云南小麦低分子量谷蛋白基因克隆及序列分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦低分子量谷蛋白亚基(LMW-GS)约占种子贮藏蛋白的1/3,与高分子量谷蛋白亚基(HMW-GS)通过分子间二硫键形成谷蛋白聚合体,对小麦的加工品质有重要的影响。云南小麦(T. aestivum ssp.yunnanense King,AABBDD,2n=6x=42)是我国云南省特有的小麦种质资源,具有耐寒、耐瘠、抗条锈病、抗穗发芽等优异农艺性状,以及蛋白质含量高和品质好的优异品质性状,此外它还在普通小麦的起源和分类上有重要的研究价值。LMW-GS基因编码区不含有内含子,在N-和C-末端序列高度保守。由此,我们设计一对兼并引物(P1和P2),提取云南小麦YN11的基因组DNA,进行PCR扩增反应,得到长度约为900 bp和1100 bp的两条DNA片段,克隆测序后获得3个不同的LMW-GS基因序列,LMWYN-1、LMWYN-2和LMWYN-3。LMWYN-1和LMWYN-2编码区长度分别为1056 bp和960 bp,可分别编码330和299个氨基酸残基的成熟蛋白,而LMWYN-3由于在编码区存在3个提前终止密码子,不能编码成熟的蛋白质。这3个LMW-GS基因差异主要表现在重复区,而重复单元的不同及重复单元的插入和缺失又是造成序列大小差异的主要原因。根据N-末端氨基酸序列,三者都属于LMW-m型。序列一致性分析显示,这3个序列与小麦族物种的LMW-GS氨基酸序列有较高的一致性,可以表明其为LMW-GS基因。对其进行二级结构预测,预测结果显示,LMWYN-2的β-转角含量相对较高,这说明其可能为候选的优质基因。系统进化分析表明,LMWYN-1和LMWYN-3可能是由Glu-D3位点编码的基因,而LMWYN-2可能是由Glu-B3位点编码的基因。
The low-molecular-weight glutenin subunits of wheat make up one third of the seed storage proteins, LMW-GS and HMW-GS produce glutenin polymers with the intermolecular disulphide bonds, and they have great effects on wheat processing quality. Yunnan wheat(T.aestivum ssp.yunnanense King,AABBDD,2n=6x=42) is an endemic wheat germplasm in Yunnan Province and possesses many desirable characters such as good quality, high protein content, resistance to reharvest sprouting and yellow rust, tolerance to cold and infertile soil, etc. Moreover, Yunnan wheat has the potential value in the study of wheat origin and classification. LMW-GS genes have no intron inframe and are conserved in the N-terminal and C- terminal sequences. Therefore, a pair of degenerate primers was designed, and the full coding regions of LMW-GS genes were amplified from the T.aestivum ssp.yunnanense King accession YN11. Three different genes, LMWYN-1, LMWYN-2 and LMWYN-3, were identified from the 900 bp and 1100 bp amplification products. The coding regions of LMWYN-1 and LMWYN-2 were 1056 bp and 960 bp, and encoded two mature proteins with 330 and 299 amino acid residues, respectively. LMWYN-3 was a pseudogene due to that three stop codons were in its coding region. There were many differences in repetitive domain among three genes. The numbers of repeats were responsible for some variation in amino sequence of LMW-GS. According to the N-terminal sequences, they might belong to LMW-m. Through identity of the deduced amino acid sequences, three sequences were homologous of wheat LMW-GS. Prediction for secondary structure suggested that high content ofβ-turn existed in LMWYN-2, and it might have positive influences on the quality of flour. Phylogenetic analysis indicated that LMWYN-1 and LMWYN-3 could be both located in Glu-D3 locus, while LMWYN-2 could be located within Glu-B3 locus.
引文
[1] Benmoussa M., Louis P., Vézina, et al. Genetic polymorphism in low-molecular- weight glutenin genes from Triticum aestivum, variety Chinese Spring. Theor Appl Genet, 2000, 100: 789~793
    [2] Shewry P.R., Tatham A.S. Disulfide bonds in wheat gluten proteins. Cereal Sci, 1997, 25(3): 207~227
    [3] Shewry P.R., Halford N.G., Tatham A.S., et al. The high molecular weight subunits of wheat glutenin and their role in determining wheat processing properties. Adv. Food Nutr Res, 2003, 45: 219~242
    [4] Luo C., Griffin W.B., Branlard G., et al.. Comparison of low- and high-molecular- weight wheat glutenin allele effects on flour quality. Theor Appl Genet, 2001, 102: 1088~1098
    [5] MacRitchie F., Kasarda D.D., Kuzmicky D.D. Characterization of wheat protein fractions differing in contributions to breadmaking quality. Cereal Chem, 1991, 68: 122~130
    [6] Bietz J.A., Wall J.S. Isolation and characterization of gliadin-like subunits from glutenins. Cereal Chem, 1973, 50: 537~547
    [7] Gupta R.B., Khan K., Macritchie F. Biochemical basis of flour properties in bread wheats. I. Effects of variation in the quantity and size distribution of polymeric protein. Cereal Sci 1993, 18: 23~41
    [8] Azudin M.N., Alisausksa V. Effects of wheat variety on instant noodle quality. Proc.47th Aust. Cereal Conf, 1997, 57~61
    [9] Beek J.G., Pet G., Lindhout P. Resistance to powdery mildew in Lycopersicon hirsutum is controlled by an incompletely dominant gene O1-1 on chromosome 6. Theor Appl Genet, 1994, 89(4): 467~473
    [10] Carrillo J.M., Vazquez J.F., Orellana J. Relationship between gluten strength and gluten proteins in durum wheat cultivars. Plant Breed, 1990, 104: 325~333
    [11] Maruyama N., Ichise K., Katsube T., et al. Identification of major wheat allergens bymeans of the Eschrichia coli expression system. Eur Biochem ,1998, 255: 739~745
    [12] Kovacs M.I., Howes N.K., Leisle D., et al. The effects of high Mr glutenin subunit composition on the results from tests used to predict durum wheat quality. Cerceal Sci, 1993, 18: 43~51
    [13] Jackson E.A., Holt L.M., Payne P.I. Characterization of high molecular weight gliadin and low molecular weight glutenin subunits of wheat endosperm by two-dimensional electrophoresis and the chromosomal localization of their controlling genes. Theor Appl Genet, 1983, 66: 29~37
    [14] Tao H.P., Kasarda D.D. Two-dimensional gel mapping and N-terminal sequencing of LMW-glutenin subunits. Exp Bot, 1989, 40: 1015~1020
    [15] Sissons M.J., Bekes F., Skerritt J.H. Isolation and functionality testing of low- molecular-weight glutenin subunits. Cereal Chem, 1998, 75: 30~36
    [16] Mustapha B., Louis P.V., Michel P., et al. Genetic polymorphism in low-molecular- weight glutenin genes from Triticum aestivum variety Chinese Spring. Theor Appl Genet, 2000, 100: 789~793
    [17] Thompson S., Bishop D.H.L., Tatham A.S., et al. Exploring disulphide bond formation in a low molecular weight subunit of glutenin using a baculovirus expression system. In: Gluten Protein1993. Association of cereal Research: Detmold, Germany, 1994, 345~355
    [18] Masci S., Lafiandra D., Porceddu E., et al. D-glutenin subunits: N-terminal sequences and evidence for the presence of cysteine. Cereal Chem, 1993, 70: 581~585
    [19] Shewry P.R., Miflin B.J., Lew E.J., et al. The preparation and characterization of aggregated gliadin fraction from wheat. Exp Bot, 1983, 34: 1403~1410
    [20] Kasarda D.D., Tao H.P., Evans P.K., et al. Sequence of a protein from a single spot of a 2-D gel pattern: N-terminal sequence of a major wheat LMW glutenin subunits. Evxp Bot, 1988, 39: 899~906
    [21] Gianibelli M.C., Larroque O.R., MacRitchie F., et al. Biochemical,genetic and molecular characterization of wheat glutenin and its components subunits. Cereal Chem, 2001, 76(6): 635~644
    [22] Okita T.W., Cheesbrough V., Reeves C.D. Evolution and heterogeneity of theα-/β-type andγ-type gliadin DNA sequences. Biol Chem, 1985, 260: 8203~8213
    [23] Colot V., Bartels D., Thomopson C., et al. Molecular characterization of an active wheat LMW glutenin gene and its relation to other wheat and barley prolamin genes. Mol Gen Genet, 1989, 216: 81~90
    [24] Cassidy B.G.., Dvorak J. Molecular characterization of a low-molecular-weight glutenin cDNA clone from Triticum durum. Thero Appl Gene, 1991, 81: 653~660
    [25] Cloutier S., Rampitsch C., Penner G.A., et al. Cloning and Expression of a LMW-i Glutenin Gene. Cereal Sci, 2001, 33: 143~154
    [26] Lew E.J., Kuzmicky D.D., Kasarda D.D. Characterization of low-molecular-weight glutenin subunits by reversed-phase high-performance liquid chromatography,sodium dodecyl sulfate-polyacryla-mide gel electrophoresis and N-terminal amino acid sequence. Cereal Chem, 1992, 69: 508~515
    [27] Gianibelli M.C., Larrique O.R., Macritiachie F., et al. Biochemical genetics and molecular characterization of wheat glutenin and its composition subunits. Cereal Chem, 2001, 78: 635~646
    [28] D’Ovidio R., Simeone M., Masci S., et al. Nucleotide sequence of aγ-type glutenin gene from durum wheat:correlation with aγ-type glutenin subunit from the same biotype. Cereal Chem, 1995, 72: 443~449
    [29] Kasarda D.D. Glutenin structure in relation to wheat quality. In:Pomeranz, Y., (Ed.), Wheat is Unique, American Association of Cereal Chemistry, St Paul, MN, 1989, 277~302
    [30] Payne.P.I., Jackson.E.A., Holt L.M. The association betweenγ-gliadin 45 and gluten strength in durum wheat vaireites:A direct causal effect on the result of genetic linkage. Cereal Sci, 1984, 2: 73~81
    [31] Payne.P.I., Holt.L.M., Jarvis.M.G.., et al. Two dimensional fractionation of the endosperm proteins of bread wheat(Triticum aestivum): biochemical and genetic studies. Cereal Chem, 1985, 62: 319~326
    [32] Masci.S., Rovelli.L., Kasarda D.D., et al. Characterisation and chromosomal localization of C-type low-molecular-weight glutenin subunits in the bread wheat cultivar Chinese Spring. Theor Appl Genet, 2002, 104: 422~428
    [33] Singh.N.K., Shepherd.K.W. Linkage mapping of genes controlling endosperm storage proteins in wheat.1.Genes on the short arms of group 1 chromosomes. Theor Appl Genet, 1988, 75: 628~641
    [34] Pogna N.E., Autran J.C., Mellini.F., et al. Chromosome lB-encoded gliadins and glutenin subunits in durum wheat:genetics and relationship to gluten strength. Cereal Sci, 1990, 11: 15~34
    [35] Liu C.Y., Shepherd K.W. Inheritance of B-subunits of glulenin andω-andγ-gliadins in tetraploid wheats. Theor Appl Genet, 1995, 90: 1149~1157
    [36] Liu C.Y. Identification of a new low-Mr glutenin subunit locus on chromosome lB of durum wheat. Cereal Sci, 1995, 21: 209~213
    [37] Jackson E.A., Holt L.M., Payne P.I. Glu-B2, a storage protein locus controlling the D group of LMW glutenin subunits in bread wheat(Triticum aestivum). Genet Res, 1985, 46: 11~17
    [38] Dubeovsky J., Echaide M., Giancola S., et al. Characterization of high molecular weight gliadin and low-molecular-weight glutenin subnuits of wheat seed storage- protein loci in RFLP maps of diploid, tetraploid, and hexaploid wheat. Theor Appl Genet, 1997, 95: 1169~1180
    [39] Sreeramulu G., Singh N.K. Genetic and biochemical characterization of novel low molecular weight glutenin subunits in wheat(Triticum aestivum L .). Genome, 1997, 40: 41~48
    [40] Vaccino P., Redaelli R., Metakovsky E.V., et al. Identification of novel low Mr glutenin subunits in the high quality bread wheat cv Salmone and their effects on gluten quality. Theor Appl Genet, 2002, 105: 43~49
    [41] Nieto-Taladriz M.T., Rodriguez-Quijano M., Carrillo J.M. Biochemical and genetic characterization of a D glutenin subunit encoded at the Glu-B3 locus. Genome, 1998, 41: 215~220
    [42] Mosse J., Huet J.C., Baudet J. The amino acid composition of wheat grain as a function of nitrogen content. Cereal Sci, 1985, 3: 115~130
    [43]徐旗,穆素梅,李振声.小麦种子蛋白.国外农学-麦类作物, 1990, 45~48
    [44]吴芳,潘志芬,余懋群.小麦低分子量谷蛋白亚基研究进展.西北植物学报, 2006,26: 0864~0870
    [45]陈军营,吕德彬,陈建新等.小麦低分子量谷蛋白一级结构分析.麦类作物学报, 2003, 23: 37~40
    [46] Cassidy B.G., Dvorak J., Anderson O.D. The wheat low-molecular-weight glutenin genes: Characterization of six new genes and progress in understanding gene family structure. Theor Appl Genet, 1998, 96: 743~750
    [47] Sabelli P., Shewry P.R. Characterization and organization of gene families at the Gli-1 loci of bread and durum wheat. Theor Appl Genet, 1991, 83: 428~434
    [48] Pitts E.G., Rafalski J.A., Hedgcoth C. Nucleotide sequence and encoded amino acid sequence of a genomic gene region for a low molecular weight glutenin. Nucleic Acids Research, 1988, 16: 11376
    [49] D’Ovidio R., Marchitelli C., Ercoli Cardelli L., et al. Sequence similarity between allelic Glu-B3 genes related to qua1ity properties of durum wheat. Theor Appl Genet, 1999, 89: 455~461
    [50] Masci S., D’Ovidio R., Lafiandra D., et al. Characterization of a low-molecular- weight glutenin subunit gene from bread wheat and the corresponding protein that represents a major subunit of the glutenin polymer. Plant Physiol, 1998, 118: 1147~1158
    [51] Hammond-Kosack M.C.U., Holdsworth M.J., Bevan M.W. In vivo footprinting of a low molecular weight glutenin gene(LMW-1D1) in wheat endosperm. The EMBO Journal, 1993, 12: 545~554
    [52] Masci S., Egorov T.A., Ronchi C., et al. Evidence for the presence of only one cysteine residue in the D-type low-molecular-weight subunits of wheat glutenin. Cereal Sci, 1999, 29: 17~25
    [53] Ikeda T.M., Nagamine T., Fukuoka H., et al. Identification of new low-molecular- weight glutenin subunit genes in wheat. Theor Appl Genet, 2002, 104: 680~687
    [54] Gupta G.B., MacRitchie F. Allelic variation at glutenin subunit and gliadin loci, Glu-1, Glu-3 and Gli-1 of common wheats.Ⅱ. Biochemical basis of the allelic effects on dough properties. Cereal Chem, 1994, 19: 19~29
    [55] Skeritt J.H. Glutenin proteins: genetics structure and dough quality-a review. AgBiotech News Information, 1998, 10: 247~270
    [56] Nagamine T., Kai Y., Takayama T., et al. Alleic variation of glutenin subunit loci Glu-1 and Glu-D3 in southern Japanese wheat and their effects on dough and glutenin properties. Cereal Sci, 2000, 32: 129~135
    [57] Gupta R.B., Shepherd K.W. Genetic control of LMW glutenin subunits in bread wheat and association with physical dough properties. In: Pro 3rd Int Workshop on Glutenin Proteins,Lasztity.R,Bekes. F(eds) World Scientific Publishing Co Pte Ltd. Singapore, 1987, 13~19
    [58] Gupta R.B., Shepherd K.W., Macritchie F. Effects of rye chromosome arm 2RS on flour proteins and physical dough properties in bread wheat. Cereal Sci, 1989, 10: 169~173
    [59] Boggini G., Pogna N.E. The breadmaking quality and storage protein composition of Italian durum wheat. Cereal Sci, 1989, 9: 131~138
    [60] D’Ovidio R., Simeone M., Masci S., et al. Molecular characterization of a LMW-GS gene located on chromosome lB and the development of primers specific for the Glu-B3 complex locus in durum wheat. Theor Appl Genet, 1997, 95: 1119~1126
    [61] Gupta R.B., Singh N.K., Shepherd K.W. The cumulative effect of allelic variation in LMW and HMW glutenin subunits on dough properties in the progeny of two bread wheats. Theor Appl Genet, 1989, 77: 57~64
    [62]刘丽,周阳,何中虎等.高、低分子量麦谷蛋白亚基等位变异对小麦加工品质性状的影响.中国农业科学, 2004, 37(1): 8~14
    [63] Brites C., Carrillo J.M. Influence of high molecular weight(HMW) and low molecular weight(LMW) glutenin subunits controlled by Glu-1 and Glu-3 loci on durum wheat quality. Cereal Chem, 78(1): 59~63
    [64]张玲,王宪泽,岳永生.用TOM值评价中国面条小麦品质的新方法及小麦品质对它的影响.中国粮油学报, 1998, 13(1): 49~53
    [65]陆燕,马传喜.小麦品种麦谷蛋白亚基的遗传变异分析.安徽农业大学学报, 2000, 27: 126~130
    [66] Payne P.I., Jackson E.A., Holt L.M., et al. Genetic linkage between endosperm storage protein genes on each of the short arms of chromosomes 1A and 1B in wheat.Theor Appl Genet, 1984, 67: 235~243
    [67] Lee Y.K., Bekes F., Gupta R., et al. The low-molecular-weight glutenin subunit protenin of primitive wheatsⅠvariation in A-genome species. Theor Appl Genet 1999, 98: 119~125
    [68] Lee Y.K., Ciaffi M., Appels R., et al. The low-molecular-weight glutenin subunit protenin of primitive wheatsⅡThe genes from A-genome species. Theor Appl Genet, 1999, 98: 126~134
    [69]储洪裕,鲍永忠.小麦谷蛋白亚基与品质的关系.青海大学学报(自然科学版), 2001, 19: 13~14
    [70] Dachkevitch T., Autran J.C., Prediction of baking quality of bread wheat in breeding programs by size-exclusion high-perfromance liquid chromatography. Cereal Chem, 1989, 66: 448~456
    [71] Huebner F.R., Wall J.S. Fractionation and quantitative differences of glutenin from wheat varieties varying in baking qulity. Cereal Chem, 1976, 53: 258~269
    [72] Masci S., Egorov T.A., Ronchi C., et al. Evidence for the presence of only one cysteine residue in the D-type low-molecular-weight subunits of wheat glutenin. Cereal Sci, 1999, 29: 17~25
    [73] D’Ovidio R., Tanzarellao O.A., Porceddu E. Nucleotide sequence of a low-molecular- weight glutenin from Triticum durum. Plant Mol Biol, 1992, 18: 781~784
    [74] Van Campenhout S., Vander Stappen J., Sagi L., et al. Locus-specific primers for LMW glutenin genes on each of the group1 chromosomes of hexaploid wheat. Theor Appl Genet, 1995, 91: 313~319
    [75]董玉琛,郑殿升.中国小麦遗传资源.中国农业出版社, 1999, 12
    [76]杨金华,于亚雄,程耿等.云南铁壳麦研究进展.植物遗传资源学报, 2005, 6(4): 478~481
    [77]董玉琛,郑殿升,乔丹杨等.云南小麦(Triticum aestivum ssp . yunnanense King)的考察与研究.作物学报, 1981, 7(3): 145~151
    [78]黄俐,陈佩度,刘大钧.用中国春双端二体分析云南小麦的染色体构成.中国农业科学, 1989, 22(4): 13~16
    [79]陈勋儒.云南小麦的现有类型及其主要性状的遗传研究.遗传, 1980, 2(6): 17~19
    [80]王海燕,王秀娥,陈佩度.云南、西藏及新疆小麦研究进展.麦类作物学报,2007, 27(4): 740~743
    [81]陈庆富.中国特有小麦起源探讨.贵州农业科学, 1999, 27(1): 20~25
    [82] Yang W.Y., Yen C., Yang J.L. Cytogenetic study on the origin of some special Chinese landraces of common wheat .Wheat Information Service, 1992, 75: 14~20
    [83]彭隽敏,孔青,徐乃瑜.云南小麦、西藏半野生小麦和普通小麦叶绿体DNA限制性内切酶图谱的研究.遗传, 1995, 17(6): 4~6
    [84]兰秀锦,魏育明,郑有良等.中国半野生小麦的酯酶同工酶分析.四川农业大学学报, 2001, 19(2): 122~125
    [85]魏育明,郑有良,周永红等.中国特有小麦Gli-1、Gli-2和Glu-1位点的的遗传多样性.植物学报, 2001, 43(8): 834~839
    [86] Chen P.D., Liu D.J., Pei.G.Z., et al. The chromosome constitution of three endemic hexaploid wheats in west China. Proc 7th intern Wheat Genet Symp Cambridge, 1988, 75~80
    [87]杨武云,颜济,杨俊良.中国几个特有普通小麦起源研究.四川农业大学学报, 1992, 10(1): 12~18
    [88] Ward R.W., Yang Z.L., Kim H.S., et al. Comparative analyses of RFLP diversity in landraces of Triticum aestivum and collections of T.taucshii from China and Southwest Asia. Theor Appl Genet, 1998, 96: 312~318
    [89] Wei Y.M., Zheng Y.L., Liu D.C., et al. HMW-glutenin and gliadin variations in Tibetan weedrace, Xinjiang rice wheat and Yunnan hulled wheat. Genetic Resources and Crop Evolution, 2002, 49: 327~330
    [90] Wei Y.M., Zheng Y.L., Zhou Y.H., et al. Genetic diversity of Gli-1, Gli-2 and Glu-1 alleles among Chinese endemic wheat. Acta Botanica Sinica, 2001, 43(8): 834~839. (in Chinese)
    [91]崔运兴,马缘生.中国特有小麦的酯酶同工酶.植物学报, 1991,32 (1): 39~44
    [92]王海燕,王秀娥,陈佩度等.云南、西藏与新疆小麦醇溶蛋白Gli-1和Gli-2编码位点等位基因组成及遗传多样性分析.麦类作物学报, 2005, 25(6): 34~39
    [93]王海燕,王秀娥,陈佩度等.云南西藏与新疆小麦高分子量谷蛋白亚基组成及遗传多样性分析.中国农业科学, 2005, 38(2): 228~233
    [94] Zhao H., Wang R., Guo A., et al. Development of primers specific for LMW-GS genes located on chromosome 1D and molecular characterization of a gene from Glu-D3 complex locus in bread wheat. Hereditas, 2004, 141: 193~198
    [95] Tatham A.S., Miflin B.J., Shewry P.R. The beta-turn conformation in wheat gluten proteins:Relationship to gluten elasticity. Cereal Chem, 1985, 62: 405~442

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700