聚苯胺及其衍生物/无机物复合材料制备及其导电性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料的研究及其制备技术引起了世界各国的普遍重视。近年来纳米材料的发展朝着功能互补、性能优化的趋势发展。有机-无机纳米复合材料因其兼具有机聚合物和无机材料的优良特性,在电学、光学、力学和磁学等方面赋予材料许多优异的特性,已成为当今材料科学、物理化学、有机化学和高分子化学等多学科交叉的前沿领域。
     聚苯胺因其原料廉价易得、合成方法简单、电导率较高且可调、环境稳定性好,以及独特的化学和电化学性能,成为最有应用前景的导电高分子材料。但聚苯胺难溶解、难熔融、难于加工等特性极大地阻碍了聚苯胺的实用化进程。由于纳米材料尺度极小,使之表面原子数、表面能急剧增加,产生了宏观物体所不具有的表面效应、量子效应和宏观量子隧道效应等新的性能。因此将纳米技术引入导电聚苯胺的合成工艺中,可以使其集导电性和纳米颗粒功能于一体,能极大地改善导电聚苯胺的加工性。本课题主要研究了以下几方面的内容:
     1.本章主要介绍了纳米结构聚苯胺的研究进展并对可溶性聚苯胺的研究进行了简要概述。碳纳米管具有优异的力学性能,优良的化学稳定性和热稳定性,良好的电性能,并具有独特的一维纳米结构所特有的纳米效应,使其成为聚合物材料理想的增强体,并能赋予聚合物材料许多新的功能。本章也综述了碳纳米管/聚合物复合材料研究的新进展。
     2.本章首次报道了以纳米石墨薄片为导电填料,用超声法成功的制备了纳米石墨薄片/聚苯胺(NanoGs/PAN)复合棒状材料。研究了掺杂剂的种类、掺杂剂的浓度以及纳米石墨薄片的用量对材料导电性能影响。并利用红外光谱(FTIR)、扫描电镜(SEM)表征了材料的组成和结构。结果表明超声法可抑制苯胺聚合时的团聚,形成均匀的棒状纳米复合材料。纳米石墨薄片加入量在1.3%时达到渗域滤值,材料的导电率由4.8S/cm达到22S/cm。热重分析说明纳米石墨薄片/聚苯胺复合棒状材料的热稳定性优于单纯的聚苯胺。
     3.本章首次介绍了以纳米石墨薄片为导电填料,成功的制备了纳米石墨薄片/聚苯胺-g-聚乙二醇(NanoGs/PANI-PEG-PANI)复合材料。研究了掺杂剂的种类、掺杂剂的浓度以及纳米石墨薄片的用量对材料导电性能影响。利用红外光谱(FTIR)、扫描电镜(SEM)表征了材料的组成和结构,结果表明盐酸掺杂的在1.6mol/L左右,而对甲苯磺酸掺杂的在0.75mol/L左右,纳米石墨薄片加入量在2.3%时达到渗域滤值,电导率达到16.9S/cm。热重分析说明纳米石墨薄片/聚苯胺-g-聚乙二醇复合材料的热稳定性优于单纯的聚苯胺,而共聚物中PEG链段的引入使得NanoGs/PANI-PEG-PANI复合材料的热稳定性降低。。
     4.本章运用超声法成功的制备了碳纳米管/PANI-PEG-PANI复合材料。研究了碳纳米管的用量对材料导电性能影响。利用红外光谱(FTIR)、原子力(AFM)表征了材料的组成和结构,电导率测试结果表明:纯嵌段共聚物的导电率为3.4S/cm,加入碳纳米管的含量为1.2%时,导电率为下降至最低点;碳纳米管的含量大于1.2%时,材料的导电率呈现出增加的趋势。热重分析说明由于耐热的碳纳米管的引入使得复合材料的热稳定性优于单纯的嵌段共聚物。
Research and preparation of nanomaterials is causing an extensive concern of all over the world. Recently, the developing direction of materials is the functional complementarity and the property optimization. Nowadays, organic-inorganic nanocomposites have become full-subject crossed leading field across material science, physical chemistry, organic chemistry and polymeric chemistry, because they combine the merits of the organic polymers and inorganic material, exhibiting good electrical, optical, mechanical and magnetic properties.
     Polyaniline (PANI) is one of the most promising conducting polymers due to its lower cost, higher and tunable conductivity, environmental stability and unique chemical and electrochemical properties. However, the properties of infusibility, insolubility and poor processability have greatly prevented its application. Nanomaterial has the special physical and chemical properties. Introducing nanotechnology into the synthetical technology of polyaniline will remarkably improve its processability; moreover it has conductivity and nanopartical function together. The research contains four parts, as follows:
     1. In this chapter, we mainly describe the development of the nano structure and of soluble PANI. CNTs have excellent mechanical properties, good chemical and thermal stabilities predominant nano-effects electrical and microwave absorption properties, and have the unique of one dimensional nano-structure which makes CNTs be reinforcen for polymer materials, and give polymer materials many new the perfect functions, we describe the development of the CNTs/polymer composite.
     2. The graphite nanosheets/polypaniline (NanoGs/PANI) nanorod composites were fabricated via ultrasonic polymerization of aniline monomer in the presence of NanoGs which was used as electric filling. The kind of doped acids, the concentration, and the content of the graphite nanosheets as impact factor to the conductivity of the material was investigated. The structure of nanocomposites was characterized by FT-IR, SEM. The results show that ultrasonic can effectively restrain the agglomerate of the aniline and come to uniformity nanorods composite. The conductivity reached to 4.8S/cm and 22S/cm respectively.
     3. The NanoGs/PANI-PEG-PANI composites were fabricated via polymerization of aniline monomer and BAPPEG in the presence of NanoGs which was used as electric filling. The kind of doped acids, the concentration, and the content of the graphite nanosheets as impact factors to the conductivity of the material was investigated. The structure of composites was characterized by FT-IR, SEM. The results showed the materials with even film structure have excellent conductivity. The conductivity reached to 3.4 S/cm and 16.9 S/cm respectively.
     4. The CNTs/PANI-PEG-PANI composites were fabricated via ultrasonic polymerization of PANI-PEG-PANI in the presence of CNTs which was used as electric filling. The structure of nanocomposites was characterized by FT-IR, AFM. The conductivity of pure PANI-PEG-PANI is 3.4S/cm, the conductivity of composite cut down to minimum when the CNTs is 1.2%, but after the piont the conductivity are increase.
引文
[1]王杨勇,张可青,井新利.聚苯胺纳米纤维研究进展[J].石化技术与应用, 2007, 25(1): 62-67.
    [2] Jing X., Zhao W., Lan L.. Effect of particle size on electric conducting percolation threshold in polymer/conducting particle composites[J]. J. Mater. Sci. Lett., 2000, 19 (5): 377-379.
    [3]邢双喜.纳米结构聚苯胺的合成、性能与应用研究[D].吉林大学博士毕业论文. 2007.
    [4] Huang J., Virji S., Weiller B. H., et al. Polyaniline nanofibers: facile synt hesis and chemical sensors [J]. J. Am. Chem. Soc., 2003, 125(2): 314-315.
    [5] Yang Y. S., Wan M. X.. Chiral nanotubes of polyaniline synthesized by a template-free method [J]. J. Mater. Chem., 2002, 12(4) : 897-901.
    [6] Hatano T., Takeuchi M., Ikeda A., et al. New morphology-controlled poly (aniline) synthesis using anionic porphyrin aggregate as a template [J]. Chem. Lett., 2003, 32(4): 314-315.
    [7] Ma Y. F., Zhang J. M., Zhang G. J., et al. Polyaniline nanowires on Si surfaces fabricated with DNA templates[J]. J. Am. Chem. Soc., 2004, 126 (22): 7097-7101.
    [8] Li G. C., Peng H. R., Wang Y., et al. Synt hesis of polyaniline nanobelts[J]. Macromol Rapid Commun, 2004, 25 (18): 1611-1614.
    [9] Martin C. R.. Nanomaterials: A membrane-based synthetic approach[J]. Science, 1994, 266 (5193): 1961-1966.
    [10] Martin C. R.. Template synthesis of elect ronically conductive polymer nano structures[J] . Acc. Chem. Res., 1995, 28 (2): 61-68.
    [11] Martin C. R.. Membrane-based synthesis of Nanomaterials[J]. Chem. Mater., 1996, 8(8): 1739-1746.
    [12] Wu C. G., Bein T.. Conducting polyaniline filaments in a mesoporous channel host[J] . Science, 1994, 264(5166): 1757-1759.
    [13]王臻,力虎林.模板法制备高度有序的聚苯胺纳米纤维阵列[J].高等学校化学学报, 2002, 23 (4): 721-723.
    [14] R. V. Parthasarathy, C. R. Martin, Template-Synthesized Polyaniline Microtubules[J]. Chem. Mater, 1994, 6, 1627-1629.
    [15] B. H. Sung. U. S. Choi, H. G. Jang, et al. Novel approach to enhance the dispersion stability of ER fluids based on hollow polyaniline sphere particle[J]. Colloid Surf A, 2006, 274, 37-42.
    [16] S. J. Ding, C. L. Zhang, M. Yang, et al. Template synthesis of composite hollow spheres using sulfonated polystyrene hollow sphere[J]. Polymer, 2006, 47(25): 8360-8366.
    [17] Q. Wu, Z. Wang, G. Xue. Controlling the structure and morphology of monodisperse polystyrene/polyaniline composite particles[J]. Adv. Func. Mater., 2007, 17, 1784–1789.
    [18] D. Wang, F. Caruso, Fabrication of polyaniline inverse opals via templating ordered colloidal assemblies[J]. Adv. Mater. 2001, 13, 350-354.
    [19]L. Dauginer-De Pra, S. Demoustier-Champagne. A. comparative study of the electronic structure and spectro-electrochemical properties of electrosynthesizedpolyaniline films and nanotubes[J]. Thin Solid Films, 2005, 479, 321-328.
    [20] Z. Zhang, J. Sui, L. Zhang, M. Wan, et al, Adv. Mater. 2005, 17, 2854.
    [21] Dustyn D.Sawall, Randy M.Villahermosa, Ruscell A. Lipeles. et al, Interfacial polymerization of polyaniline nanofibers grafted to Au surface[J]. Chem. Mater., 2004, 16: 1606-1608.
    [22] Dong H, Zhang Y Y Wang. Synthesis and applications of one-dimensional nano-structured polyaniline: An overview[J]. Mater. Sci. Eng. B-Solid, 2006, 134: 9-19.
    [23] Carswell A D W, Orear E A, Grady B P. Adsorbed surfactants as templates for t he synt hesis of morphologically controlled polyaniline and polypyrrole nanost ructures on flatsurfaces: From spheres to wires to flat films[J]. J Am Chem Soc, 2003, 125 (48): 14793-14800.
    [24] Zhang X. Y., Manohar S. K.. Polyaniline nanofibers: chemical synthesis using surfactants[J]. Chem Commun, 2004, (20): 2360-2361.
    [25] Qiu H. J., Wan M. X., Matt hews B., et al. Conducting polyaniline nanotubes by template-free polymerization[J]. Macromolecules, 2001, 34(4): 675-677.
    [26] Huang L M, Wang Z B, Wang H T, et al. Polyaniline nanowires by electropolymerization from liquid crystalline phases[J]. J Mater Chem, 2002, 12 (2): 388-391.
    [27] Liu J M , Yang S C. Novel colliod polyaniline fibrils made by template guided chemical polymerization[J]. J Chem Soc, Chem Commun, 1991, (21): 1529-1531.
    [28] W. Zhong, J. Deng, Y. Yang, W. Yang, Macromol. Rapid Commun. 2005, 26, 395.
    [29] Y. He. Preparation of polyaniline microshperes with nanostructured surfaces by a solid-stabilized emulsion[J]. Mater. Lett., 59, 2005, 2133-2136.
    [30] Kun Huang, Xiao-Hong Meng, Meixiang Wan. Polyaniline hollow microspheres constructed with their own self-assembled nanofibers[J]. J. Appl. Polym. Sci., 2006, 3050-3054.
    [31] D.Ichinohe, T.Arai , H.Kise. Synthesis of polyaniline in reversed micellarsystems[J]. Synth. Met., 1997, 84: 75-76.
    [32] G. Li, S. Pang, H. Peng, Z Wang, et al. Templateless and surfactantless route to the synthesis of polyaniline nanofibers[J]. J. Polym. Sci. Part A: Polym. Chem. 2005, 43(17): 4012-4015.
    [33] J. Huang, S. Virji B., H. Weiller, et al. Polyaniline Nanofibers: Facile Synthesis and Chemical Sensors[J]. J. Am. Chem. Soc. 2003, 125(2): 314-315.
    [34] J. Huang, R. B. Kaner. A general chemical route to polyaniline nanofibers[J]. J. Am. Chem. Soc. 2004, 126: 851-855.
    [35] Guicun Li, Shuping Pang, Zhaobo Wang, et al. Templateless and surfactant less route to the synthesis of polyaniline nanofibers[J]. J. Polym. Sci. Pol. Chem., 2005, 43: 4012-4015.
    [36] Jing X. L., Wang Y. Y., Wu D., et al. Polyaniline nanofibers prepared with ultrasonic irradiation[J]. J Polym Sci , Part A : Polym Chem, 2006, 44(2): 1014-1019.
    [37] Jing X L, Wang Y. Y., Wu D, et al. Sonochemical synthesis of polyaniline nanofibers[J]. Ultrason Sonochem, 2007, 14(1): 75-80.
    [38]王科,张旺玺.导电聚苯胺的研究进展[J].合成技术及应用, 2004, 19(1): 23-27.
    [39] P. Wang, K. L.Tan. Synthesis and characterization of poly(ethylene glycol)-grafted polyaniline[J]. Chem. Mater. 2001, 13: 581-587.
    [40] Zheng W. Y.,Levon K., Loakso J., et al. Characterization and solid-state Properties of Processable N-aikyated Polyaniline in the neutral state[J]. Macromolecules, 1994, 27: 7754-7768.
    [41] Yue J., Epstein A. J. XPS study of self-doped conducting polyaniline and parent systems[J]. Macromolecules, 1991, 24(15): 4441-4445.
    [42] Wang Y. J., Wang X. H., et al. Morphological study on water-borne conducting polyaniline-polyethylene oxide blends[J]. J Polym Sci Polym Phys, 2002, 40: 605-612.
    [43]汤琪,马利.反应条件对聚苯胺/邻甲氧基苯胺性能的影响,重庆大学学报(自然科学版)2002, 25(5): 46-49.
    [44] Nyuyen M. T., Leclerc M, Diaz A. F. Water-Soluble Poly(aniline-co-o-anthranilic acid) Copolymers[J]. Macromolecules, 1995, 28: 3411-3415.
    [45] Alan J. Heeger. Polyaniline with surfaetante ounterions: condueting polymer materials which are Proeessible in the condueting form[J]. Synth. Met., 1993, 57(1): 3471-3482.
    [46] Lin H. K., Chen S. A. Self-Doped Polyaniline[J]. macromolceules, 2000, 33: 8117-8118.
    [47]封伟,韦玮,吴洪才.可溶导电聚苯胺的合成及其性能研究[J].功能高分子学报, 1998, 11: 237-240.
    [48] Chan H. S. O., Ho P. K. H., Tan K. L., et al. Chemical preparation and characterization of conductive polyaniline laminate thin films[J]. Synth Met, 1990, 35: 333-344.
    [49] Dennis E., Tallman ordon G. Wallace1. Preparation and preliminary characterization of a poly (4-vinylpyridine) complex of a water soluble polyaniline[J]. Synthetic Metals, 1997, 90: 3-81.
    [50]廖海星,何定凯,张爱清,唐和清.水溶性导电聚苯胺的制备及应用研究进展[J].化学与生物工程. 2008, 25(12): 1-4.
    [51]南军义,林薇薇,田永辉.共聚物酸掺杂接枝聚苯胺的研究[J].功能高分子学报. 2000, 13(3): 297-300.
    [52]. Sun L. F., Yang S. C., Liu J M. Template-guided synthesis of conducting polymers-molecular complex of polyaniline and polyelectrolyte[J]. Polymer Preprints, 1992, 33: 379-380.
    [53] Shannon K., Fernandez J. E.. Preparation and properties of water-soluble, poly(styrenesulfonic acid)-doped polyaniline[J]. J. Chem. Soc. Chem. Commun., 1994, (5): 643-646.
    [54] Ajayan P. M., Stephan O., Colliex C., et al. Aligned carbon nanotubes formed by cutting a polymer resin-nanotube composite[J]. Science, 1994, 265: 1212-1214.
    [55]校峰,马晓燕.碳纳米管/聚合物复合材料研究进展[J].绝缘材料, 2006, 39(5): 13-15.
    [56] Jin Z., Pramoda K., Xu G., et al. Dynamic mechanical behavior of melt-processed multi-walled carbon nanotubes/poly(methyl methaerylate) composites[J]. Chem. Phys. Lett. 2001, 337: 43-47.
    [57] Gong X. Y., Jun L., Baskaran S., et al. Surfactant-assisted proceessing of carbon nanotube/polymer composites[J]. Chem. Mater., 2000, 12(4): 1049-1052.
    [58] Lau K. T., Shi S. Q., Zhou L. M., et al. Micro-hardness and flexural properties of randomly-oriented carbon nanotube composites[J]. J. Comp. Mat., 2003, 37(4): 365-376.
    [59] Wu M, Shaw L L. On the improved properties of injection-molded, carbon nanotube-filled PET/PVDF blends[J]. Journal of Power Sources, 2004, 136(l): 37-44.
    [60] Grunlan J. C., Mehrabi A. R., Bannon M. V. et al. Water based single walled carbon nanotobe filled Polymer composite with an exceptionally low pereolation threshold[J]. Adv. Mat., 2004, 16: 150-153.
    [61]李文春,沈烈,郑强.多壁碳纳米管填充高密度聚乙烯复合材料的导电特性[J].高等学校化学学报, 2005, 2(26): 382-384.
    [62] Jia Z J, Wang Z Y, Xu C L , et al. Mat. Sci. Eng. A ,1999, 271: 395-400.
    [63] Chen Q., Dai L., Gao M., et al. Plasma aetivation of carbon nanotubes for chemieal modification[J]. The J. Phys. Chem. B, 2001, 105(3): 618-622.
    [64]曾宪伟,赵东林.碳纳米管/聚苯胺复合材料的原位合成及其形成机理[J].碳素技术, 2004, 4(23): 16-19.
    [65]Jia Z. J., Wang Z. Y., Xu C. L., et al. Mechanical alloying of polymer/metal system[J]. Sci. Engine., 1999, 271: 395-400.
    [66]贾志杰,王正元,徐才录等.纳米材料和纳米结构[J].材料开发与应用, 1998, 13(6): 22-26.
    [67]贾志杰,王正元,梁吉等.聚合物纳米复合材料研究进展[J].材料工程, 1998, 6: 3-6.
    [68] Li X., Wu B., Huang J., et al. Fabrieation and characterization of well dispersed singlewalled carbon nanotube/Polyaniline composites[J]. Carbon, 2002, 41: 1670-1673.
    [69]宿凯.聚苯胺/碳纳米管原位聚合[M].黑龙江大学硕士学位论文, 2008.
    [70] Treacy M. M. J., Ebbesen T. W., Gibson J. M.. Exceptionally High Young’s Modulus Observed for Individual CarbonNanotubes[J]. Nature (Lond), 1996, 381(6584): 678-680.
    [71] Qian D., Kickey E. C., Andrew S. R., et al. Applied Physics Letters, 2000, 76 (20): 2868-2870.
    [72] Ruan S. L., Gao P., Yang X. G., et al. Toughening high performance ultrahigh molecular weight polyethylene using multiwalled carbon nanotubes[J]. Polymer, 2003, 44(19): 5643-5654.
    [73] Blake R., Gun’ko Y. K., Coleman J., et al. J. Am. Chem. Soc. 2004, 126: 10266-10267.
    [74]贾志杰,王正元,徐才录等.原位法制取碳纳米管/尼龙—6复合材料[J].清华大学学报(自然科学版)2000, 40(4): 14-16.
    [75] Bower C., Ro seb R., Jin L., et al. Applied Physics Letters, 1999, 74 (22): 3317-3319.
    [76] Li D., Zhang X. F., Sui G, et al. Toughness improvement of epoxy by incorporating carbon nanotubes into the resin[J]. J. Mat. Sci. Lett., 2003, 22 (11): 791-793.
    [77]喻光辉,曾繁涤.聚氨酯/碳纳米管复合材料力学及电性能研究[J].工程塑料应用, 2005, 33(6): 11-13.
    [78]李宏建,彭景翠,陈小华等.填充碳纳米管/石墨的复合型电磁波屏蔽膜[J].化学物理学报, 2001, 14 (2): 211-215.
    [79]胡平,范守善,万建伟.碳纳米管/UHMWPE复合材料的研究[J].工程塑料应用, 1998, 26(1): 1-3.
    [80]王起才,李梦柯,黄良甫.丙烯酸酯/碳纳米管复合材料的制备及导电特性研究[J].真空与低温, 2003, 9(3): 138-141.
    [81] Sun X., Yu R. Q., Xu G. Q.. Broadband optical limiting with multiwalled carbon nanotubes[J]. Appl. Phy. Lett., 1998, 73: 36-32.
    [82] Tang B., Xu H.. Preparation Alignment and optical propertyes of soluble poly(phenylacetylene) wrapped carbon nanotubes[J]. Macromolecules, 1999, 32: 2569-2576.
    [83] Chen Y. C., Raravikar N. R, et al. Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55μm[J]. Appl. Phys. Lett., 2002, 81: 975-977.
    [84] Jin Z. X., Sun X., Xu G. Q., et al. Nonlinear optical properties of somepolymer/multi-walled carbon nanotube composites[J]. Chem. Phys. Lett., 2000, 318, 505-510.
    [85] Ago H., Petritsch K., Shaffer M. S. P., et al.Composites of carbon nanotubes and conjugated polymers for photovoltaic devices[J]. Adv. Mat., 1999, 11: 1281-1285.
    [86] Curran S., Davey A. P., Coleman J., et al . Evolution and evaluation of the polymer nanotube composite[J]. Syn. Met., 1999, 103(123): 2559-2562.
    [1] MacDiarmid A G, Chiang J C, Halpern M, et al. Polyaniline Interconversion of metallic and insulating forms[J]. Mol. Cryst. Liq. Cryst., 1985, 121(1): 173-180.
    [2]马利,汤琪.导电高分子材料聚苯胺的研究进展[J].重庆大学学报, 2002, 25 (2): 124-127.
    [3]王杨勇,强军锋,井新利,等.导电高分子聚苯胺及其应用[J].化工新型材料, 2003, 31(3): 1-4.
    [4]王杨勇,张可青,井新利.聚苯胺纳米纤维研究进展[J].石化技术与应用, 2007, 25(1): 62-67.
    [5] Martin C R. Nanomaterials: A membrane-based synthetic approach[J]. Science, 1994, 266 (5193): 1961-1966.
    [6] Jing X, Zhao W, Lan L. Effect of particle size on electric conducting percolation threshold in polymer/ conducting particle composites[J]. J Mater Sci Lett, 2000, 19 (5): 377-379.
    [7] Li D, Kaner R B. Processable stabilizer-free polyaniline nanofiber aqueous colloids[J] . Chem Commun, 2005, (26): 3286-3288.
    [8] Xinyu Zhang, Warren J. Goux, Sanjeev K. Manohar. Synthesis of Polyaniline Nanofibers by“Nanofiber Seeding”[J]. J. Am. Chem. Soc., 2004, 126, 4502-4503.
    [9] Huang JX , Kaner R B. A general chemical route to polyaniline nanofibers[J]. J. Am. Chem. Soc., 2004, 126 (3): 851-855.
    [10]辛凌云,张校刚.界面扩散聚合法制备樟脑磺酸掺杂聚苯胺纳米管或纳米纤维及其电化学电容行为研究[J].高分子学报, 2005 (3): 437-441
    [11] Huang J X, Kaner R B. Nanofiber formation in t he chemical polymerization of aniline: A mechanistic study [J]. Angew Chem Int Ed, 2004, 43 (43): 5817-5821.
    [12] Jing X L , Wang Y Y, Wu D , et al. Polyaniline nanofibers prepared wit ultrasonic irradiation[J]. J Polym Sci, Part A: Polym. Chem., 2006, 44 (2): 1014-1019.
    [13] Reghu M, Yoon C. O., Yang C. Y., et al. Superlocalization of the electronic wave functions in conductive polymer blends at content rations near the percolation threshold[J]. Macromolecules, 1993, 26 (26): 7245-7249.
    [14] Jousseaume V, Morsli M, Bonnet A, et al. Electrical properties of polyaniline -polystyrene blends above t he percolation threshold[J]. J. Appl. Poly. Sci., 1998, 67 (7): 1205-1208.
    [15] Guohua Chen, Wengui Weng, Dajun Wu. PMMA/graphite nanosheets composite and its conducting properties[J]. Eur. Poly. J., 2003, 39: 2329-2335.
    [16] Hongfei Lin, Wei Lu, Guohua Chen. Nonlinear DC conduction behavior in epoxy resin/graphite nanosheets composites[J]. Physic B, 2007, 400: 229-236.
    [17] Wei Lu, Hongfei Lin, Dajun Wu, et al. Unsaturated polyester resin/graphite nanosheet conducting composites with a low percolation threshold[J]. Polymer, 2006, 47: 4440-4444.
    [18] Zunli Mo, Yinxia Sun, Hong Chen, et al. Preparation and characterization of a PMMA/Ce(OH)3,Pr2O3/graphite nanosheet composite[J]. Polymer, 2005, 46: 12670-12676.
    [19]莫尊理,左丹丹,陈红,等.纳米石墨薄片/聚吡咯复合材料的制备及导电性能[J].无机化学学报, 2007, 23 (2): 265-269.
    [20] Yadav. Improvement in mechanical and optical properties of vapour chopped vacuum evaporated PANI/PMMA composite thin film[J]. Appl. Surf. Sci, 2007, 254(5): 1382-1388.
    [21]杨胜林,潘玮,李光等.掺杂率对乳液聚合制备聚苯胺结构性能的影响,功能高分子学报[J],2003, 16(2) : 203-209.
    [22]夏争艳.导电聚苯胺及聚苯胺纳米复合材料的制备与性能研究[M],北京化工大学硕士学位论文, 2005.
    [23]朱道本,功能材料进展[M],化学工业出版社, 2005.
    [24]康茹珍,杨善武,贺信来,等.反应物氧化剂和掺杂剂浓度对聚苯胺性能与结构的影响[J],北京科技大学学报, 2005, 27(1): 45-49.
    [25]刘郁杨,邵颖惠,韦玮.掺杂条件对聚苯胺膜导电性能影响的研究[J],功能高分子学报1999, 12 (1): 35-38.
    [26]陈翔峰,陈国华,吴大军,等.聚合物/石墨纳米复合材料研究进展[J],高分子通报, 2004, 39-47.
    [27] X. S. Du, M. Xiao, Y. Z. Meng. Synthesis and Characterization of Polyaniline/Graphite Conducting Nanocomposites Journal of Polymer Science: Part B: Polymer Physics[J], 2004, 42: 1972-1978.
    [1] Wang J. Polyaniline coating: anionic membrane nature and bipolar structures for anticorrosion [J]. Syn. Met., 2002, 132(1): 53-56.
    [2] Miao Y Q, Guan J G. Probing of antibody-antigen reactions at electropolymerized polyaniline immunosensors using impedance spectroscopy[J]. Analytical Letters, 2004, 37(6): 1053-1062.
    [3] MacDiarmid A G, Chiang J C, Halpern M, et al. Polyaniline Interconversion of metallic and insulating forms[J]. Mol. Cryst. Liq. Cryst., 1985, 121(1): 173-180.
    [4]薛志坚,漆宗能,王佛松.聚苯胺水基胶体分散液及其复合物的研究、制备、表征及复合物的表观形貌、力学性能[J].高分了学报, 1997, 12: 439-444.
    [5] Fu Zhang, E.T.Kang, K.G.Neoh, et al. Reactive coupling of poly(ethylene glycolon)electroactive polyaniline films for reduction in protein adsorption and platelet adhesion[J]. Biomaterials, 2002, 23: 787-795.
    [6] Chen Y J, Kang E T, Neoh K G, et al. Surface modification of polyanilinefilm by grafting of poly(ethylene glycol) for reduction in protein absorptionand platelet adhesion[J]. Syn. Met., 2000, 110: 47-55.
    [7] Peng Wang, K.L.Tan. Synthesis and characterization of poly(ethylene glycol)-grafted polyaniline[J]. Chem. Mater. 2001, 13: 581-587.
    [8] Wang Y. J., Wang X. H., et al. Morphological study on water-borne conducting polyaniline-polyethylene oxide blends[J]. J Polym Sci Polym Phys, 2002, 40: 605-612.
    [9]马会茹,官建国,卢国军,等. PEG链段对聚乙二醇接枝聚苯胺结构与性能的影响[J].高分子学报, 2006, 1: 92-96.
    [10]马会茹.聚苯胺与聚乙二醇刚柔共聚物的制备,结构与性能研究[D].武汉理工大学博士学位论文, 2005.
    [11]陈翔峰,陈国华.聚合物/石墨纳米复合材料研究进展[J].高分子通报, 2004, 4: 39-47.
    [12] Chen G H, Weng W G. Synthesis of carbon nanostructures on nanocrystalline Ni–Ni3P catalyst supported by SiC whiskers[J]2003,Carbon 41 :579-582.
    [13] Chen G H, Weng W G. Preparation of polystyrene/graphite nanosheet composite[J]. Polymer, 2003, 44: 1781-1784.
    [14]莫尊理,左丹丹,陈红等.纳米石墨薄片/聚吡咯复合材料的制备及导电性能[J].无机化学学报, 2007, 23 (2): 265-269.
    [15]马会茹,官建国,卢国军,等. PAn-PEG-PAn三嵌段共聚物的合成和表征[J].物理化学学报, 2005, 21(6): 627-611.
    [16]夏争艳.导电聚苯胺及聚苯胺纳米复合材料的制备与性能研究[M],北京化工大学硕士学位论文, 2005.
    [17]朱道本,功能材料进展[M],化学工业出版社, 2005.
    [18]康茹珍,杨善武,贺信来等,反应物氧化剂和掺杂剂浓度对聚苯胺性能与结构的影响[J],北京科技大学学报, 2005, 27(1): 45-49.
    [19]刘郁杨,邵颖惠,韦玮.掺杂条件对聚苯胺膜导电性能影响的研究[J],功能高分子学报,1999, 12 (1): 35-38. [2*]陈翔峰,陈国华,吴大军,等.聚合物/石墨纳米复合材料研究进展[J],高分子通报, 2004, 39-47.
    [21] X. S. Du, M. Xiao, Y. Z. Meng. Synthesis and Characterization of Polyaniline/Graphite Conducting Nanocomposites Journal of Polymer Science: Part B: Polymer Physics[J], 2004, 42: 1972-1978
    [1] Iijima S. Helical microtubules of graphitic carbon [J] . Nature, 1991, 354 (2): 56-58.
    [2] Treacy M. M. J., Ebbesen T. W., Gibson J. M.. Exceptionally High Young’sModulus Observed for Individual Carbon Nanotubes[J]. Nature (Lond), 1996, 381(6584): 678-680.
    [3] Qian D., Kickey E. C., A ndrew S. R., et al. Applied Physics Letters, 2000, 76 (20): 2868-2870.
    [4] Ruan S. L., Gao P., Yang X. G., et al. Toughening high performance ultrahigh molecular weight polyethylene using multiwalled carbon nanotubes[J]. Polymer, 2003, 44(19): 5643-5654.
    [5] Blake R., Gun’ko Y. K., Coleman J., et al. J. Am. Chem. Soc. 2004, 126: 10266-10267.
    [6] Li D., Zhang X. F., Sui G, et al. Toughness improvement of epoxy by incorporating carbon nanotubes into the resin[J]. J. Mat. Sci. Let., 2003, 22(11): 791-793.
    [7]喻光辉,曾繁涤.聚氨酯/碳纳米管复合材料力学及电性能研究[J].工程塑料应用, 2005 , 33(6): 11-13.
    [8]李宏建,彭景翠,陈小华,等.填充碳纳米管/石墨的复合型电磁波屏蔽膜[J].化学物理学报, 2001, 14 (2): 211-215.
    [9]胡平,范守善,万建伟.碳纳米管/UHMWPE复合材料的研究[J].工程塑料应用, 1998, 26(1): 1-3.
    [10]王起才,李梦柯,黄良甫.丙烯酸酯/碳纳米管复合材料的制备及导电特性研究[J].真空与低温, 2003, 9 (3) : 138-141.
    [11] Chen Y. C., Raravikar N. R, et al. Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55μm[J]. Appl. Phys. Lett., 2002, 81: 975-977.
    [12] Jin Z. X., Sun X., Xu G. Q., et al. Nonlinear optical properties of somepolymer/multi-walled carbon nanotube composites[J]. Chem. Phys. Lett., 2000, 318, 505-510.
    [13] Ajayan P. M., Stephan O., Colliex C., et al. Aligned carbon nanotubes formed by cutting a polymer resin-nanotube composite[J]. Science, 1994, 265: 1212-1214.
    [14] Ajayan P M, Schadler L S, Giannaris C, and Rubio A. Single-walled carbonnanotube polymer composites: strength and weakness[J]. Adv. Mat., 2000, 12: 750.
    [15]袁观明,李轩科,张铭金,等.碳纳米管对环氧树脂力学性能的影响[J].宇航材料工艺,2005, 2: 38.
    [16] Qi Z, Pickup P G. High performance conducting polymer supported oxygen reduction catalysts[J]. Chem. Commun., 1998, 2299-2300.
    [17]贾志杰,王正元,徐才路.碳纳米管的加入对PMMA强度和电导性的影响[J].材料开发与应用,1998, 13 (6):22-26.
    [18] Zunli Mo, Huafeng Shi, Hong Chen, et al.Synthesis of Graphite Nanosheets/Polyaniline Nanorods Composites with Ultrasonic and Conductivity[J]. J. Appl. Pol. Sci., 2009,112(2): 573-578.
    [19]莫尊理,史华锋,陈红,等.纳米石墨薄片/聚苯胺-g-聚乙二醇复合材料及导电性能[J].功能材料, 2009, 40(1): 154-158.
    [20]郭俊鹏,谢政,连彦青等.水溶性聚苯胺/碳纳米管复合材料的制备及光限幅性能[J].清华大学学报(自然科学版), 2009, 1(6): 49.
    [21]朱红伟,吴德海,徐才录.碳纳米管[M],机械工业出版社. 2002.北京.
    [22] Sun,Y, Wilson, S R., Schuster, D. I. High dissolution and strong light emission of carbon nanotubes dissolved in aniline[J]. J. Am. Chem. Soc. 2001, 123: 5348-5349.
    [23]刘家琴,吴玉程.碳纳米管/聚合物功能复合材料的研究进展[J].兵器材料科学与工程,2005,29(6): 64-68.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700