta F, Motzo R, Pruneddu G. Trends since 1900 in the yield potential of Italian-bred durum wheat cultivars[J]. Eur J Agron, 2007, 27: 12–24
    53. Griffey C A, Das M K, Stromberg E L. Effectiveness of adult-plant resistance in reducing grain yield loss to powdery mildew in winter wheat[J]. Plant Dis, 1993, 77: 618–622
    54. Groos C, Bervas E, Charmet G. Genetic analysis of grain protein content, grain hardness and dough rheology in a hard bread wheat progeny[J]. Journal of Cereal Science, 2004, 40: 93–100
    55. Guo C-Q, Bai Z-A, Liao P-A, Jin W-K. New high quality and yield wheat variety Yumai 57[J]. China Seed Ind, 2004, (4): 54 (in Chinese)
    56. Hai Y, Kang M-H. Breeding of a new wheat variety Huapei 3 with high yield and early maturing[J]. Henan Agric Sci, 2007, (5): 36-37 (in Chinese)
    57. Halloran GM, Boydell CW. Wheat chromosomes with genes for photoperiodic response[J]. Can J Genet Cytol, 1967, 19: 394–398
    58. Hanocq E, Niarquin M, Heumez E, Rousset M, Le G J. Detection and mapping of QTL for earliness components in a bread wheat recombinant inbred lines population[J]. Theor Appl Genet, 2004, 110: 106–115
    59. Helentjaris T A. Genetic linkage map for maize based on RFLPs[J]. Trends Genet, 1987. 3:217–221
    60. Hoogendoorn J. A reciprocal F1 monosomic analysis of the genetic control of time of ear emergence, number of leaves and number of spikelets in wheat [J]. Euphytica, 1985, 34: 545–558
    61. Hua J P, Xing Y Z, Wu W R, Xu C G, Sun X L, Yu S B, Zhang Q F. Single-locus heterotic effects and dominance by dominance interaction can adequately explain the genetic basis of heterosis in an elite hybrid[J]. Proc Natl Acad Sci USA, 2003, 100: 2574-2579
    62. Hua J, Xing Y, Wu W, Xu C, Sun X, Yu S, Zhang Q. Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid[J]. Proc Natl Acad Sci USA, 2003, 100: 2574–2579
    63. Hua J-P, Xing Y-Z, Xu C-G, Sun X-L, Yu S-B, Zhang Q-F. Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance[J]. Genetics, 2002, 162: 1885-1895
    64. Huang X Q, Coster H, Ganal M W, Roder M S. Advanced backcross QTLanalysis for the identification of quantitative trait loci alleles from wild relatives of wheat[J]. Theor Appl Genet, 2003, 106:1379–1389
    65. Huang X Q, Kempf H, Ganal M W, Roder M S. Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat (Triticum aestivum L.) [J]. Theor Appl Genet. 2004, 109: 933–943
    66. Huang X Q, R?der M. Molecular mapping of powdery mildew resistance genes in wheat[J]. A review. Euphytica, 2004, 137: 203–223
    67. Iwaki K, Nishida J, Yanagisawa T, Yoshida H. Genetic analysis of Vrn-B1 for vernalization requirement by using linked dCAPS markers in bread wheat (Triticum aestivum L.) [J]. Theor Appl Genet, 2002, 104: 571–576
    68. Jakobson I, Peusha H, Timofejeva L, J?rve K. Adult plant and seedling resistance to powdery mildew in a Triticum aestivum×Triticum militinae hybrid line[J]. Theor Appl Genet, 2006, 112: 760–769
    69. Jensen J. Estimation of recombination parameters between a quantitative trait locus(QTL) and two marker gene loci[J]. Theor Appl Genet, 1989, 78: 613-618
    70. Ji Y, Miao M M, Chen X H. Progress on the molucular genetics of dwarf character in plants[J]. Mol. Plant Breed. 2006, 6: 753–771
    71. Jimenez M, Dubcovsky J. Chromosome location of genes affecting polyphenol oxidase activity in seeds of common and durum wheat[J]. Plant Breed, 1999, 118: 395–398
    72. Karakousis A, Gustafson J P, Chalmers K J, Barr A R, Langridge P. A consensus map of barley integrating SSR, RFLP, and AFLP markers[J]. Aust J Agric Res. 2003, 54: 1173–1185
    73. Kato K, Miura H, Sawada S. Detection of an earliness per se quantitative trait locus in the proximal region of wheat chromosome 5AL[J]. Plant Breed, 1999, 118: 391–394
    74. Kato K, Miura H, Sawada S. QTL mapping of genes controlling ear emergence time and plant height on chromosome 5A of wheat[J]. Theor Appl Genet, 1999, 98: 472-477
    75. Keim P, Schupp J M, Travis S E, Clayton K, Zhu T, Shi L A, Ferreira A, Webb D M. A high-density soybean genetic map based on AFLP markers[J]. Crop Sci, 1997, 37: 537–543
    76. Keller M, Karutz C H, Schmid J E, Stamp P, Winzeler M, Keller B, Messmer M M. Quantitative trait loci for lodging resistance in a segregating wheat×spelt population[J]. Theor Appl Genet. 2006, 98: 1171–1182
    77. Keller M, Karutz C H, Schmid J E, Stamp P, Winzeler M, Keller B, Messmer M M. Quantitative trait loci for lodging resistance in a segregating wheat×spelt population[J]. Theor Appl Genet, 1999, 98: 1171-1182
    78. Keller M, Keller B, Schachermayr G, Winzeler M, Schmid J E, Stamp P, Messmer M M. Quantitative trait loci for resistance against powdery mildew in a segregating wheat×spelt population[J]. Theor Appl Genet, 1999, 98: 903–912
    79. Kheiralla A I, Whittington W J, Genetic analysis of growth in tomato[J]. the F1generation. Ann Bot, 1962, 26: 489–504
    80. Knapp S J, Bridges W C, Birkes D. Mapping quantitative trait loci using molecular marker linkage maps[J]. Theor Appl Genet, 1990, 79: 583–592
    81. Knox M R, Ellis T H N. Excess heterozygosity contributes to genetic map expansion in pea recombinant inbred populations[J]. Genetics, 2002, 162: 861–873
    82. Konzak C F(Ed.). Genetic analysis, genetic improvement and evaluation of induced semi-dwarf mutants in wheat[J]. Semidwarf cereal mutants and their use in cross-breeding III research coordination meeting, 16–20 December 1985. International Atomic Energy Agency, Vienna, Austria, 1988, pp. 39–50.
    83. Kuspira J, Unrau J. Genetic analyses of certain characters in common wheat using whole chromosome substitution lines[J]. Can J Plant Sci, 1957, 37: 300-326
    84. Law CN, Sutka J, Worland A J. A genetic study of daylength response in wheat[J]. Heredity, 1978, 41:185–191
    85. Law CN, Worland AJ. Genetic analysis of some flowering time and adaptive traits in wheat[J]. New Phytol, 1997, 137: 19–28
    86. Lee D. DNA markers in plant breeding programs[J]. Adv Agron, 1995, 55: 265–344
    87. Li S S, Jia J Z, Wei X Y, Zhang X C, Li L Z, Chen H M, Fan Y D, Sun H Y, Zhao X H, Lei T D, Xu Y F, Jiang F S, Wang H G, Li L H. A intervarietal genetic map and QTL analysis for yield traits in wheat[J]. Mol Breed, 2007, 20: 167–178
    88. Lincoln S E, Daly M J, Lander E S. Constructing genetic maps with MAPMAKER/EXP version 3.0, a tutorial and reference manual[J]. Whitehead Inst Biomed Res Tech Rpt, 3rd edn. Whitehead Institute for Biomedical Research, Cambridge. 1993, pp. 97
    89. Liu D C, Gao M Q, Guan R X, Li R Z, Cao S H, Guo X L, Zhang A M. Mapping quantitative trait loci for plant height in wheat (Triticum aestivum L.) using a F2:3 population[J]. Acta Genet Sinic, 2002, 29: 706–711
    90. Liu Y, Tsunewaki K. Restriction fragment length polymorphism (RFLP) in wheat II. Linkage maps of the RFLP sites in common wheat[J]. Jpn J Genet, 1991, 66: 617–633
    91. Liu Z, Sun Q, Ni Z, Nevo E, Yang T M. Molecular characterization of a novel powdery mildew resistance gene Pm30 in wheat originating from wild emmer[J]. Euphytica, 2002, 123: 21–29
    92. Lu H, Romero-Severson J, Bernardo R. Chromosomal regions associated with segregation distortion in maize[J]. Theoretical and Applied Genetics, 2002, 105: 622-628
    93. Luo L J, Li Z K, Mei H W, Shu Q Y, Tabien R, Zhong D B, Ying C S, Stansel J W, Khush G S, Paterson A H. Overdominance epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice[J]. II. Grain Yield Components. Genetics, 2001, 158: 1737–1753
    94. Ma J F, Shen R F, Zhao Z Q, Wissuwa M, Takeuchi Y, Ebitani T, Yano M. Response of rice to Al stress and identification of quantitative trait loci for Al tolerance[J]. Plant Cell Physiol, 2002, 43: 652–659
    95. Ma W, Appels R, Bekes F, Larroque O, Morell M K, Gale K R. Genetic characterisation of dough rheological properties in a wheat doubled haploid population: additive genetic effects and epistatic interactions[J]. Theor Appl Genet, 2005, 111: 410–422
    96. Ma W, Appels R, Bekes F, Larroque O, Morell M K, Gale K R. Genetic characterisation of dough rheological properties in a wheat doubled haploid population[J]. additive genetic effects and epistatic interactions. Theor Appl Genet, 2005, 111: 410–422
    97. Ma X Q, Tang J H, Teng W T, Yan J B, Meng Y J, Li J S. Epistatic interaction is an important genetic basis of grain yield and its components in maize[J]. Mol Breed, 2007, 20: 41–51
    98. Ma Z Q, Zhao D M, Zhang C Q, Zhang Z Z, Xue S L, Lin F, Kong Z X, Tian D G, Luo Q Y. Molecular genetic analysis of five spike-related traits in wheat using RIL and immortalized F2 populations[J]. Mol Gen Genet, 277: 31-42
    99. Ma Z, Zhao D, Zhang C, Zhang Z, Xue S, Lin F, Kong Z, Tian D, Luo Q. Molecular genetic analysis of five spike-related traits in wheat using RIL and immortalized F2 populations[J]. Mol Gen Genomics, 2007, 277: 31– 42
    100. Mansfield D C, Brown A F, Green D K, Carothers A D, Morris S W, Evans H J et al. Automation of genetic-linkage analysis using fluorescent microsatellite markers[J]. Genomics, 1994, 24: 225–233
    101. Marza F, Bai G H, Carver B F, Zhou W C. Quantitative trait loci for yield and related traits in the wheat population Ning7840×Clark[J]. Theor Appl Genet, 2006, 112: 688–698
    102. McIntosh R A, Hart G E, Devos K M , Gale M D ,Rogers W J. Catalogue of gene sym-bols for wheat, proceedings of the 9th international wheat genetics symposium[J]. Saskatoon, Canada: University Extension Press, 1998. pp 77-78
    103. Mei H W, Li Z K, Shu Q Y, Guo L B, Wang Y P, Yu X Q, Ying C S, Luo L J. Gene actions of QTL affecting several agronomic traits resolved in a recombinant inbred rice population and two backcross population[J]. Theor Appl Genet, 2005,110: 649–659
    104. Mei H W, Luo L J, Ying C S, Wang Y P, Yu X Q, Guo L B, Paterson A H, Li Z K. Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two testcross populations[J]. Theor Appl Genet, 2003, 107: 89–101
    105. Messmer M M, Keller M, Zanetti S, Keller B. Genetic linkage map of a wheat-spelt cross[J]. Theor Appl Genet, 1999, 98: 1163–1170
    106. Miller J C, Tanksley S D. RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon[J]. Theor. Appl. Genet, 1990, 80: 437–448
    107. Mingeot D, Chantret N, Baret P V, Dekeyser A, Boukhatem N, Sourdille P, Doussinault G, Jacquemin J M. Mapping QTL involved in adult plant resistance to powdery mildew in the winter wheat line RE714 in two susceptible genetic backgrounds[J]. Plant Breed, 2002, 121: 133–140
    108. Miura H, Nakagawa M, Worland A J. Control of ear emergence time by chromosome 3A of wheat[J]. Plant Breed, 1999, 118: 85–87
    109. Miura H, Worland A J. Genetic control of vernalization, day length response, and earliness per se by homoeologous group-3 chromosomes in wheat[J]. Plant Breed, 1994, 113: 160–169
    110. Mohler V, Lukman R, Ortiz-Islas S, William M, Worland AJ, Beem JV, Wenzel G. Genetic and physical mapping of photoperiod insensitive gene Ppd-B1 in common wheat[J]. Euphytica, 2004, 138:33–40
    111. Motzo R, Giunta F. The effect of breeding on the phenology of Italian durum wheats: from landraces to modern cultivars[J]. Eur J Agron, 2007, 26: 462–470
    112. Nelson J C, Sorrells M E, Deynze A E, Lu Y H, Atkinson M, Bernard M, Leroy P, Faris J D, Anderson J A. Molecular mapping of wheat[J]. Major genes and rearrangements in homoeologous groups 4, 5, and 7. Genetics, 1995c, 141: 721–731
    113. Nikiforov T T, Rendle R B, Goelet P. Genetic bit analysis:a solid phase method for typing single nucleotide polymorphisms[J]. Nucleic Acids Res, 1994, 22: 4167–4175
    114. Olson M, Flood L, Cantor D, Boston D. A common language for physical mapping of the human genome[J]. Science, 1989, 245: 1434–1435
    115. Paran I, Michelmore R W. Development of reliable PCR based markers linked to down mildew resistance genes inlettuce[J].Theor Appl Genet, 1993, 85: 985–993
    116. Powell W, Morgante M, Ande C, Hanafey M, Vogel J, Tingey S, Rafalski A. The comparison of RFLP, RAPD, AFLP, SSR (microsatellite) markers for germplasm analysis[J]. Mol Breed, 1996a, 12: 225–238
    117. R. A. Richards. A tiller inhibiton gene in wheat and its effect on plant growth[J].Austr. J. Agric. Res., 1988, 39: 749-757
    118. R?der M S, Korzun V, Wendehake K, Plaschke J, Tixier M H, Leroy P, Ganal M W. A microsatellite map of wheat[J]. Genetics, 1998, 149: 2007–2023
    119. Rongwen J, Akkaysa M S, Bhagwat A A, Lavi U, Cregan P B. The use of microsatellite DNA markers for soybean genotype identification[J]. Theor Appl Genet, 1995, 90: 43–48
    120. Salah E D E A ,CarlosA B,Anton J M P,et al.A QTL for flowering time in Aribiodopsis reveals a novel allele of CRY2[J]. Nature Genet, 2001, 29: 435–440
    121. Scarth R, Law C N. The location of the photoperiod gene, Ppd2 and an additional genetic factor for ear emergence time on chromosome 2B of wheat[J]. Heredity, 1983, 51: 607–619
    122. Sears E R. The aneuploids of common wheat[J]. Univ Missouri Res Bull, 1954, 572:1-58
    123. Shah M M, Gill K S, Baenziger P S, Yen Y , Kaeppler S M , Ariyarathne H M. Molecular mapping of loci for agronomic traits on chromosome 3A of bread wheat[J]. Crop Sci, 1999, 39: 1728-1732
    124. Snape J W, Law C N, Worland A J. Whole chromosome analysis of height in wheat[J]. Heredity, 1977, 38: 25-36
    125. Song Q J, Shi J R, Singh S, Fickus E W, Costa J M, Lewis J. Development and mapping of microsatellite (SSR) markers in wheat[J]. Theor Appl Genet, 2005, 110: 550–560
    126. Song X L, Guo W Z, Han Z G, Zhang T Z. Quantitative trait loci of leaf morphological traits and chlorophyll content in cultivated tetraploid cotton[J]. J Integ Plant Biol. 2005, 47: 1382–1390
    127. Sourdille P, Cadalen T, Guyomarc H H, Snape J W, Perretant M R, Charmet G, Boeuf C, Bernard S, Bernard M. An update of the Courtot×Chinese Spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat[J]. Theor Appl Genet, 2003, 106: 530-538
    128. Sourdille P, Singh S, Cadalen T, Brown-Guedira GL, Gay G, Qi L ea tl. (2004). Microsatellite-based deletion bin system for the establishment of genetic–physical map relationships in wheat (Triticum aestivum L.) [J]. Funct Integr Genomics, 2004, 4: 12–2
    129. Susan M. Wild alleles for crop improvement.Nature Biotech, 1999, 17: 32
    130. Tang J-H, Yan J-B, Ma X-Q, Teng W-T, Meng Y-J, Dai J-R, Li J-S. Genetic dissection for grain yield and its components using an immortalized F2 population in maize[J]. Acta Agron Sin, 2007, 33: 1299-1303 (in Chinese with English abstract)
    131. Tanksley S D ,N elson J C .A dvancedb ackcross QTL analysis:a method for the simultaneous discovery and transfer of valuable QTLs from unadaptedgermplasm into elite breedinglines[J]. Theor Appl Genet, 19 96,92:191-203
    132. Tanksley S D, Ganal M W, Martin G B. Chromosome landing: A paradigm for map based gene cloning in plants with large genomes[J]. Trends Genet, 1995, 11: 63–68
    133. Torada A, Koike M, Mochida K, Ogihara Y. SSR-based linkage map with new markers using an intraspecific population of common wheat[J]. Theor Appl Genet, 2006, 112: 1042–1051
    134. W L Li, J.C Nelson, C Y Chu,et al. Chromosomal locations and genetic relationships of tiller and spike characters in wheat[J]. Euphytica, 2002, 125: 357-366
    135. W.Spielmeyer, R. A. Richards. Comparative mapping of wheat chromosome 1AS which contains the tiller inhibition gene(tin) with rice chromosome 5S[J]. Theor. Appl. Genet., 2004, 109: 1303-1310
    136. Wang D L, Zhu J, Li Z K, Paterson A H. Mapping QTLs with epistatic effects and QTL×environment interactions by mixed linear model approaches[J]. Theor Appl Genet, 1999, 99: 1255-1264
    137. Welsh J R, Keim D L, Pirasteh B, Richards R D. Genetic control of photoperiod response in wheat[J]. Proc 4th Int Wheat Genet Symp, 1973, pp. 879–884
    138. Wicker T, Yahiaoui N, Guyot R, Schlagenhauf E, Liu Z, Dubcovsky J, Keller B. Rapid genome divergence at orthologous low molecular weight glutenin loci of the A and Am genomes of wheat[J]. Plant Cell, 2003, 15: 1186–1197
    139. Williams J, Kubelik A, Livak K, Rafalski J, Tingey S. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl Acid Res, I990, 18: 6531–6535
    140. Wilson F D. Pink bollworm resistance, lint yield, and lint yield components of Okra-leaf cotton in different genetic backgrounds[J]. Crop Sci, 1986, 26: 1164–1167
    141. Wilson F D. Relative resistance of cotton lines to pink bollworm[J]. Crop Sci, 1990, 30: 500–504
    142. Xi ZY, Zhang GQ. SSR marker and its application in crop genetics and breeding[J]. J Henan Agri Uni, 2002, 36: 293–297
    143. Xie C, Sun Q, Ni Z, Yang T, Nevo E, Fahima T. Chromosomal location of a Triticum dicoccoides-derived powdery mildew resistance gene in common wheat by using microsatellite markers[J]. Theor Appl Genet, 2003, 106: 341–345
    144. Xu S J, Singh R J, Hymowitz T. Establishment of a cytogenetic map soybean: progress and prospective[J]. Soybean Genetics Newsletter, 1997, 24: 121–122
    145. Xu X Y, Bai G H, Carver B F, Shaner G E. A QTL for early heading in wheat cultivar Suwon 92[J]. Euphytica, 2005, 146: 233–237
    146. Xu YB, Zhu LH, Xiao J, Huang N, McCouch SR. Chromosomal regionsassociated with segregation distortion of molecular markers in F2, backcross, doublehaploid, and recombinant inbred populations in rice(Oryza sativa L.) [J]. Mol Gene Genet, 1997, 253(5): 535?554
    147. Yamamoto T, Kuboki Y, Lin SY, Sasaki T, Yano M. Fine mapping of quantitative trait loci Hd-1, Hd-2 and Hd-3, controlling heading date of rice, as single Mendelian factors[J]. Theor Appl Genet, 1998, 97: 37-44
    148. Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J. The wheat Vrn2 gene is a flowering repressor down-regulated by vernalization[J]. Science, 2004, 303: 1640–1644
    149. Yang J, Zhu J. Predicting superior genotypes in multiple environments based on QTL effects[J]. Theor Appl Genet, 2005, 110: 1268–1274
    150. Zabeau M, Vos P. Selective restriction fragment amplification: A general method for DNA fingerprints[J]. European Patent Application.Pub, 1993
    151. Zemetra R S, Morris R, Schmidt J W. Gene locations for heading date using reciprocal chromosome substitutions in winter wheat[J]. Crop Science, 1986, 26: 531–533
    152. Zhang D Q, Zhang Z Y, Yang K. Genome-wide search for segregation distortion loci associated with the expression of complex traits in Populus tomentosa[J]. For. Stud. China, 2007, 9: 1–6
    153. Zhang K-P, Tian J-C, Zhao L, Wang S-S. Mapping QTLs with epistatic effects and QTL×environment interactions for plant height using a doubled haploid population in cultivated wheat[J]. J Genet Gen, 2008, 35: 119-127

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700